1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
|
/*
* Copyright (C) 2011 STRATO. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include "ctree.h"
#include "disk-io.h"
#include "backref.h"
#include "ulist.h"
#include "transaction.h"
#include "delayed-ref.h"
#include "locking.h"
struct extent_inode_elem {
u64 inum;
u64 offset;
struct extent_inode_elem *next;
};
static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
struct btrfs_file_extent_item *fi,
u64 extent_item_pos,
struct extent_inode_elem **eie)
{
u64 data_offset;
u64 data_len;
struct extent_inode_elem *e;
data_offset = btrfs_file_extent_offset(eb, fi);
data_len = btrfs_file_extent_num_bytes(eb, fi);
if (extent_item_pos < data_offset ||
extent_item_pos >= data_offset + data_len)
return 1;
e = kmalloc(sizeof(*e), GFP_NOFS);
if (!e)
return -ENOMEM;
e->next = *eie;
e->inum = key->objectid;
e->offset = key->offset + (extent_item_pos - data_offset);
*eie = e;
return 0;
}
static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
u64 extent_item_pos,
struct extent_inode_elem **eie)
{
u64 disk_byte;
struct btrfs_key key;
struct btrfs_file_extent_item *fi;
int slot;
int nritems;
int extent_type;
int ret;
/*
* from the shared data ref, we only have the leaf but we need
* the key. thus, we must look into all items and see that we
* find one (some) with a reference to our extent item.
*/
nritems = btrfs_header_nritems(eb);
for (slot = 0; slot < nritems; ++slot) {
btrfs_item_key_to_cpu(eb, &key, slot);
if (key.type != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
extent_type = btrfs_file_extent_type(eb, fi);
if (extent_type == BTRFS_FILE_EXTENT_INLINE)
continue;
/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
if (disk_byte != wanted_disk_byte)
continue;
ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
if (ret < 0)
return ret;
}
return 0;
}
/*
* this structure records all encountered refs on the way up to the root
*/
struct __prelim_ref {
struct list_head list;
u64 root_id;
struct btrfs_key key_for_search;
int level;
int count;
u64 parent;
u64 wanted_disk_byte;
};
/*
* the rules for all callers of this function are:
* - obtaining the parent is the goal
* - if you add a key, you must know that it is a correct key
* - if you cannot add the parent or a correct key, then we will look into the
* block later to set a correct key
*
* delayed refs
* ============
* backref type | shared | indirect | shared | indirect
* information | tree | tree | data | data
* --------------------+--------+----------+--------+----------
* parent logical | y | - | - | -
* key to resolve | - | y | y | y
* tree block logical | - | - | - | -
* root for resolving | y | y | y | y
*
* - column 1: we've the parent -> done
* - column 2, 3, 4: we use the key to find the parent
*
* on disk refs (inline or keyed)
* ==============================
* backref type | shared | indirect | shared | indirect
* information | tree | tree | data | data
* --------------------+--------+----------+--------+----------
* parent logical | y | - | y | -
* key to resolve | - | - | - | y
* tree block logical | y | y | y | y
* root for resolving | - | y | y | y
*
* - column 1, 3: we've the parent -> done
* - column 2: we take the first key from the block to find the parent
* (see __add_missing_keys)
* - column 4: we use the key to find the parent
*
* additional information that's available but not required to find the parent
* block might help in merging entries to gain some speed.
*/
static int __add_prelim_ref(struct list_head *head, u64 root_id,
struct btrfs_key *key, int level,
u64 parent, u64 wanted_disk_byte, int count)
{
struct __prelim_ref *ref;
/* in case we're adding delayed refs, we're holding the refs spinlock */
ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
if (!ref)
return -ENOMEM;
ref->root_id = root_id;
if (key)
ref->key_for_search = *key;
else
memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
ref->level = level;
ref->count = count;
ref->parent = parent;
ref->wanted_disk_byte = wanted_disk_byte;
list_add_tail(&ref->list, head);
return 0;
}
static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
struct ulist *parents, int level,
struct btrfs_key *key, u64 wanted_disk_byte,
const u64 *extent_item_pos)
{
int ret;
int slot;
struct extent_buffer *eb = path->nodes[level];
struct btrfs_file_extent_item *fi;
u64 disk_byte;
u64 wanted_objectid = key->objectid;
add_parent:
ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
if (ret < 0)
return ret;
if (level != 0)
return 0;
/*
* if the current leaf is full with EXTENT_DATA items, we must
* check the next one if that holds a reference as well.
* ref->count cannot be used to skip this check.
* repeat this until we don't find any additional EXTENT_DATA items.
