summaryrefslogtreecommitdiffstats
path: root/drivers/scsi/aic94xx/aic94xx_hwi.c
blob: 940a207a42fb6ecb21d2f9fdc20ff56005fb3f3b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
/*
 * Aic94xx SAS/SATA driver hardware interface.
 *
 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
 *
 * This file is licensed under GPLv2.
 *
 * This file is part of the aic94xx driver.
 *
 * The aic94xx driver is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; version 2 of the
 * License.
 *
 * The aic94xx driver is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with the aic94xx driver; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/firmware.h>

#include "aic94xx.h"
#include "aic94xx_reg.h"
#include "aic94xx_hwi.h"
#include "aic94xx_seq.h"
#include "aic94xx_dump.h"

u32 MBAR0_SWB_SIZE;

/* ---------- Initialization ---------- */

static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
{
	/* adapter came with a sas address */
	if (asd_ha->hw_prof.sas_addr[0])
		return 0;

	return sas_request_addr(asd_ha->sas_ha.core.shost,
				asd_ha->hw_prof.sas_addr);
}

static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
{
	int i;

	for (i = 0; i < ASD_MAX_PHYS; i++) {
		if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
			continue;
		/* Set a phy's address only if it has none.
		 */
		ASD_DPRINTK("setting phy%d addr to %llx\n", i,
			    SAS_ADDR(asd_ha->hw_prof.sas_addr));
		memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
		       asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
	}
}

/* ---------- PHY initialization ---------- */

static void asd_init_phy_identify(struct asd_phy *phy)
{
	phy->identify_frame = phy->id_frm_tok->vaddr;

	memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));

	phy->identify_frame->dev_type = SAS_END_DEV;
	if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
		phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
	if (phy->sas_phy.role & PHY_ROLE_TARGET)
		phy->identify_frame->target_bits = phy->sas_phy.tproto;
	memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
	       SAS_ADDR_SIZE);
	phy->identify_frame->phy_id = phy->sas_phy.id;
}

static int asd_init_phy(struct asd_phy *phy)
{
	struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
	struct asd_sas_phy *sas_phy = &phy->sas_phy;

	sas_phy->enabled = 1;
	sas_phy->class = SAS;
	sas_phy->iproto = SAS_PROTOCOL_ALL;
	sas_phy->tproto = 0;
	sas_phy->type = PHY_TYPE_PHYSICAL;
	sas_phy->role = PHY_ROLE_INITIATOR;
	sas_phy->oob_mode = OOB_NOT_CONNECTED;
	sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;

	phy->id_frm_tok = asd_alloc_coherent(asd_ha,
					     sizeof(*phy->identify_frame),
					     GFP_KERNEL);
	if (!phy->id_frm_tok) {
		asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
		return -ENOMEM;
	} else
		asd_init_phy_identify(phy);

	memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));

	return 0;
}

static void asd_init_ports(struct asd_ha_struct *asd_ha)
{
	int i;

	spin_lock_init(&asd_ha->asd_ports_lock);
	for (i = 0; i < ASD_MAX_PHYS; i++) {
		struct asd_port *asd_port = &asd_ha->asd_ports[i];

		memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
		memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
		asd_port->phy_mask = 0;
		asd_port->num_phys = 0;
	}
}

static int asd_init_phys(struct asd_ha_struct *asd_ha)
{
	u8 i;
	u8 phy_mask = asd_ha->hw_prof.enabled_phys;

	for (i = 0; i < ASD_MAX_PHYS; i++) {
		struct asd_phy *phy = &asd_ha->phys[i];

		phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
		phy->asd_port = NULL;

		phy->sas_phy.enabled = 0;
		phy->sas_phy.id = i;
		phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
		phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
		phy->sas_phy.ha = &asd_ha->sas_ha;
		phy->sas_phy.lldd_phy = phy;
	}

	/* Now enable and initialize only the enabled phys. */
	for_each_phy(phy_mask, phy_mask, i) {
		int err = asd_init_phy(&asd_ha->phys[i]);
		if (err)
			return err;
	}

	return 0;
}

/* ---------- Sliding windows ---------- */

static int asd_init_sw(struct asd_ha_struct *asd_ha)
{
	struct pci_dev *pcidev = asd_ha->pcidev;
	int err;
	u32 v;

	/* Unlock MBARs */
	err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
	if (err) {
		asd_printk("couldn't access conf. space of %s\n",
			   pci_name(pcidev));
		goto Err;
	}
	if (v)
		err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
	if (err) {
		asd_printk("couldn't write to MBAR_KEY of %s\n",
			   pci_name(pcidev));
		goto Err;
	}

	/* Set sliding windows A, B and C to point to proper internal
	 * memory regions.
	 */
	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
			       REG_BASE_ADDR_CSEQCIO);
	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
	asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
	asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
	asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
	MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
	if (!asd_ha->iospace) {
		/* MBAR1 will point to OCM (On Chip Memory) */
		pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
		asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
	}
	spin_lock_init(&asd_ha->iolock);
Err:
	return err;
}

