summaryrefslogtreecommitdiffstats
path: root/drivers/usb/host/xhci-mem.c
blob: 1db4fea8c1704e62cdc33ddfeacc353f70273a09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
/*
 * xHCI host controller driver
 *
 * Copyright (C) 2008 Intel Corp.
 *
 * Author: Sarah Sharp
 * Some code borrowed from the Linux EHCI driver.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <linux/usb.h>
#include <linux/pci.h>
#include <linux/dmapool.h>

#include "xhci.h"

/*
 * Allocates a generic ring segment from the ring pool, sets the dma address,
 * initializes the segment to zero, and sets the private next pointer to NULL.
 *
 * Section 4.11.1.1:
 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
 */
static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
{
	struct xhci_segment *seg;
	dma_addr_t	dma;

	seg = kzalloc(sizeof *seg, flags);
	if (!seg)
		return 0;
	xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);

	seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
	if (!seg->trbs) {
		kfree(seg);
		return 0;
	}
	xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
			seg->trbs, (unsigned long long)dma);

	memset(seg->trbs, 0, SEGMENT_SIZE);
	seg->dma = dma;
	seg->next = NULL;

	return seg;
}

static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
{
	if (!seg)
		return;
	if (seg->trbs) {
		xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
				seg->trbs, (unsigned long long)seg->dma);
		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
		seg->trbs = NULL;
	}
	xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
	kfree(seg);
}

/*
 * Make the prev segment point to the next segment.
 *
 * Change the last TRB in the prev segment to be a Link TRB which points to the
 * DMA address of the next segment.  The caller needs to set any Link TRB
 * related flags, such as End TRB, Toggle Cycle, and no snoop.
 */
static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
		struct xhci_segment *next, bool link_trbs)
{
	u32 val;

	if (!prev || !next)
		return;
	prev->next = next;
	if (link_trbs) {
		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;

		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
		val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
		val &= ~TRB_TYPE_BITMASK;
		val |= TRB_TYPE(TRB_LINK);
		/* Always set the chain bit with 0.95 hardware */
		if (xhci_link_trb_quirk(xhci))
			val |= TRB_CHAIN;
		prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
	}
	xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
			(unsigned long long)prev->dma,
			(unsigned long long)next->dma);
}

/* XXX: Do we need the hcd structure in all these functions? */
void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
{
	struct xhci_segment *seg;
	struct xhci_segment *first_seg;

	if (!ring || !ring->first_seg)
		return;
	first_seg = ring->first_seg;
	seg = first_seg->next;
	xhci_dbg(xhci, "Freeing ring at %p\n", ring);
	while (seg != first_seg) {
		struct xhci_segment *next = seg->next;
		xhci_segment_free(xhci, seg);
		seg = next;
	}
	xhci_segment_free(xhci, first_seg);
	ring->first_seg = NULL;
	kfree(ring);
}

/**
 * Create a new ring with zero or more segments.
 *
 * Link each segment together into a ring.
 * Set the end flag and the cycle toggle bit on the last segment.
 * See section 4.9.1 and figures 15 and 16.
 */
static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
		unsigned int num_segs, bool link_trbs, gfp_t flags)
{
	struct xhci_ring	*ring;
	struct xhci_segment	*prev;

	ring = kzalloc(sizeof *(ring), flags);
	xhci_dbg(xhci, "Allocating ring at %p\n", ring);
	if (!ring)
		return 0;