*/
while (1) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
return ret;
if (ret)
return 0;
eb = path->nodes[0];
for (slot = 0; slot < btrfs_header_nritems(eb); ++slot) {
btrfs_item_key_to_cpu(eb, key, slot);
if (key->objectid != wanted_objectid ||
key->type != BTRFS_EXTENT_DATA_KEY)
return 0;
fi = btrfs_item_ptr(eb, slot,
struct btrfs_file_extent_item);
disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
if (disk_byte == wanted_disk_byte)
goto add_parent;
}
}
return 0;
}
/*
* resolve an indirect backref in the form (root_id, key, level)
* to a logical address
*/
static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
int search_commit_root,
struct __prelim_ref *ref,
struct ulist *parents,
const u64 *extent_item_pos)
{
struct btrfs_path *path;
struct btrfs_root *root;
struct btrfs_key root_key;
struct btrfs_key key = {0};
struct extent_buffer *eb;
int ret = 0;
int root_level;
int level = ref->level;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->search_commit_root = !!search_commit_root;
root_key.objectid = ref->root_id;
root_key.type = BTRFS_ROOT_ITEM_KEY;
root_key.offset = (u64)-1;
root = btrfs_read_fs_root_no_name(fs_info, &root_key);
if (IS_ERR(root)) {
ret = PTR_ERR(root);
goto out;
}
rcu_read_lock();
root_level = btrfs_header_level(root->node);
rcu_read_unlock();
if (root_level + 1 == level)
goto out;
path->lowest_level = level;
ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, 0, 0);
pr_debug("search slot in root %llu (level %d, ref count %d) returned "
"%d for key (%llu %u %llu)\n",
(unsigned long long)ref->root_id, level, ref->count, ret,
(unsigned long long)ref->key_for_search.objectid,
ref->key_for_search.type,
(unsigned long long)ref->key_for_search.offset);
if (ret < 0)
goto out;
eb = path->nodes[level];
if (!eb) {
WARN_ON(1);
ret = 1;
goto out;
}
if (level == 0) {
if (ret == 1 && path->slots[0] >= btrfs_header_nritems(eb)) {
ret = btrfs_next_leaf(root, path);
if (ret)
goto out;
eb = path->nodes[0];
}
btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
}
ret = add_all_parents(root, path, parents, level, &key,
ref->wanted_disk_byte, extent_item_pos);
out:
btrfs_free_path(path);
return ret;
}
/*
* resolve all indirect backrefs from the list
*/
static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
int search_commit_root,
struct list_head *head,
const u64 *extent_item_pos)
{
int err;
int ret = 0;
struct __prelim_ref *ref;
struct __prelim_ref *ref_safe;
struct __prelim_ref *new_ref;
struct ulist *parents;
struct ulist_node *node;
struct ulist_iterator uiter;
parents = ulist_alloc(GFP_NOFS);
if (!parents)
return -ENOMEM;
/*
* _safe allows us to insert directly after the current item without
* iterating over the newly inserted items.
* we're also allowed to re-assign ref during iteration.
*/
list_for_each_entry_safe(ref, ref_safe, head, list) {
if (ref->parent) /* already direct */
continue;
if (ref->count == 0)
continue;
err = __resolve_indirect_ref(fs_info, search_commit_root,
ref, parents, extent_item_pos);
if (err) {
if (ret == 0)
ret = err;
continue;
}
/* we put the first parent into the ref at hand */
ULIST_ITER_INIT(&uiter);
node = ulist_next(parents, &uiter);
ref->parent = node ? node->val : 0;
/* additional parents require new refs being added here */
while ((node = ulist_next(parents, &uiter))) {
new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
if (!new_ref) {
ret = -ENOMEM;
break;
}
memcpy(new_ref, ref, sizeof(*ref));
new_ref->parent = node->val;
list_add(&new_ref->list, &ref->list);
}
ulist_reinit(parents);
}
ulist_free(parents);
return ret;
}
static inline int ref_for_same_block(struct __prelim_ref *ref1,
struct __prelim_ref *ref2)
{
if (ref1->level != ref2->level)
return 0;
if (ref1->root_id != ref2->root_id)
return 0;
if (ref1->key_for_search.type != ref2->key_for_search.type)
return 0;
if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
return 0;
if (ref1->key_for_search.offset != ref2->key_for_search.offset)
return 0;
if (ref1->parent != ref2->parent)
return 0;
return 1;
}
/*
* read tree blocks and add keys where required.
*/
static int __add_missing_keys(struct btrfs_fs_info *fs_info,
struct list_head *head)
{
struct list_head *pos;
struct extent_buffer *eb;
list_for_each(pos, head) {
struct __prelim_ref *ref;
ref = list_entry(pos, struct __prelim_ref, list);
if (ref->parent)
continue;
if (ref->key_for_search.type)
continue;
BUG_ON(!ref->wanted_disk_byte);
eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
fs_info->tree_root->leafsize, 0);
BUG_ON(!eb);
btrfs_tree_read_lock(eb);
if (btrfs_header_level(eb) == 0)
btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
else
btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
btrfs_tree_read_unlock(eb);
free_extent_buffer(eb);
}
return 0;
}
/*
* merge two lists of backrefs and adjust counts accordingly
*
* mode = 1: merge identical keys, if key is set
* FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
* additionally, we could even add a key range for the blocks we
* looked into to merge even more (-> replace unresolved refs by those
* having a parent).