/* ---------- SCB initialization ---------- */

/**
 * asd_init_scbs - manually allocate the first SCB.
 * @asd_ha: pointer to host adapter structure
 *
 * This allocates the very first SCB which would be sent to the
 * sequencer for execution.  Its bus address is written to
 * CSEQ_Q_NEW_POINTER, mode page 2, mode 8.  Since the bus address of
 * the _next_ scb to be DMA-ed to the host adapter is read from the last
 * SCB DMA-ed to the host adapter, we have to always stay one step
 * ahead of the sequencer and keep one SCB already allocated.
 */
static int asd_init_scbs(struct asd_ha_struct *asd_ha)
{
	struct asd_seq_data *seq = &asd_ha->seq;
	int bitmap_bytes;

	/* allocate the index array and bitmap */
	asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
	asd_ha->seq.tc_index_array = kzalloc(asd_ha->seq.tc_index_bitmap_bits*
					     sizeof(void *), GFP_KERNEL);
	if (!asd_ha->seq.tc_index_array)
		return -ENOMEM;

	bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
	asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
	if (!asd_ha->seq.tc_index_bitmap)
		return -ENOMEM;

	spin_lock_init(&seq->tc_index_lock);

	seq->next_scb.size = sizeof(struct scb);
	seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
					     &seq->next_scb.dma_handle);
	if (!seq->next_scb.vaddr) {
		kfree(asd_ha->seq.tc_index_bitmap);
		kfree(asd_ha->seq.tc_index_array);
		asd_ha->seq.tc_index_bitmap = NULL;
		asd_ha->seq.tc_index_array = NULL;
		return -ENOMEM;
	}

	seq->pending = 0;
	spin_lock_init(&seq->pend_q_lock);
	INIT_LIST_HEAD(&seq->pend_q);

	return 0;
}

static inline void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
{
	asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
	asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
	ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
		    asd_ha->hw_prof.max_scbs,
		    asd_ha->hw_prof.max_ddbs);
}

/* ---------- Done List initialization ---------- */

static void asd_dl_tasklet_handler(unsigned long);

static int asd_init_dl(struct asd_ha_struct *asd_ha)
{
	asd_ha->seq.actual_dl
		= asd_alloc_coherent(asd_ha,
			     ASD_DL_SIZE * sizeof(struct done_list_struct),
				     GFP_KERNEL);
	if (!asd_ha->seq.actual_dl)
		return -ENOMEM;
	asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
	asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
	asd_ha->seq.dl_next = 0;
	tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
		     (unsigned long) asd_ha);

	return 0;
}

/* ---------- EDB and ESCB init ---------- */

static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
{
	struct asd_seq_data *seq = &asd_ha->seq;
	int i;

	seq->edb_arr = kmalloc(seq->num_edbs*sizeof(*seq->edb_arr), gfp_flags);
	if (!seq->edb_arr)
		return -ENOMEM;

	for (i = 0; i < seq->num_edbs; i++) {
		seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
						     gfp_flags);
		if (!seq->edb_arr[i])
			goto Err_unroll;
		memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
	}

	ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);

	return 0;

Err_unroll:
	for (i-- ; i >= 0; i--)
		asd_free_coherent(asd_ha, seq->edb_arr[i]);
	kfree(seq->edb_arr);
	seq->edb_arr = NULL;

	return -ENOMEM;
}

static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
			   gfp_t gfp_flags)
{
	struct asd_seq_data *seq = &asd_ha->seq;
	struct asd_ascb *escb;
	int i, escbs;

	seq->escb_arr = kmalloc(seq->num_escbs*sizeof(*seq->escb_arr),
				gfp_flags);
	if (!seq->escb_arr)
		return -ENOMEM;

	escbs = seq->num_escbs;
	escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
	if (!escb) {
		asd_printk("couldn't allocate list of escbs\n");
		goto Err;
	}
	seq->num_escbs -= escbs;  /* subtract what was not allocated */
	ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);

	for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
							       struct asd_ascb,
							       list)) {
		seq->escb_arr[i] = escb;
		escb->scb->header.opcode = EMPTY_SCB;
	}

	return 0;
Err:
	kfree(seq->escb_arr);
	seq->escb_arr = NULL;
	return -ENOMEM;

}

static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
{
	struct asd_seq_data *seq = &asd_ha->seq;
	int i, k, z = 0;

	for (i = 0; i < seq->num_escbs; i++) {
		struct asd_ascb *ascb = seq->escb_arr[i];
		struct empty_scb *escb = &ascb->scb->escb;

		ascb->edb_index = z;

		escb->num_valid = ASD_EDBS_PER_SCB;

		for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
			struct sg_el *eb = &escb->eb[k];
			struct asd_dma_tok *edb = seq->edb_arr[z++];

			memset(eb, 0, sizeof(*eb));
			eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
			eb->size = cpu_to_le32(((u32) edb->size));
		}
	}
}