	INIT_LIST_HEAD(&ring->td_list);
	if (num_segs == 0)
		return ring;

	ring->first_seg = xhci_segment_alloc(xhci, flags);
	if (!ring->first_seg)
		goto fail;
	num_segs--;

	prev = ring->first_seg;
	while (num_segs > 0) {
		struct xhci_segment	*next;

		next = xhci_segment_alloc(xhci, flags);
		if (!next)
			goto fail;
		xhci_link_segments(xhci, prev, next, link_trbs);

		prev = next;
		num_segs--;
	}
	xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);

	if (link_trbs) {
		/* See section 4.9.2.1 and 6.4.4.1 */
		prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
		xhci_dbg(xhci, "Wrote link toggle flag to"
				" segment %p (virtual), 0x%llx (DMA)\n",
				prev, (unsigned long long)prev->dma);
	}
	/* The ring is empty, so the enqueue pointer == dequeue pointer */
	ring->enqueue = ring->first_seg->trbs;
	ring->enq_seg = ring->first_seg;
	ring->dequeue = ring->enqueue;
	ring->deq_seg = ring->first_seg;
	/* The ring is initialized to 0. The producer must write 1 to the cycle
	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
	 */
	ring->cycle_state = 1;

	return ring;

fail:
	xhci_ring_free(xhci, ring);
	return 0;
}

#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)

struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
						    int type, gfp_t flags)
{
	struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
	if (!ctx)
		return NULL;

	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
	ctx->type = type;
	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
	if (type == XHCI_CTX_TYPE_INPUT)
		ctx->size += CTX_SIZE(xhci->hcc_params);

	ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
	memset(ctx->bytes, 0, ctx->size);
	return ctx;
}

void xhci_free_container_ctx(struct xhci_hcd *xhci,
			     struct xhci_container_ctx *ctx)
{
	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
	kfree(ctx);
}

struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
					      struct xhci_container_ctx *ctx)
{
	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
	return (struct xhci_input_control_ctx *)ctx->bytes;
}

struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
					struct xhci_container_ctx *ctx)
{
	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
		return (struct xhci_slot_ctx *)ctx->bytes;

	return (struct xhci_slot_ctx *)
		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
}

struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
				    struct xhci_container_ctx *ctx,
				    unsigned int ep_index)
{
	/* increment ep index by offset of start of ep ctx array */
	ep_index++;
	if (ctx->type == XHCI_CTX_TYPE_INPUT)
		ep_index++;

	return (struct xhci_ep_ctx *)
		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
}

/* All the xhci_tds in the ring's TD list should be freed at this point */
void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
{
	struct xhci_virt_device *dev;
	int i;

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || !xhci->devs[slot_id])
		return;

	dev = xhci->devs[slot_id];
	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
	if (!dev)
		return;

	for (i = 0; i < 31; ++i)
		if (dev->eps[i].ring)
			xhci_ring_free(xhci, dev->eps[i].ring);

	if (dev->in_ctx)
		xhci_free_container_ctx(xhci, dev->in_ctx);
	if (dev->out_ctx)
		xhci_free_container_ctx(xhci, dev->out_ctx);

	kfree(xhci->devs[slot_id]);
	xhci->devs[slot_id] = 0;
}

int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
		struct usb_device *udev, gfp_t flags)
{
	struct xhci_virt_device *dev;
	int i;

	/* Slot ID 0 is reserved */
	if (slot_id == 0 || xhci->devs[slot_id]) {
		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
		return 0;
	}

	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
	if (!xhci->devs[slot_id])
		return 0;
	dev = xhci->devs[slot_id];

	/* Allocate the (output) device context that will be used in the HC. */
	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
	if (!dev->out_ctx)
		goto fail;

	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
			(unsigned long long)dev->out_ctx->dma);

	/* Allocate the (input) device context for address device command */
	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
	if (!dev->in_ctx)
		goto fail;

	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
			(unsigned long long)dev->in_ctx->dma);

	/* Initialize the cancellation list for each endpoint */
	for (i = 0; i < 31; i++)
		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);

	/* Allocate endpoint 0 ring */
	dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
	if (!dev->eps[0].ring)
		goto fail;

	init_completion(&dev->cmd_completion);
	INIT_LIST_HEAD(&dev->cmd_list);