* mode = 2: merge identical parents
*/
static int __merge_refs(struct list_head *head, int mode)
{
struct list_head *pos1;
list_for_each(pos1, head) {
struct list_head *n2;
struct list_head *pos2;
struct __prelim_ref *ref1;
ref1 = list_entry(pos1, struct __prelim_ref, list);
for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
pos2 = n2, n2 = pos2->next) {
struct __prelim_ref *ref2;
struct __prelim_ref *xchg;
ref2 = list_entry(pos2, struct __prelim_ref, list);
if (mode == 1) {
if (!ref_for_same_block(ref1, ref2))
continue;
if (!ref1->parent && ref2->parent) {
xchg = ref1;
ref1 = ref2;
ref2 = xchg;
}
ref1->count += ref2->count;
} else {
if (ref1->parent != ref2->parent)
continue;
ref1->count += ref2->count;
}
list_del(&ref2->list);
kfree(ref2);
}
}
return 0;
}
/*
* add all currently queued delayed refs from this head whose seq nr is
* smaller or equal that seq to the list
*/
static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
struct list_head *prefs)
{
struct btrfs_delayed_extent_op *extent_op = head->extent_op;
struct rb_node *n = &head->node.rb_node;
struct btrfs_key key;
struct btrfs_key op_key = {0};
int sgn;
int ret = 0;
if (extent_op && extent_op->update_key)
btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
while ((n = rb_prev(n))) {
struct btrfs_delayed_ref_node *node;
node = rb_entry(n, struct btrfs_delayed_ref_node,
rb_node);
if (node->bytenr != head->node.bytenr)
break;
WARN_ON(node->is_head);
if (node->seq > seq)
continue;
switch (node->action) {
case BTRFS_ADD_DELAYED_EXTENT:
case BTRFS_UPDATE_DELAYED_HEAD:
WARN_ON(1);
continue;
case BTRFS_ADD_DELAYED_REF:
sgn = 1;
break;
case BTRFS_DROP_DELAYED_REF:
sgn = -1;
break;
default:
BUG_ON(1);
}
switch (node->type) {
case BTRFS_TREE_BLOCK_REF_KEY: {
struct btrfs_delayed_tree_ref *ref;
ref = btrfs_delayed_node_to_tree_ref(node);
ret = __add_prelim_ref(prefs, ref->root, &op_key,
ref->level + 1, 0, node->bytenr,
node->ref_mod * sgn);
break;
}
case BTRFS_SHARED_BLOCK_REF_KEY: {
struct btrfs_delayed_tree_ref *ref;
ref = btrfs_delayed_node_to_tree_ref(node);
ret = __add_prelim_ref(prefs, ref->root, NULL,
ref->level + 1, ref->parent,
node->bytenr,
node->ref_mod * sgn);
break;
}
case BTRFS_EXTENT_DATA_REF_KEY: {
struct btrfs_delayed_data_ref *ref;
ref = btrfs_delayed_node_to_data_ref(node);
key.objectid = ref->objectid;
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = ref->offset;
ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
node->bytenr,
node->ref_mod * sgn);
break;
}
case BTRFS_SHARED_DATA_REF_KEY: {
struct btrfs_delayed_data_ref *ref;
ref = btrfs_delayed_node_to_data_ref(node);
key.objectid = ref->objectid;
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = ref->offset;
ret = __add_prelim_ref(prefs, ref->root, &key, 0,
ref->parent, node->bytenr,
node->ref_mod * sgn);
break;
}
default:
WARN_ON(1);
}
BUG_ON(ret);
}
return 0;
}
/*
* add all inline backrefs for bytenr to the list
*/
static int __add_inline_refs(struct btrfs_fs_info *fs_info,
struct btrfs_path *path, u64 bytenr,
int *info_level, struct list_head *prefs)
{
int ret = 0;
int slot;
struct extent_buffer *leaf;
struct btrfs_key key;
unsigned long ptr;
unsigned long end;
struct btrfs_extent_item *ei;
u64 flags;
u64 item_size;
/*
* enumerate all inline refs
*/
leaf = path->nodes[0];
slot = path->slots[0];
item_size = btrfs_item_size_nr(leaf, slot);
BUG_ON(item_size < sizeof(*ei));
ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
flags = btrfs_extent_flags(leaf, ei);
ptr = (unsigned long)(ei + 1);
end = (unsigned long)ei + item_size;
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
struct btrfs_tree_block_info *info;
info = (struct btrfs_tree_block_info *)ptr;
*info_level = btrfs_tree_block_level(leaf, info);
ptr += sizeof(struct btrfs_tree_block_info);
BUG_ON(ptr > end);
} else {
BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
}
while (ptr < end) {
struct btrfs_extent_inline_ref *iref;
u64 offset;
int type;
iref = (struct btrfs_extent_inline_ref *)ptr;