/**
 * asd_init_escbs -- allocate and initialize empty scbs
 * @asd_ha: pointer to host adapter structure
 *
 * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
 * They transport sense data, etc.
 */
static int asd_init_escbs(struct asd_ha_struct *asd_ha)
{
	struct asd_seq_data *seq = &asd_ha->seq;
	int err = 0;

	/* Allocate two empty data buffers (edb) per sequencer. */
	int edbs = 2*(1+asd_ha->hw_prof.num_phys);

	seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
	seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;

	err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
	if (err) {
		asd_printk("couldn't allocate edbs\n");
		return err;
	}

	err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
	if (err) {
		asd_printk("couldn't allocate escbs\n");
		return err;
	}

	asd_assign_edbs2escbs(asd_ha);
	/* In order to insure that normal SCBs do not overfill sequencer
	 * memory and leave no space for escbs (halting condition),
	 * we increment pending here by the number of escbs.  However,
	 * escbs are never pending.
	 */
	seq->pending   = seq->num_escbs;
	seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;

	return 0;
}

/* ---------- HW initialization ---------- */

/**
 * asd_chip_hardrst -- hard reset the chip
 * @asd_ha: pointer to host adapter structure
 *
 * This takes 16 cycles and is synchronous to CFCLK, which runs
 * at 200 MHz, so this should take at most 80 nanoseconds.
 */
int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
{
	int i;
	int count = 100;
	u32 reg;

	for (i = 0 ; i < 4 ; i++) {
		asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
	}

	do {
		udelay(1);
		reg = asd_read_reg_dword(asd_ha, CHIMINT);
		if (reg & HARDRSTDET) {
			asd_write_reg_dword(asd_ha, CHIMINT,
					    HARDRSTDET|PORRSTDET);
			return 0;
		}
	} while (--count > 0);

	return -ENODEV;
}

/**
 * asd_init_chip -- initialize the chip
 * @asd_ha: pointer to host adapter structure
 *
 * Hard resets the chip, disables HA interrupts, downloads the sequnecer
 * microcode and starts the sequencers.  The caller has to explicitly
 * enable HA interrupts with asd_enable_ints(asd_ha).
 */
static int asd_init_chip(struct asd_ha_struct *asd_ha)
{
	int err;

	err = asd_chip_hardrst(asd_ha);
	if (err) {
		asd_printk("couldn't hard reset %s\n",
			    pci_name(asd_ha->pcidev));
		goto out;
	}

	asd_disable_ints(asd_ha);

	err = asd_init_seqs(asd_ha);
	if (err) {
		asd_printk("couldn't init seqs for %s\n",
			   pci_name(asd_ha->pcidev));
		goto out;
	}

	err = asd_start_seqs(asd_ha);
	if (err) {
		asd_printk("coudln't start seqs for %s\n",
			   pci_name(asd_ha->pcidev));
		goto out;
	}
out:
	return err;
}

#define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))

static int max_devs = 0;
module_param_named(max_devs, max_devs, int, S_IRUGO);
MODULE_PARM_DESC(max_devs, "\n"
	"\tMaximum number of SAS devices to support (not LUs).\n"
	"\tDefault: 2176, Maximum: 65663.\n");

static int max_cmnds = 0;
module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
MODULE_PARM_DESC(max_cmnds, "\n"
	"\tMaximum number of commands queuable.\n"
	"\tDefault: 512, Maximum: 66047.\n");

static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
{
	unsigned long dma_addr = OCM_BASE_ADDR;
	u32 d;

	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
	asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
	d |= 4;
	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
	asd_ha->hw_prof.max_ddbs += MAX_DEVS;
}

static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
{
	dma_addr_t dma_handle;
	unsigned long dma_addr;
	u32 d;
	int size;

	asd_extend_devctx_ocm(asd_ha);

	asd_ha->hw_prof.ddb_ext = NULL;
	if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
		max_devs = asd_ha->hw_prof.max_ddbs;
		return 0;
	}

	size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;

	asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
	if (!asd_ha->hw_prof.ddb_ext) {
		asd_printk("couldn't allocate memory for %d devices\n",
			   max_devs);
		max_devs = asd_ha->hw_prof.max_ddbs;
		return -ENOMEM;
	}
	dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
	dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
	dma_handle = (dma_addr_t) dma_addr;
	asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
	d &= ~4;
	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);

	asd_ha->hw_prof.max_ddbs = max_devs;

	return 0;
}

static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
{
	dma_addr_t dma_handle;
	unsigned long dma_addr;
	u32 d;
	int size;

	asd_ha->hw_prof.scb_ext = NULL;
	if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
		max_cmnds = asd_ha->hw_prof.max_scbs;
		return 0;
	}

	size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;

	asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
	if (!asd_ha->hw_prof.scb_ext) {
		asd_printk("couldn't allocate memory for %d commands\n",
			   max_cmnds);
		max_cmnds = asd_ha->hw_prof.max_scbs;
		return -ENOMEM;
	}
	dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
	dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
	dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
	dma_handle = (dma_addr_t) dma_addr;
	asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
	d &= ~1;
	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);

	asd_ha->hw_prof.max_scbs = max_cmnds;

	return 0;
}

/**
 * asd_init_ctxmem -- initialize context memory
 * asd_ha: pointer to host adapter structure
 *
 * This function sets the maximum number of SCBs and
 * DDBs which can be used by the sequencer.  This is normally
 * 512 and 128 respectively.  If support for more SCBs or more DDBs
 * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
 * initialized here to extend context memory to point to host memory,
 * thus allowing unlimited support for SCBs and DDBs -- only limited
 * by host memory.
 */
static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
{
	int bitmap_bytes;

	asd_get_max_scb_ddb(asd_ha);
	asd_extend_devctx(asd_ha);
	asd_extend_cmdctx(asd_ha);

	/* The kernel wants bitmaps to be unsigned long sized. */
	bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
	asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
	if (!asd_ha->hw_prof.ddb_bitmap)
		return -ENOMEM;
	spin_lock_init(&asd_ha->hw_prof.ddb_lock);

	return 0;
}

int asd_init_hw(struct asd_ha_struct *asd_ha)
{
	int err;
	u32 v;

	err = asd_init_sw(asd_ha);
	if (err)
		return err;

	err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
	if (err) {
		asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
			   pci_name(asd_ha->pcidev));
		return err;
	}
	pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
					v | SC_TMR_DIS);
	if (err) {
		asd_printk("couldn't disable split completion timer of %s\n",
			   pci_name(asd_ha->pcidev));
		return err;
	}

	err = asd_read_ocm(asd_ha);
	if (err) {
		asd_printk("couldn't read ocm(%d)\n", err);
		/* While suspicios, it is not an error that we
		 * couldn't read the OCM. */
	}

	err = asd_read_flash(asd_ha);
	if (err) {
		asd_printk("couldn't read flash(%d)\n", err);
		/* While suspicios, it is not an error that we
		 * couldn't read FLASH memory.
		 */
	}

	asd_init_ctxmem(asd_ha);

	if (asd_get_user_sas_addr(asd_ha)) {
		asd_printk("No SAS Address provided for %s\n",
			   pci_name(asd_ha->pcidev));
		err = -ENODEV;
		goto Out;
	}

	asd_propagate_sas_addr(asd_ha);

	err = asd_init_phys(asd_ha);
	if (err) {
		asd_printk("couldn't initialize phys for %s\n",
			    pci_name(asd_ha->pcidev));
		goto Out;
	}

	asd_init_ports(asd_ha);

	err = asd_init_scbs(asd_ha);
	if (err) {
		asd_printk("couldn't initialize scbs for %s\n",
			    pci_name(asd_ha->pcidev));
		goto Out;
	}

	err = asd_init_dl(asd_ha);
	if (err) {
		asd_printk("couldn't initialize the done list:%d\n",
			    err);
		goto Out;
	}

	err = asd_init_escbs(asd_ha);
	if (err) {
		asd_printk("couldn't initialize escbs\n");
		goto Out;
	}

	err = asd_init_chip(asd_ha);
	if (err) {
		asd_printk("couldn't init the chip\n");
		goto Out;
	}
Out:
	return err;
}

/* ---------- Chip reset ---------- */

/**
 * asd_chip_reset -- reset the host adapter, etc
 * @asd_ha: pointer to host adapter structure of interest
 *
 * Called from the ISR.  Hard reset the chip.  Let everything
 * timeout.  This should be no different than hot-unplugging the
 * host adapter.  Once everything times out we'll init the chip with
 * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
 * XXX finish.
 */
static void asd_chip_reset(struct asd_ha_struct *asd_ha)
{
	struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;

	ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
	asd_chip_hardrst(asd_ha);
	sas_ha->notify_ha_event(sas_ha, HAE_RESET);
}

/* ---------- Done List Routines ---------- */

static void asd_dl_tasklet_handler(unsigned long data)
{
	struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
	struct asd_seq_data *seq = &asd_ha->seq;
	unsigned long flags;

	while (1) {
		struct done_list_struct *dl = &seq->dl[seq->dl_next];
		struct asd_ascb *ascb;

		if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
			break;

		/* find the aSCB */
		spin_lock_irqsave(&seq->tc_index_lock, flags);
		ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
		if (unlikely(!ascb)) {
			ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
			goto next_1;
		} else if (ascb->scb->header.opcode == EMPTY_SCB) {
			goto out;
		} else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
			goto next_1;
		}
		spin_lock_irqsave(&seq->pend_q_lock, flags);
		list_del_init(&ascb->list);
		seq->pending--;
		spin_unlock_irqrestore(&seq->pend_q_lock, flags);
	out:
		ascb->tasklet_complete(ascb, dl);

	next_1:
		seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
		if (!seq->dl_next)
			seq->dl_toggle ^= DL_TOGGLE_MASK;
	}
}