	/* Point to output device context in dcbaa. */
	xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
			slot_id,
			&xhci->dcbaa->dev_context_ptrs[slot_id],
			(unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);

	return 1;
fail:
	xhci_free_virt_device(xhci, slot_id);
	return 0;
}

/* Setup an xHCI virtual device for a Set Address command */
int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
{
	struct xhci_virt_device *dev;
	struct xhci_ep_ctx	*ep0_ctx;
	struct usb_device	*top_dev;
	struct xhci_slot_ctx    *slot_ctx;
	struct xhci_input_control_ctx *ctrl_ctx;

	dev = xhci->devs[udev->slot_id];
	/* Slot ID 0 is reserved */
	if (udev->slot_id == 0 || !dev) {
		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
				udev->slot_id);
		return -EINVAL;
	}
	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
	ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);

	/* 2) New slot context and endpoint 0 context are valid*/
	ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;

	/* 3) Only the control endpoint is valid - one endpoint context */
	slot_ctx->dev_info |= LAST_CTX(1);

	slot_ctx->dev_info |= (u32) udev->route;
	switch (udev->speed) {
	case USB_SPEED_SUPER:
		slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
		break;
	case USB_SPEED_HIGH:
		slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
		break;
	case USB_SPEED_FULL:
		slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
		break;
	case USB_SPEED_LOW:
		slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
		break;
	case USB_SPEED_VARIABLE:
		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
		return -EINVAL;
		break;
	default:
		/* Speed was set earlier, this shouldn't happen. */
		BUG();
	}
	/* Find the root hub port this device is under */
	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
			top_dev = top_dev->parent)
		/* Found device below root hub */;
	slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
	xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);

	/* Is this a LS/FS device under a HS hub? */
	if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
			udev->tt) {
		slot_ctx->tt_info = udev->tt->hub->slot_id;
		slot_ctx->tt_info |= udev->ttport << 8;
		if (udev->tt->multi)
			slot_ctx->dev_info |= DEV_MTT;
	}
	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);

	/* Step 4 - ring already allocated */
	/* Step 5 */
	ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
	/*
	 * XXX: Not sure about wireless USB devices.
	 */
	switch (udev->speed) {
	case USB_SPEED_SUPER:
		ep0_ctx->ep_info2 |= MAX_PACKET(512);
		break;
	case USB_SPEED_HIGH:
	/* USB core guesses at a 64-byte max packet first for FS devices */
	case USB_SPEED_FULL:
		ep0_ctx->ep_info2 |= MAX_PACKET(64);
		break;
	case USB_SPEED_LOW:
		ep0_ctx->ep_info2 |= MAX_PACKET(8);
		break;
	case USB_SPEED_VARIABLE:
		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
		return -EINVAL;
		break;
	default:
		/* New speed? */
		BUG();
	}
	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
	ep0_ctx->ep_info2 |= MAX_BURST(0);
	ep0_ctx->ep_info2 |= ERROR_COUNT(3);

	ep0_ctx->deq =
		dev->eps[0].ring->first_seg->dma;
	ep0_ctx->deq |= dev->eps[0].ring->cycle_state;

	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */

	return 0;
}

/* Return the polling or NAK interval.
 *
 * The polling interval is expressed in "microframes".  If xHCI's Interval field
 * is set to N, it will service the endpoint every 2^(Interval)*125us.
 *
 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
 * is set to 0.
 */
static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	unsigned int interval = 0;