type = btrfs_extent_inline_ref_type(leaf, iref);
offset = btrfs_extent_inline_ref_offset(leaf, iref);
switch (type) {
case BTRFS_SHARED_BLOCK_REF_KEY:
ret = __add_prelim_ref(prefs, 0, NULL,
*info_level + 1, offset,
bytenr, 1);
break;
case BTRFS_SHARED_DATA_REF_KEY: {
struct btrfs_shared_data_ref *sdref;
int count;
sdref = (struct btrfs_shared_data_ref *)(iref + 1);
count = btrfs_shared_data_ref_count(leaf, sdref);
ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
bytenr, count);
break;
}
case BTRFS_TREE_BLOCK_REF_KEY:
ret = __add_prelim_ref(prefs, offset, NULL,
*info_level + 1, 0,
bytenr, 1);
break;
case BTRFS_EXTENT_DATA_REF_KEY: {
struct btrfs_extent_data_ref *dref;
int count;
u64 root;
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
count = btrfs_extent_data_ref_count(leaf, dref);
key.objectid = btrfs_extent_data_ref_objectid(leaf,
dref);
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = btrfs_extent_data_ref_offset(leaf, dref);
root = btrfs_extent_data_ref_root(leaf, dref);
ret = __add_prelim_ref(prefs, root, &key, 0, 0,
bytenr, count);
break;
}
default:
WARN_ON(1);
}
BUG_ON(ret);
ptr += btrfs_extent_inline_ref_size(type);
}
return 0;
}
/*
* add all non-inline backrefs for bytenr to the list
*/
static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
struct btrfs_path *path, u64 bytenr,
int info_level, struct list_head *prefs)
{
struct btrfs_root *extent_root = fs_info->extent_root;
int ret;
int slot;
struct extent_buffer *leaf;
struct btrfs_key key;
while (1) {
ret = btrfs_next_item(extent_root, path);
if (ret < 0)
break;
if (ret) {
ret = 0;
break;
}
slot = path->slots[0];
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.objectid != bytenr)
break;
if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
continue;
if (key.type > BTRFS_SHARED_DATA_REF_KEY)
break;
switch (key.type) {
case BTRFS_SHARED_BLOCK_REF_KEY:
ret = __add_prelim_ref(prefs, 0, NULL,
info_level + 1, key.offset,
bytenr, 1);
break;
case BTRFS_SHARED_DATA_REF_KEY: {
struct btrfs_shared_data_ref *sdref;
int count;
sdref = btrfs_item_ptr(leaf, slot,
struct btrfs_shared_data_ref);
count = btrfs_shared_data_ref_count(leaf, sdref);
ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
bytenr, count);
break;
}
case BTRFS_TREE_BLOCK_REF_KEY:
ret = __add_prelim_ref(prefs, key.offset, NULL,
info_level + 1, 0,
bytenr, 1);
break;
case BTRFS_EXTENT_DATA_REF_KEY: {
struct btrfs_extent_data_ref *dref;
int count;
u64 root;
dref = btrfs_item_ptr(leaf, slot,
struct btrfs_extent_data_ref);
count = btrfs_extent_data_ref_count(leaf, dref);
key.objectid = btrfs_extent_data_ref_objectid(leaf,
dref);
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = btrfs_extent_data_ref_offset(leaf, dref);
root = btrfs_extent_data_ref_root(leaf, dref);
ret = __add_prelim_ref(prefs, root, &key, 0, 0,
bytenr, count);
break;
}
default:
WARN_ON(1);
}
BUG_ON(ret);
}
return ret;
}
/*
* this adds all existing backrefs (inline backrefs, backrefs and delayed
* refs) for the given bytenr to the refs list, merges duplicates and resolves
* indirect refs to their parent bytenr.
* When roots are found, they're added to the roots list
*
* FIXME some caching might speed things up
*/
static int find_parent_nodes(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info, u64 bytenr,
u64 seq, struct ulist *refs, struct ulist *roots,
const u64 *extent_item_pos)
{
struct btrfs_key key;
struct btrfs_path *path;
struct btrfs_delayed_ref_root *delayed_refs = NULL;
struct btrfs_delayed_ref_head *head;
int info_level = 0;
int ret;
int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
struct list_head prefs_delayed;
struct list_head prefs;
struct __prelim_ref *ref;
INIT_LIST_HEAD(&prefs);
INIT_LIST_HEAD(&prefs_delayed);
key.objectid = bytenr;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = (u64)-1;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->search_commit_root = !!search_commit_root;
/*
* grab both a lock on the path and a lock on the delayed ref head.