/* ---------- Interrupt Service Routines ---------- */

/**
 * asd_process_donelist_isr -- schedule processing of done list entries
 * @asd_ha: pointer to host adapter structure
 */
static inline void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
{
	tasklet_schedule(&asd_ha->seq.dl_tasklet);
}

/**
 * asd_com_sas_isr -- process device communication interrupt (COMINT)
 * @asd_ha: pointer to host adapter structure
 */
static inline void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
{
	u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);

	/* clear COMSTAT int */
	asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);

	if (comstat & CSBUFPERR) {
		asd_printk("%s: command/status buffer dma parity error\n",
			   pci_name(asd_ha->pcidev));
	} else if (comstat & CSERR) {
		int i;
		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
		dmaerr &= 0xFF;
		asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
			   "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
			   pci_name(asd_ha->pcidev),
			   dmaerr,
			   asd_read_reg_dword(asd_ha, CSDMAADR),
			   asd_read_reg_dword(asd_ha, CSDMAADR+4));
		asd_printk("CSBUFFER:\n");
		for (i = 0; i < 8; i++) {
			asd_printk("%08x %08x %08x %08x\n",
				   asd_read_reg_dword(asd_ha, CSBUFFER),
				   asd_read_reg_dword(asd_ha, CSBUFFER+4),
				   asd_read_reg_dword(asd_ha, CSBUFFER+8),
				   asd_read_reg_dword(asd_ha, CSBUFFER+12));
		}
		asd_dump_seq_state(asd_ha, 0);
	} else if (comstat & OVLYERR) {
		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
		dmaerr = (dmaerr >> 8) & 0xFF;
		asd_printk("%s: overlay dma error:0x%x\n",
			   pci_name(asd_ha->pcidev),
			   dmaerr);
	}
	asd_chip_reset(asd_ha);
}

static inline void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
{
	static const char *halt_code[256] = {
		"UNEXPECTED_INTERRUPT0",
		"UNEXPECTED_INTERRUPT1",
		"UNEXPECTED_INTERRUPT2",
		"UNEXPECTED_INTERRUPT3",
		"UNEXPECTED_INTERRUPT4",
		"UNEXPECTED_INTERRUPT5",
		"UNEXPECTED_INTERRUPT6",
		"UNEXPECTED_INTERRUPT7",
		"UNEXPECTED_INTERRUPT8",
		"UNEXPECTED_INTERRUPT9",
		"UNEXPECTED_INTERRUPT10",
		[11 ... 19] = "unknown[11,19]",
		"NO_FREE_SCB_AVAILABLE",
		"INVALID_SCB_OPCODE",
		"INVALID_MBX_OPCODE",
		"INVALID_ATA_STATE",
		"ATA_QUEUE_FULL",
		"ATA_TAG_TABLE_FAULT",
		"ATA_TAG_MASK_FAULT",
		"BAD_LINK_QUEUE_STATE",
		"DMA2CHIM_QUEUE_ERROR",
		"EMPTY_SCB_LIST_FULL",
		"unknown[30]",
		"IN_USE_SCB_ON_FREE_LIST",
		"BAD_OPEN_WAIT_STATE",
		"INVALID_STP_AFFILIATION",
		"unknown[34]",
		"EXEC_QUEUE_ERROR",
		"TOO_MANY_EMPTIES_NEEDED",
		"EMPTY_REQ_QUEUE_ERROR",
		"Q_MONIRTT_MGMT_ERROR",
		"TARGET_MODE_FLOW_ERROR",
		"DEVICE_QUEUE_NOT_FOUND",
		"START_IRTT_TIMER_ERROR",
		"ABORT_TASK_ILLEGAL_REQ",
		[43 ... 255] = "unknown[43,255]"
	};

	if (dchstatus & CSEQINT) {
		u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);

		if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
			asd_printk("%s: CSEQ arp2int:0x%x\n",
				   pci_name(asd_ha->pcidev),
				   arp2int);
		} else if (arp2int & ARP2HALTC)
			asd_printk("%s: CSEQ halted: %s\n",
				   pci_name(asd_ha->pcidev),
				   halt_code[(arp2int>>16)&0xFF]);
		else
			asd_printk("%s: CARP2INT:0x%x\n",
				   pci_name(asd_ha->pcidev),
				   arp2int);
	}
	if (dchstatus & LSEQINT_MASK) {
		int lseq;
		u8  lseq_mask = dchstatus & LSEQINT_MASK;

		for_each_sequencer(lseq_mask, lseq_mask, lseq) {
			u32 arp2int = asd_read_reg_dword(asd_ha,
							 LmARP2INT(lseq));
			if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
				       | ARP2CIOPERR)) {
				asd_printk("%s: LSEQ%d arp2int:0x%x\n",
					   pci_name(asd_ha->pcidev),
					   lseq, arp2int);
				/* XXX we should only do lseq reset */
			} else if (arp2int & ARP2HALTC)
				asd_printk("%s: LSEQ%d halted: %s\n",
					   pci_name(asd_ha->pcidev),
					   lseq,halt_code[(arp2int>>16)&0xFF]);
			else
				asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
					   pci_name(asd_ha->pcidev), lseq,
					   arp2int);
		}
	}
	asd_chip_reset(asd_ha);
}