	switch (udev->speed) {
	case USB_SPEED_HIGH:
		/* Max NAK rate */
		if (usb_endpoint_xfer_control(&ep->desc) ||
				usb_endpoint_xfer_bulk(&ep->desc))
			interval = ep->desc.bInterval;
		/* Fall through - SS and HS isoc/int have same decoding */
	case USB_SPEED_SUPER:
		if (usb_endpoint_xfer_int(&ep->desc) ||
				usb_endpoint_xfer_isoc(&ep->desc)) {
			if (ep->desc.bInterval == 0)
				interval = 0;
			else
				interval = ep->desc.bInterval - 1;
			if (interval > 15)
				interval = 15;
			if (interval != ep->desc.bInterval + 1)
				dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
						ep->desc.bEndpointAddress, 1 << interval);
		}
		break;
	/* Convert bInterval (in 1-255 frames) to microframes and round down to
	 * nearest power of 2.
	 */
	case USB_SPEED_FULL:
	case USB_SPEED_LOW:
		if (usb_endpoint_xfer_int(&ep->desc) ||
				usb_endpoint_xfer_isoc(&ep->desc)) {
			interval = fls(8*ep->desc.bInterval) - 1;
			if (interval > 10)
				interval = 10;
			if (interval < 3)
				interval = 3;
			if ((1 << interval) != 8*ep->desc.bInterval)
				dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
						ep->desc.bEndpointAddress, 1 << interval);
		}
		break;
	default:
		BUG();
	}
	return EP_INTERVAL(interval);
}

static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
		struct usb_host_endpoint *ep)
{
	int in;
	u32 type;

	in = usb_endpoint_dir_in(&ep->desc);
	if (usb_endpoint_xfer_control(&ep->desc)) {
		type = EP_TYPE(CTRL_EP);
	} else if (usb_endpoint_xfer_bulk(&ep->desc)) {
		if (in)
			type = EP_TYPE(BULK_IN_EP);
		else
			type = EP_TYPE(BULK_OUT_EP);
	} else if (usb_endpoint_xfer_isoc(&ep->desc)) {
		if (in)
			type = EP_TYPE(ISOC_IN_EP);
		else
			type = EP_TYPE(ISOC_OUT_EP);
	} else if (usb_endpoint_xfer_int(&ep->desc)) {
		if (in)
			type = EP_TYPE(INT_IN_EP);
		else
			type = EP_TYPE(INT_OUT_EP);
	} else {
		BUG();
	}
	return type;
}

int xhci_endpoint_init(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_device *udev,
		struct usb_host_endpoint *ep,
		gfp_t mem_flags)
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;
	struct xhci_ring *ep_ring;
	unsigned int max_packet;
	unsigned int max_burst;

	ep_index = xhci_get_endpoint_index(&ep->desc);
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);

	/* Set up the endpoint ring */
	virt_dev->eps[ep_index].new_ring =
		xhci_ring_alloc(xhci, 1, true, mem_flags);
	if (!virt_dev->eps[ep_index].new_ring)
		return -ENOMEM;
	ep_ring = virt_dev->eps[ep_index].new_ring;
	ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;

	ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);

	/* FIXME dig Mult and streams info out of ep companion desc */

	/* Allow 3 retries for everything but isoc;
	 * error count = 0 means infinite retries.
	 */
	if (!usb_endpoint_xfer_isoc(&ep->desc))
		ep_ctx->ep_info2 = ERROR_COUNT(3);
	else
		ep_ctx->ep_info2 = ERROR_COUNT(1);

	ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);

	/* Set the max packet size and max burst */
	switch (udev->speed) {
	case USB_SPEED_SUPER:
		max_packet = ep->desc.wMaxPacketSize;
		ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
		/* dig out max burst from ep companion desc */
		if (!ep->ss_ep_comp) {
			xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
			max_packet = 0;
		} else {
			max_packet = ep->ss_ep_comp->desc.bMaxBurst;
		}
		ep_ctx->ep_info2 |= MAX_BURST(max_packet);
		break;
	case USB_SPEED_HIGH:
		/* bits 11:12 specify the number of additional transaction
		 * opportunities per microframe (USB 2.0, section 9.6.6)
		 */
		if (usb_endpoint_xfer_isoc(&ep->desc) ||
				usb_endpoint_xfer_int(&ep->desc)) {
			max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
			ep_ctx->ep_info2 |= MAX_BURST(max_burst);
		}
		/* Fall through */
	case USB_SPEED_FULL:
	case USB_SPEED_LOW:
		max_packet = ep->desc.wMaxPacketSize & 0x3ff;
		ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
		break;
	default:
		BUG();
	}
	/* FIXME Debug endpoint context */
	return 0;
}