* We need both to get a consistent picture of how the refs look
* at a specified point in time
*/
again:
head = NULL;
ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
if (ret < 0)
goto out;
BUG_ON(ret == 0);
if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
/*
* look if there are updates for this ref queued and lock the
* head
*/
delayed_refs = &trans->transaction->delayed_refs;
spin_lock(&delayed_refs->lock);
head = btrfs_find_delayed_ref_head(trans, bytenr);
if (head) {
if (!mutex_trylock(&head->mutex)) {
atomic_inc(&head->node.refs);
spin_unlock(&delayed_refs->lock);
btrfs_release_path(path);
/*
* Mutex was contended, block until it's
* released and try again
*/
mutex_lock(&head->mutex);
mutex_unlock(&head->mutex);
btrfs_put_delayed_ref(&head->node);
goto again;
}
ret = __add_delayed_refs(head, seq, &prefs_delayed);
if (ret) {
spin_unlock(&delayed_refs->lock);
goto out;
}
}
spin_unlock(&delayed_refs->lock);
}
if (path->slots[0]) {
struct extent_buffer *leaf;
int slot;
path->slots[0]--;
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.objectid == bytenr &&
key.type == BTRFS_EXTENT_ITEM_KEY) {
ret = __add_inline_refs(fs_info, path, bytenr,
&info_level, &prefs);
if (ret)
goto out;
ret = __add_keyed_refs(fs_info, path, bytenr,
info_level, &prefs);
if (ret)
goto out;
}
}
btrfs_release_path(path);
list_splice_init(&prefs_delayed, &prefs);
ret = __add_missing_keys(fs_info, &prefs);
if (ret)
goto out;
ret = __merge_refs(&prefs, 1);
if (ret)
goto out;
ret = __resolve_indirect_refs(fs_info, search_commit_root, &prefs,
extent_item_pos);
if (ret)
goto out;
ret = __merge_refs(&prefs, 2);
if (ret)
goto out;
while (!list_empty(&prefs)) {
ref = list_first_entry(&prefs, struct __prelim_ref, list);
list_del(&ref->list);
if (ref->count < 0)
WARN_ON(1);
if (ref->count && ref->root_id && ref->parent == 0) {
/* no parent == root of tree */
ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
BUG_ON(ret < 0);
}
if (ref->count && ref->parent) {
struct extent_inode_elem *eie = NULL;
if (extent_item_pos) {
u32 bsz;
struct extent_buffer *eb;
bsz = btrfs_level_size(fs_info->extent_root,
info_level);
eb = read_tree_block(fs_info->extent_root,
ref->parent, bsz, 0);
BUG_ON(!eb);
ret = find_extent_in_eb(eb, bytenr,
*extent_item_pos, &eie);
free_extent_buffer(eb);
}
ret = ulist_add(refs, ref->parent,
(unsigned long)eie, GFP_NOFS);
BUG_ON(ret < 0);
}
kfree(ref);
}
out:
if (head)
mutex_unlock(&head->mutex);
btrfs_free_path(path);
while (!list_empty(&prefs)) {
ref = list_first_entry(&prefs, struct __prelim_ref, list);
list_del(&ref->list);
kfree(ref);
}
while (!list_empty(&prefs_delayed)) {
ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
list);
list_del(&ref->list);
kfree(ref);
}
return ret;
}
static void free_leaf_list(struct ulist *blocks)
{
struct ulist_node *node = NULL;
struct extent_inode_elem *eie;
struct extent_inode_elem *eie_next;
struct ulist_iterator uiter;
ULIST_ITER_INIT(&uiter);
while ((node = ulist_next(blocks, &uiter))) {
if (!node->aux)
continue;
eie = (struct extent_inode_elem *)node->aux;
for (; eie; eie = eie_next) {
eie_next = eie->next;
kfree(eie);
}
node->aux = 0;
}
ulist_free(blocks);
}
/*
* Finds all leafs with a reference to the specified combination of bytenr and
* offset. key_list_head will point to a list of corresponding keys (caller must
* free each list element). The leafs will be stored in the leafs ulist, which
* must be freed with ulist_free.
*
* returns 0 on success, <0 on error
*/
static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info, u64 bytenr,
u64 seq, struct ulist **leafs,
const u64 *extent_item_pos)
{
struct ulist *tmp;
int ret;
tmp = ulist_alloc(GFP_NOFS);
if (!tmp)
return -ENOMEM;
*leafs = ulist_alloc(GFP_NOFS);
if (!*leafs) {
ulist_free(tmp);
return -ENOMEM;
}
ret = find_parent_nodes(trans, fs_info, bytenr, seq, *leafs, tmp,
extent_item_pos);
ulist_free(tmp);
if (ret < 0 && ret != -ENOENT) {
free_leaf_list(*leafs);
return ret;
}
return 0;
}
/*
* walk all backrefs for a given extent to find all roots that reference this
* extent. Walking a backref means finding all extents that reference this
* extent and in turn walk the backrefs of those, too. Naturally this is a
* recursive process, but here it is implemented in an iterative fashion: We
* find all referencing extents for the extent in question and put them on a
* list. In turn, we find all referencing extents for those, further appending
* to the list. The way we iterate the list allows adding more elements after
* the current while iterating. The process stops when we reach the end of the
* list. Found roots are added to the roots list.
*
* returns 0 on success, < 0 on error.