/**
 * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
 * @asd_ha: pointer to host adapter structure
 */
static inline void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
{
	u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);

	if (dchstatus & CFIFTOERR) {
		asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
		asd_chip_reset(asd_ha);
	} else
		asd_arp2_err(asd_ha, dchstatus);
}

/**
 * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
 * @asd_ha: pointer to host adapter structure
 */
static inline void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
{
	u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);

	if (!(stat0r & ASIERR)) {
		asd_printk("hmm, EXSI interrupted but no error?\n");
		return;
	}

	if (stat0r & ASIFMTERR) {
		asd_printk("ASI SEEPROM format error for %s\n",
			   pci_name(asd_ha->pcidev));
	} else if (stat0r & ASISEECHKERR) {
		u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
		asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
			   stat1r & CHECKSUM_MASK,
			   pci_name(asd_ha->pcidev));
	} else {
		u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);

		if (!(statr & CPI2ASIMSTERR_MASK)) {
			ASD_DPRINTK("hmm, ASIERR?\n");
			return;
		} else {
			u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
			u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);

			asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
				   "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
				   "master id: 0x%x, master err: 0x%x\n",
				   pci_name(asd_ha->pcidev),
				   addr, data,
				   (statr & CPI2ASIBYTECNT_MASK) >> 16,
				   (statr & CPI2ASIBYTEEN_MASK) >> 12,
				   (statr & CPI2ASITARGERR_MASK) >> 8,
				   (statr & CPI2ASITARGMID_MASK) >> 4,
				   (statr & CPI2ASIMSTERR_MASK));
		}
	}
	asd_chip_reset(asd_ha);
}

/**
 * asd_hst_pcix_isr -- process host interface interrupts
 * @asd_ha: pointer to host adapter structure
 *
 * Asserted on PCIX errors: target abort, etc.
 */
static inline void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
{
	u16 status;
	u32 pcix_status;
	u32 ecc_status;

	pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
	pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
	pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);

	if (status & PCI_STATUS_DETECTED_PARITY)
		asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
	else if (status & PCI_STATUS_REC_MASTER_ABORT)
		asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
	else if (status & PCI_STATUS_REC_TARGET_ABORT)
		asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
	else if (status & PCI_STATUS_PARITY)
		asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
	else if (pcix_status & RCV_SCE) {
		asd_printk("received split completion error for %s\n",
			   pci_name(asd_ha->pcidev));
		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
		/* XXX: Abort task? */
		return;
	} else if (pcix_status & UNEXP_SC) {
		asd_printk("unexpected split completion for %s\n",
			   pci_name(asd_ha->pcidev));
		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
		/* ignore */
		return;
	} else if (pcix_status & SC_DISCARD)
		asd_printk("split completion discarded for %s\n",
			   pci_name(asd_ha->pcidev));
	else if (ecc_status & UNCOR_ECCERR)
		asd_printk("uncorrectable ECC error for %s\n",
			   pci_name(asd_ha->pcidev));
	asd_chip_reset(asd_ha);
}

/**
 * asd_hw_isr -- host adapter interrupt service routine
 * @irq: ignored
 * @dev_id: pointer to host adapter structure
 *
 * The ISR processes done list entries and level 3 error handling.
 */
irqreturn_t asd_hw_isr(int irq, void *dev_id)
{
	struct asd_ha_struct *asd_ha = dev_id;
	u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);

	if (!chimint)
		return IRQ_NONE;

	asd_write_reg_dword(asd_ha, CHIMINT, chimint);
	(void) asd_read_reg_dword(asd_ha, CHIMINT);

	if (chimint & DLAVAIL)
		asd_process_donelist_isr(asd_ha);
	if (chimint & COMINT)
		asd_com_sas_isr(asd_ha);
	if (chimint & DEVINT)
		asd_dch_sas_isr(asd_ha);
	if (chimint & INITERR)
		asd_rbi_exsi_isr(asd_ha);
	if (chimint & HOSTERR)
		asd_hst_pcix_isr(asd_ha);

	return IRQ_HANDLED;
}

/* ---------- SCB handling ---------- */

static inline struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
					      gfp_t gfp_flags)
{
	extern struct kmem_cache *asd_ascb_cache;
	struct asd_seq_data *seq = &asd_ha->seq;
	struct asd_ascb *ascb;
	unsigned long flags;

	ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);

	if (ascb) {
		ascb->dma_scb.size = sizeof(struct scb);
		ascb->dma_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool,
						     gfp_flags,
						    &ascb->dma_scb.dma_handle);
		if (!ascb->dma_scb.vaddr) {
			kmem_cache_free(asd_ascb_cache, ascb);
			return NULL;
		}
		memset(ascb->dma_scb.vaddr, 0, sizeof(struct scb));
		asd_init_ascb(asd_ha, ascb);

		spin_lock_irqsave(&seq->tc_index_lock, flags);
		ascb->tc_index = asd_tc_index_get(seq, ascb);
		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
		if (ascb->tc_index == -1)
			goto undo;

		ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
	}

	return ascb;
undo:
	dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
		      ascb->dma_scb.dma_handle);
	kmem_cache_free(asd_ascb_cache, ascb);
	ASD_DPRINTK("no index for ascb\n");
	return NULL;
}

/**
 * asd_ascb_alloc_list -- allocate a list of aSCBs
 * @asd_ha: pointer to host adapter structure
 * @num: pointer to integer number of aSCBs
 * @gfp_flags: GFP_ flags.
 *
 * This is the only function which is used to allocate aSCBs.
 * It can allocate one or many. If more than one, then they form
 * a linked list in two ways: by their list field of the ascb struct
 * and by the next_scb field of the scb_header.
 *
 * Returns NULL if no memory was available, else pointer to a list
 * of ascbs.  When this function returns, @num would be the number
 * of SCBs which were not able to be allocated, 0 if all requested
 * were able to be allocated.
 */
struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
				     *asd_ha, int *num,
				     gfp_t gfp_flags)
{
	struct asd_ascb *first = NULL;

	for ( ; *num > 0; --*num) {
		struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);

		if (!ascb)
			break;
		else if (!first)
			first = ascb;
		else {
			struct asd_ascb *last = list_entry(first->list.prev,
							   struct asd_ascb,
							   list);
			list_add_tail(&ascb->list, &first->list);
			last->scb->header.next_scb =
				cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
		}
	}

	return first;
}

/**
 * asd_swap_head_scb -- swap the head scb
 * @asd_ha: pointer to host adapter structure
 * @ascb: pointer to the head of an ascb list
 *
 * The sequencer knows the DMA address of the next SCB to be DMAed to
 * the host adapter, from initialization or from the last list DMAed.
 * seq->next_scb keeps the address of this SCB.  The sequencer will
 * DMA to the host adapter this list of SCBs.  But the head (first
 * element) of this list is not known to the sequencer.  Here we swap
 * the head of the list with the known SCB (memcpy()).
 * Only one memcpy() is required per list so it is in our interest
 * to keep the list of SCB as long as possible so that the ratio
 * of number of memcpy calls to the number of SCB DMA-ed is as small
 * as possible.
 *
 * LOCKING: called with the pending list lock held.
 */
static inline void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
				     struct asd_ascb *ascb)
{
	struct asd_seq_data *seq = &asd_ha->seq;
	struct asd_ascb *last = list_entry(ascb->list.prev,
					   struct asd_ascb,
					   list);
	struct asd_dma_tok t = ascb->dma_scb;

	memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
	ascb->dma_scb = seq->next_scb;
	ascb->scb = ascb->dma_scb.vaddr;
	seq->next_scb = t;
	last->scb->header.next_scb =
		cpu_to_le64(((u64)seq->next_scb.dma_handle));
}

/**
 * asd_start_timers -- (add and) start timers of SCBs
 * @list: pointer to struct list_head of the scbs
 * @to: timeout in jiffies
 *
 * If an SCB in the @list has no timer function, assign the default
 * one,  then start the timer of the SCB.  This function is
 * intended to be called from asd_post_ascb_list(), just prior to
 * posting the SCBs to the sequencer.
 */
static inline void asd_start_scb_timers(struct list_head *list)
{
	struct asd_ascb *ascb;
	list_for_each_entry(ascb, list, list) {
		if (!ascb->uldd_timer) {
			ascb->timer.data = (unsigned long) ascb;
			ascb->timer.function = asd_ascb_timedout;
			ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
			add_timer(&ascb->timer);
		}
	}
}

/**
 * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
 * @asd_ha: pointer to a host adapter structure
 * @ascb: pointer to the first aSCB in the list
 * @num: number of aSCBs in the list (to be posted)
 *
 * See queueing comment in asd_post_escb_list().
 *
 * Additional note on queuing: In order to minimize the ratio of memcpy()
 * to the number of ascbs sent, we try to batch-send as many ascbs as possible
 * in one go.
 * Two cases are possible:
 *    A) can_queue >= num,
 *    B) can_queue < num.
 * Case A: we can send the whole batch at once.  Increment "pending"
 * in the beginning of this function, when it is checked, in order to
 * eliminate races when this function is called by multiple processes.
 * Case B: should never happen if the managing layer considers
 * lldd_queue_size.
 */
int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
		       int num)
{
	unsigned long flags;
	LIST_HEAD(list);
	int can_queue;