void xhci_endpoint_zero(struct xhci_hcd *xhci,
		struct xhci_virt_device *virt_dev,
		struct usb_host_endpoint *ep)
{
	unsigned int ep_index;
	struct xhci_ep_ctx *ep_ctx;

	ep_index = xhci_get_endpoint_index(&ep->desc);
	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);

	ep_ctx->ep_info = 0;
	ep_ctx->ep_info2 = 0;
	ep_ctx->deq = 0;
	ep_ctx->tx_info = 0;
	/* Don't free the endpoint ring until the set interface or configuration
	 * request succeeds.
	 */
}

/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.
 */
void xhci_endpoint_copy(struct xhci_hcd *xhci,
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx,
		unsigned int ep_index)
{
	struct xhci_ep_ctx *out_ep_ctx;
	struct xhci_ep_ctx *in_ep_ctx;

	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);

	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
	in_ep_ctx->deq = out_ep_ctx->deq;
	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
}

/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
 * Useful when you want to change one particular aspect of the endpoint and then
 * issue a configure endpoint command.  Only the context entries field matters,
 * but we'll copy the whole thing anyway.
 */
void xhci_slot_copy(struct xhci_hcd *xhci,
		struct xhci_container_ctx *in_ctx,
		struct xhci_container_ctx *out_ctx)
{
	struct xhci_slot_ctx *in_slot_ctx;
	struct xhci_slot_ctx *out_slot_ctx;

	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);

	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
}

/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
{
	int i;
	struct device *dev = xhci_to_hcd(xhci)->self.controller;
	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

	xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);

	if (!num_sp)
		return 0;

	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
	if (!xhci->scratchpad)
		goto fail_sp;

	xhci->scratchpad->sp_array =
		pci_alloc_consistent(to_pci_dev(dev),
				     num_sp * sizeof(u64),
				     &xhci->scratchpad->sp_dma);
	if (!xhci->scratchpad->sp_array)
		goto fail_sp2;

	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
	if (!xhci->scratchpad->sp_buffers)
		goto fail_sp3;

	xhci->scratchpad->sp_dma_buffers =
		kzalloc(sizeof(dma_addr_t) * num_sp, flags);

	if (!xhci->scratchpad->sp_dma_buffers)
		goto fail_sp4;

	xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
	for (i = 0; i < num_sp; i++) {
		dma_addr_t dma;
		void *buf = pci_alloc_consistent(to_pci_dev(dev),
						 xhci->page_size, &dma);
		if (!buf)
			goto fail_sp5;

		xhci->scratchpad->sp_array[i] = dma;
		xhci->scratchpad->sp_buffers[i] = buf;
		xhci->scratchpad->sp_dma_buffers[i] = dma;
	}

	return 0;

 fail_sp5:
	for (i = i - 1; i >= 0; i--) {
		pci_free_consistent(to_pci_dev(dev), xhci->page_size,
				    xhci->scratchpad->sp_buffers[i],
				    xhci->scratchpad->sp_dma_buffers[i]);
	}
	kfree(xhci->scratchpad->sp_dma_buffers);

 fail_sp4:
	kfree(xhci->scratchpad->sp_buffers);

 fail_sp3:
	pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);

 fail_sp2:
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;

 fail_sp:
	return -ENOMEM;
}

static void scratchpad_free(struct xhci_hcd *xhci)
{
	int num_sp;
	int i;
	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);

	if (!xhci->scratchpad)
		return;