*/
int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info, u64 bytenr,
u64 seq, struct ulist **roots)
{
struct ulist *tmp;
struct ulist_node *node = NULL;
struct ulist_iterator uiter;
int ret;
tmp = ulist_alloc(GFP_NOFS);
if (!tmp)
return -ENOMEM;
*roots = ulist_alloc(GFP_NOFS);
if (!*roots) {
ulist_free(tmp);
return -ENOMEM;
}
ULIST_ITER_INIT(&uiter);
while (1) {
ret = find_parent_nodes(trans, fs_info, bytenr, seq,
tmp, *roots, NULL);
if (ret < 0 && ret != -ENOENT) {
ulist_free(tmp);
ulist_free(*roots);
return ret;
}
node = ulist_next(tmp, &uiter);
if (!node)
break;
bytenr = node->val;
}
ulist_free(tmp);
return 0;
}
static int __inode_info(u64 inum, u64 ioff, u8 key_type,
struct btrfs_root *fs_root, struct btrfs_path *path,
struct btrfs_key *found_key)
{
int ret;
struct btrfs_key key;
struct extent_buffer *eb;
key.type = key_type;
key.objectid = inum;
key.offset = ioff;
ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
if (ret < 0)
return ret;
eb = path->nodes[0];
if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
ret = btrfs_next_leaf(fs_root, path);
if (ret)
return ret;
eb = path->nodes[0];
}
btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
if (found_key->type != key.type || found_key->objectid != key.objectid)
return 1;
return 0;
}
/*
* this makes the path point to (inum INODE_ITEM ioff)
*/
int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
struct btrfs_path *path)
{
struct btrfs_key key;
return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
&key);
}
static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
struct btrfs_path *path,
struct btrfs_key *found_key)
{
return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
found_key);
}
/*
* this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
* of the path are separated by '/' and the path is guaranteed to be
* 0-terminated. the path is only given within the current file system.
* Therefore, it never starts with a '/'. the caller is responsible to provide
* "size" bytes in "dest". the dest buffer will be filled backwards. finally,
* the start point of the resulting string is returned. this pointer is within
* dest, normally.
* in case the path buffer would overflow, the pointer is decremented further
* as if output was written to the buffer, though no more output is actually
* generated. that way, the caller can determine how much space would be
* required for the path to fit into the buffer. in that case, the returned
* value will be smaller than dest. callers must check this!
*/
static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
struct btrfs_inode_ref *iref,
struct extent_buffer *eb_in, u64 parent,
char *dest, u32 size)
{
u32 len;
int slot;
u64 next_inum;
int ret;
s64 bytes_left = size - 1;
struct extent_buffer *eb = eb_in;
struct btrfs_key found_key;
int leave_spinning = path->leave_spinning;
if (bytes_left >= 0)
dest[bytes_left] = '\0';
path->leave_spinning = 1;
while (1) {
len = btrfs_inode_ref_name_len(eb, iref);
bytes_left -= len;
if (bytes_left >= 0)
read_extent_buffer(eb, dest + bytes_left,
(unsigned long)(iref + 1), len);
if (eb != eb_in) {
btrfs_tree_read_unlock_blocking(eb);
free_extent_buffer(eb);
}
ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
if (ret > 0)
ret = -ENOENT;
if (ret)
break;
next_inum = found_key.offset;
/* regular exit ahead */
if (parent == next_inum)
break;
slot = path->slots[0];
eb = path->nodes[0];
/* make sure we can use eb after releasing the path */
if (eb != eb_in) {
atomic_inc(&eb->refs);
btrfs_tree_read_lock(eb);
btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
}
btrfs_release_path(path);
iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
parent = next_inum;
--bytes_left;
if (bytes_left >= 0)
dest[bytes_left] = '/';
}
btrfs_release_path(path);
path->leave_spinning = leave_spinning;
if (ret)
return ERR_PTR(ret);
return dest + bytes_left;
}
/*
* this makes the path point to (logical EXTENT_ITEM *)
* returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
* tree blocks and <0 on error.
*/
int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
struct btrfs_path *path, struct btrfs_key *found_key)
{
int ret;
u64 flags;
u32 item_size;
struct extent_buffer *eb;
struct btrfs_extent_item *ei;
struct btrfs_key key;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.objectid = logical;
key.offset = (u64)-1;
ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
if (ret < 0)
return ret;
ret = btrfs_previous_item(fs_info->extent_root, path,
0, BTRFS_EXTENT_ITEM_KEY);
if (ret < 0)
return ret;
btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
found_key->objectid > logical ||
found_key->objectid + found_key->offset <= logical) {
pr_debug("logical %llu is not within any extent\n",
(unsigned long long)logical);
return -ENOENT;
}
eb = path->nodes[0];
item_size = btrfs_item_size_nr(eb, path->slots[0]);
BUG_ON(item_size < sizeof(*ei));
ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
flags = btrfs_extent_flags(eb, ei);
pr_debug("logical %llu is at position %llu within the extent (%llu "
"EXTENT_ITEM %llu) flags %#llx size %u\n",
(unsigned long long)logical,
(unsigned long long)(logical - found_key->objectid),
(unsigned long long)found_key->objectid,
(unsigned long long)found_key->offset,
(unsigned long long)flags, item_size);
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
return BTRFS_EXTENT_FLAG_TREE_BLOCK;
if (flags & BTRFS_EXTENT_FLAG_DATA)
return BTRFS_EXTENT_FLAG_DATA;
return -EIO;
}
/*
* helper function to iterate extent inline refs. ptr must point to a 0 value
* for the first call and may be modified. it is used to track state.