	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
	can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
	if (can_queue >= num)
		asd_ha->seq.pending += num;
	else
		can_queue = 0;

	if (!can_queue) {
		spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
		asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
		return -SAS_QUEUE_FULL;
	}

	asd_swap_head_scb(asd_ha, ascb);

	__list_add(&list, ascb->list.prev, &ascb->list);

	asd_start_scb_timers(&list);

	asd_ha->seq.scbpro += num;
	list_splice_init(&list, asd_ha->seq.pend_q.prev);
	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);

	return 0;
}

/**
 * asd_post_escb_list -- post a list of 1 or more empty scb
 * @asd_ha: pointer to a host adapter structure
 * @ascb: pointer to the first empty SCB in the list
 * @num: number of aSCBs in the list (to be posted)
 *
 * This is essentially the same as asd_post_ascb_list, but we do not
 * increment pending, add those to the pending list or get indexes.
 * See asd_init_escbs() and asd_init_post_escbs().
 *
 * Since sending a list of ascbs is a superset of sending a single
 * ascb, this function exists to generalize this.  More specifically,
 * when sending a list of those, we want to do only a _single_
 * memcpy() at swap head, as opposed to for each ascb sent (in the
 * case of sending them one by one).  That is, we want to minimize the
 * ratio of memcpy() operations to the number of ascbs sent.  The same
 * logic applies to asd_post_ascb_list().
 */
int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
		       int num)
{
	unsigned long flags;

	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
	asd_swap_head_scb(asd_ha, ascb);
	asd_ha->seq.scbpro += num;
	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);

	return 0;
}

/* ---------- LED ---------- */

/**
 * asd_turn_led -- turn on/off an LED
 * @asd_ha: pointer to host adapter structure
 * @phy_id: the PHY id whose LED we want to manupulate
 * @op: 1 to turn on, 0 to turn off
 */
void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
{
	if (phy_id < ASD_MAX_PHYS) {
		u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
		if (op)
			v |= LEDPOL;
		else
			v &= ~LEDPOL;
		asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
	}
}

/**
 * asd_control_led -- enable/disable an LED on the board
 * @asd_ha: pointer to host adapter structure
 * @phy_id: integer, the phy id
 * @op: integer, 1 to enable, 0 to disable the LED
 *
 * First we output enable the LED, then we set the source
 * to be an external module.
 */
void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
{
	if (phy_id < ASD_MAX_PHYS) {
		u32 v;

		v = asd_read_reg_dword(asd_ha, GPIOOER);
		if (op)
			v |= (1 << phy_id);
		else
			v &= ~(1 << phy_id);
		asd_write_reg_dword(asd_ha, GPIOOER, v);

		v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
		if (op)
			v |= (1 << phy_id);
		else
			v &= ~(1 << phy_id);
		asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
	}
}

/* ---------- PHY enable ---------- */

static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
{
	struct asd_phy *phy = &asd_ha->phys[phy_id];

	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
			   HOTPLUG_DELAY_TIMEOUT);

	/* Get defaults from manuf. sector */
	/* XXX we need defaults for those in case MS is broken. */
	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
			   phy->phy_desc->phy_control_0);
	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
			   phy->phy_desc->phy_control_1);
	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
			   phy->phy_desc->phy_control_2);
	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
			   phy->phy_desc->phy_control_3);

	asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
			    ASD_COMINIT_TIMEOUT);

	asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
			   phy->id_frm_tok->dma_handle);

	asd_control_led(asd_ha, phy_id, 1);

	return 0;
}

int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
{
	u8  phy_m;
	u8  i;
	int num = 0, k;
	struct asd_ascb *ascb;
	struct asd_ascb *ascb_list;

	if (!phy_mask) {
		asd_printk("%s called with phy_mask of 0!?\n", __FUNCTION__);
		return 0;
	}

	for_each_phy(phy_mask, phy_m, i) {
		num++;
		asd_enable_phy(asd_ha, i);
	}

	k = num;
	ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
	if (!ascb_list) {
		asd_printk("no memory for control phy ascb list\n");
		return -ENOMEM;
	}
	num -= k;

	ascb = ascb_list;
	for_each_phy(phy_mask, phy_m, i) {
		asd_build_control_phy(ascb, i, ENABLE_PHY);
		ascb = list_entry(ascb->list.next, struct asd_ascb, list);
	}
	ASD_DPRINTK("posting %d control phy scbs\n", num);
	k = asd_post_ascb_list(asd_ha, ascb_list, num);
	if (k)
		asd_ascb_free_list(ascb_list);

	return k;
}
OpenPOWER on IntegriCloud