	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);

	for (i = 0; i < num_sp; i++) {
		pci_free_consistent(pdev, xhci->page_size,
				    xhci->scratchpad->sp_buffers[i],
				    xhci->scratchpad->sp_dma_buffers[i]);
	}
	kfree(xhci->scratchpad->sp_dma_buffers);
	kfree(xhci->scratchpad->sp_buffers);
	pci_free_consistent(pdev, num_sp * sizeof(u64),
			    xhci->scratchpad->sp_array,
			    xhci->scratchpad->sp_dma);
	kfree(xhci->scratchpad);
	xhci->scratchpad = NULL;
}

struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
		bool allocate_completion, gfp_t mem_flags)
{
	struct xhci_command *command;

	command = kzalloc(sizeof(*command), mem_flags);
	if (!command)
		return NULL;

	command->in_ctx =
		xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, mem_flags);
	if (!command->in_ctx)
		return NULL;

	if (allocate_completion) {
		command->completion =
			kzalloc(sizeof(struct completion), mem_flags);
		if (!command->completion) {
			xhci_free_container_ctx(xhci, command->in_ctx);
			return NULL;
		}
		init_completion(command->completion);
	}

	command->status = 0;
	INIT_LIST_HEAD(&command->cmd_list);
	return command;
}

void xhci_free_command(struct xhci_hcd *xhci,
		struct xhci_command *command)
{
	xhci_free_container_ctx(xhci,
			command->in_ctx);
	kfree(command->completion);
	kfree(command);
}

void xhci_mem_cleanup(struct xhci_hcd *xhci)
{
	struct pci_dev	*pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
	int size;
	int i;

	/* Free the Event Ring Segment Table and the actual Event Ring */
	xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
	xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
	xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
	if (xhci->erst.entries)
		pci_free_consistent(pdev, size,
				xhci->erst.entries, xhci->erst.erst_dma_addr);
	xhci->erst.entries = NULL;
	xhci_dbg(xhci, "Freed ERST\n");
	if (xhci->event_ring)
		xhci_ring_free(xhci, xhci->event_ring);
	xhci->event_ring = NULL;
	xhci_dbg(xhci, "Freed event ring\n");

	xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
	if (xhci->cmd_ring)
		xhci_ring_free(xhci, xhci->cmd_ring);
	xhci->cmd_ring = NULL;
	xhci_dbg(xhci, "Freed command ring\n");

	for (i = 1; i < MAX_HC_SLOTS; ++i)
		xhci_free_virt_device(xhci, i);

	if (xhci->segment_pool)
		dma_pool_destroy(xhci->segment_pool);
	xhci->segment_pool = NULL;
	xhci_dbg(xhci, "Freed segment pool\n");

	if (xhci->device_pool)
		dma_pool_destroy(xhci->device_pool);
	xhci->device_pool = NULL;
	xhci_dbg(xhci, "Freed device context pool\n");

	xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
	if (xhci->dcbaa)
		pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
				xhci->dcbaa, xhci->dcbaa->dma);
	xhci->dcbaa = NULL;

	xhci->page_size = 0;
	xhci->page_shift = 0;
	scratchpad_free(xhci);
}

int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
{
	dma_addr_t	dma;
	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
	unsigned int	val, val2;
	u64		val_64;
	struct xhci_segment	*seg;
	u32 page_size;
	int i;

	page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
	xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
	for (i = 0; i < 16; i++) {
		if ((0x1 & page_size) != 0)
			break;
		page_size = page_size >> 1;
	}
	if (i < 16)
		xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
	else
		xhci_warn(xhci, "WARN: no supported page size\n");
	/* Use 4K pages, since that's common and the minimum the HC supports */
	xhci->page_shift = 12;
	xhci->page_size = 1 << xhci->page_shift;
	xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);

	/*
	 * Program the Number of Device Slots Enabled field in the CONFIG
	 * register with the max value of slots the HC can handle.
	 */
	val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
	xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
			(unsigned int) val);
	val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
	val |= (val2 & ~HCS_SLOTS_MASK);
	xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
			(unsigned int) val);
	xhci_writel(xhci, val, &xhci->op_regs->config_reg);