* if more refs exist, 0 is returned and the next call to
* __get_extent_inline_ref must pass the modified ptr parameter to get the
* next ref. after the last ref was processed, 1 is returned.
* returns <0 on error
*/
static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
struct btrfs_extent_item *ei, u32 item_size,
struct btrfs_extent_inline_ref **out_eiref,
int *out_type)
{
unsigned long end;
u64 flags;
struct btrfs_tree_block_info *info;
if (!*ptr) {
/* first call */
flags = btrfs_extent_flags(eb, ei);
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
info = (struct btrfs_tree_block_info *)(ei + 1);
*out_eiref =
(struct btrfs_extent_inline_ref *)(info + 1);
} else {
*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
}
*ptr = (unsigned long)*out_eiref;
if ((void *)*ptr >= (void *)ei + item_size)
return -ENOENT;
}
end = (unsigned long)ei + item_size;
*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
*ptr += btrfs_extent_inline_ref_size(*out_type);
WARN_ON(*ptr > end);
if (*ptr == end)
return 1; /* last */
return 0;
}
/*
* reads the tree block backref for an extent. tree level and root are returned
* through out_level and out_root. ptr must point to a 0 value for the first
* call and may be modified (see __get_extent_inline_ref comment).
* returns 0 if data was provided, 1 if there was no more data to provide or
* <0 on error.
*/
int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
struct btrfs_extent_item *ei, u32 item_size,
u64 *out_root, u8 *out_level)
{
int ret;
int type;
struct btrfs_tree_block_info *info;
struct btrfs_extent_inline_ref *eiref;
if (*ptr == (unsigned long)-1)
return 1;
while (1) {
ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
&eiref, &type);
if (ret < 0)
return ret;
if (type == BTRFS_TREE_BLOCK_REF_KEY ||
type == BTRFS_SHARED_BLOCK_REF_KEY)
break;
if (ret == 1)
return 1;
}
/* we can treat both ref types equally here */
info = (struct btrfs_tree_block_info *)(ei + 1);
*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
*out_level = btrfs_tree_block_level(eb, info);
if (ret == 1)
*ptr = (unsigned long)-1;
return 0;
}
static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
u64 root, u64 extent_item_objectid,
iterate_extent_inodes_t *iterate, void *ctx)
{
struct extent_inode_elem *eie;
int ret = 0;
for (eie = inode_list; eie; eie = eie->next) {
pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
"root %llu\n", extent_item_objectid,
eie->inum, eie->offset, root);
ret = iterate(eie->inum, eie->offset, root, ctx);
if (ret) {
pr_debug("stopping iteration for %llu due to ret=%d\n",
extent_item_objectid, ret);
break;
}
}
return ret;
}
/*
* calls iterate() for every inode that references the extent identified by
* the given parameters.
* when the iterator function returns a non-zero value, iteration stops.
*/
int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
u64 extent_item_objectid, u64 extent_item_pos,
int search_commit_root,
iterate_extent_inodes_t *iterate, void *ctx)
{
int ret;
struct list_head data_refs = LIST_HEAD_INIT(data_refs);
struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
struct btrfs_trans_handle *trans;
struct ulist *refs = NULL;
struct ulist *roots = NULL;
struct ulist_node *ref_node = NULL;
struct ulist_node *root_node = NULL;
struct seq_list seq_elem;
struct ulist_iterator ref_uiter;
struct ulist_iterator root_uiter;
struct btrfs_delayed_ref_root *delayed_refs = NULL;
pr_debug("resolving all inodes for extent %llu\n",
extent_item_objectid);
if (search_commit_root) {
trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
} else {
trans = btrfs_join_transaction(fs_info->extent_root);
if (IS_ERR(trans))
return PTR_ERR(trans);
delayed_refs = &trans->transaction->delayed_refs;
spin_lock(&delayed_refs->lock);
btrfs_get_delayed_seq(delayed_refs, &seq_elem);
spin_unlock(&delayed_refs->lock);
}
ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
seq_elem.seq, &refs, &extent_item_pos);
if (ret)
goto out;
ULIST_ITER_INIT(&ref_uiter);
while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
seq_elem.seq, &roots);
if (ret)
break;
ULIST_ITER_INIT(&root_uiter);
while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
pr_debug("root %llu references leaf %llu, data list "
"%#lx\n", root_node->val, ref_node->val,
ref_node->aux);
ret = iterate_leaf_refs(
(struct extent_inode_elem *)ref_node->aux,
root_node->val, extent_item_objectid,
iterate, ctx);
}
ulist_free(roots);
roots = NULL;
}
free_leaf_list(refs);
ulist_free(roots);
out:
if (!search_commit_root) {
btrfs_put_delayed_seq(delayed_refs, &seq_elem);
btrfs_end_transaction(trans, fs_info->extent_root);
}
return ret;
}
int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
struct btrfs_path *path,
iterate_extent_inodes_t *iterate, void *ctx)
{
int ret;
u64 extent_item_pos;
struct btrfs_key found_key;
int search_commit_root = path->search_commit_root;
ret = extent_from_logical(fs_info, logical, path,
&found_key);
btrfs_release_path(path);
if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
ret = -EINVAL;
if (ret < 0)
return ret;
extent_item_pos = logical - found_key.objectid;
ret = iterate_extent_inodes(fs_info, found_key.objectid,
extent_item_pos, search_commit_root,
iterate, ctx);
return ret;
}
static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
struct btrfs_path *path,
iterate_irefs_t *iterate, void *ctx)
{
int ret = 0;
int slot;
u32 cur;
u32 len;
u32 name_len;
u64 parent = 0;
int found = 0;
struct extent_buffer *eb;
struct btrfs_item *item;
struct btrfs_inode_ref *iref;
struct btrfs_key found_key;
while (!ret) {
path->leave_spinning = 1;
ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
&found_key);
if (ret < 0)
break;
if (ret) {
ret = found ? 0 : -ENOENT;
break;
}
++found;
parent = found_key.offset;
slot = path->slots[0];
eb = path->nodes[0];
/* make sure we can use eb after releasing the path */
atomic_inc(&eb->refs);
btrfs_tree_read_lock(eb);
btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
btrfs_release_path(path);
item = btrfs_item_nr(eb, slot);
iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
name_len = btrfs_inode_ref_name_len(eb, iref);
/* path must be released before calling iterate()! */
pr_debug("following ref at offset %u for inode %llu in "
"tree %llu\n", cur,
(unsigned long long)found_key.objectid,
(unsigned long long)fs_root->objectid);
ret = iterate(parent, iref, eb, ctx);
if (ret)
break;
len = sizeof(*iref) + name_len;
iref = (struct btrfs_inode_ref *)((char *)iref + len);
}
btrfs_tree_read_unlock_blocking(eb);
free_extent_buffer(eb);
}
btrfs_release_path(path);
return ret;
}
/*
* returns 0 if the path could be dumped (probably truncated)
* returns <0 in case of an error
*/
static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
struct extent_buffer *eb, void *ctx)
{
struct inode_fs_paths *ipath = ctx;
char *fspath;
char *fspath_min;
int i = ipath->fspath->elem_cnt;
const int s_ptr = sizeof(char *);
u32 bytes_left;
bytes_left = ipath->fspath->bytes_left > s_ptr ?
ipath->fspath->bytes_left - s_ptr : 0;
fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
inum, fspath_min, bytes_left);
if (IS_ERR(fspath))
return PTR_ERR(fspath);
if (fspath > fspath_min) {
pr_debug("path resolved: %s\n", fspath);
ipath->fspath->val[i] = (u64)(unsigned long)fspath;
++ipath->fspath->elem_cnt;
ipath->fspath->bytes_left = fspath - fspath_min;
} else {
pr_debug("missed path, not enough space. missing bytes: %lu, "
"constructed so far: %s\n",
(unsigned long)(fspath_min - fspath), fspath_min);
++ipath->fspath->elem_missed;
ipath->fspath->bytes_missing += fspath_min - fspath;
ipath->fspath->bytes_left = 0;
}
return 0;
}
/*
* this dumps all file system paths to the inode into the ipath struct, provided
* is has been created large enough. each path is zero-terminated and accessed
* from ipath->fspath->val[i].
* when it returns, there are ipath->fspath->elem_cnt number of paths available
* in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
* number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
* it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
* have been needed to return all paths.
*/
int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
{
return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
inode_to_path, ipath);
}
struct btrfs_data_container *init_data_container(u32 total_bytes)
{
struct btrfs_data_container *data;
size_t alloc_bytes;
alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
data = kmalloc(alloc_bytes, GFP_NOFS);
if (!data)
return ERR_PTR(-ENOMEM);
if (total_bytes >= sizeof(*data)) {
data->bytes_left = total_bytes - sizeof(*data);
data->bytes_missing = 0;
} else {
data->bytes_missing = sizeof(*data) - total_bytes;
data->bytes_left = 0;
}
data->elem_cnt = 0;
data->elem_missed = 0;
return data;
}
/*
* allocates space to return multiple file system paths for an inode.
* total_bytes to allocate are passed, note that space usable for actual path
* information will be total_bytes - sizeof(struct inode_fs_paths).
* the returned pointer must be freed with free_ipath() in the end.
*/
struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
struct btrfs_path *path)
{
struct inode_fs_paths *ifp;
struct btrfs_data_container *fspath;
fspath = init_data_container(total_bytes);
if (IS_ERR(fspath))
return (void *)fspath;
ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
if (!ifp) {
kfree(fspath);
return ERR_PTR(-ENOMEM);
}
ifp->btrfs_path = path;
ifp->fspath = fspath;
ifp->fs_root = fs_root;
return ifp;
}
void free_ipath(struct inode_fs_paths *ipath)
{
if (!ipath)
return;
kfree(ipath->fspath);
kfree(ipath);
}
|