	/*
	 * Section 5.4.8 - doorbell array must be
	 * "physically contiguous and 64-byte (cache line) aligned".
	 */
	xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
			sizeof(*xhci->dcbaa), &dma);
	if (!xhci->dcbaa)
		goto fail;
	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
	xhci->dcbaa->dma = dma;
	xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);

	/*
	 * Initialize the ring segment pool.  The ring must be a contiguous
	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
	 * however, the command ring segment needs 64-byte aligned segments,
	 * so we pick the greater alignment need.
	 */
	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
			SEGMENT_SIZE, 64, xhci->page_size);

	/* See Table 46 and Note on Figure 55 */
	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
			2112, 64, xhci->page_size);
	if (!xhci->segment_pool || !xhci->device_pool)
		goto fail;

	/* Set up the command ring to have one segments for now. */
	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
	if (!xhci->cmd_ring)
		goto fail;
	xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
	xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
			(unsigned long long)xhci->cmd_ring->first_seg->dma);

	/* Set the address in the Command Ring Control register */
	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
		xhci->cmd_ring->cycle_state;
	xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
	xhci_dbg_cmd_ptrs(xhci);

	val = xhci_readl(xhci, &xhci->cap_regs->db_off);
	val &= DBOFF_MASK;
	xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
			" from cap regs base addr\n", val);
	xhci->dba = (void *) xhci->cap_regs + val;
	xhci_dbg_regs(xhci);
	xhci_print_run_regs(xhci);
	/* Set ir_set to interrupt register set 0 */
	xhci->ir_set = (void *) xhci->run_regs->ir_set;

	/*
	 * Event ring setup: Allocate a normal ring, but also setup
	 * the event ring segment table (ERST).  Section 4.9.3.
	 */
	xhci_dbg(xhci, "// Allocating event ring\n");
	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
	if (!xhci->event_ring)
		goto fail;

	xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
			sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
	if (!xhci->erst.entries)
		goto fail;
	xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
			(unsigned long long)dma);

	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
	xhci->erst.num_entries = ERST_NUM_SEGS;
	xhci->erst.erst_dma_addr = dma;
	xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
			xhci->erst.num_entries,
			xhci->erst.entries,
			(unsigned long long)xhci->erst.erst_dma_addr);

	/* set ring base address and size for each segment table entry */
	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
		entry->seg_addr = seg->dma;
		entry->seg_size = TRBS_PER_SEGMENT;
		entry->rsvd = 0;
		seg = seg->next;
	}

	/* set ERST count with the number of entries in the segment table */
	val = xhci_readl(xhci, &xhci->ir_set->erst_size);
	val &= ERST_SIZE_MASK;
	val |= ERST_NUM_SEGS;
	xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
			val);
	xhci_writel(xhci, val, &xhci->ir_set->erst_size);

	xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
	/* set the segment table base address */
	xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
			(unsigned long long)xhci->erst.erst_dma_addr);
	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
	val_64 &= ERST_PTR_MASK;
	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);

	/* Set the event ring dequeue address */
	xhci_set_hc_event_deq(xhci);
	xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
	xhci_print_ir_set(xhci, xhci->ir_set, 0);

	/*
	 * XXX: Might need to set the Interrupter Moderation Register to
	 * something other than the default (~1ms minimum between interrupts).
	 * See section 5.5.1.2.
	 */
	init_completion(&xhci->addr_dev);
	for (i = 0; i < MAX_HC_SLOTS; ++i)
		xhci->devs[i] = 0;

	if (scratchpad_alloc(xhci, flags))
		goto fail;

	return 0;

fail:
	xhci_warn(xhci, "Couldn't initialize memory\n");
	xhci_mem_cleanup(xhci);
	return -ENOMEM;
}
OpenPOWER on IntegriCloud