summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/fsl_elbc_nand.c
blob: b025dfe0b27471e89a569f063a7b5f77eeb07c62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
/* Freescale Enhanced Local Bus Controller NAND driver
 *
 * Copyright (c) 2006-2007 Freescale Semiconductor
 *
 * Authors: Nick Spence <nick.spence@freescale.com>,
 *          Scott Wood <scottwood@freescale.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/of_platform.h>
#include <linux/slab.h>
#include <linux/interrupt.h>

#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>

#include <asm/io.h>


#define MAX_BANKS 8
#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */

struct elbc_bank {
	__be32 br;             /**< Base Register  */
#define BR_BA           0xFFFF8000
#define BR_BA_SHIFT             15
#define BR_PS           0x00001800
#define BR_PS_SHIFT             11
#define BR_PS_8         0x00000800  /* Port Size 8 bit */
#define BR_PS_16        0x00001000  /* Port Size 16 bit */
#define BR_PS_32        0x00001800  /* Port Size 32 bit */
#define BR_DECC         0x00000600
#define BR_DECC_SHIFT            9
#define BR_DECC_OFF     0x00000000  /* HW ECC checking and generation off */
#define BR_DECC_CHK     0x00000200  /* HW ECC checking on, generation off */
#define BR_DECC_CHK_GEN 0x00000400  /* HW ECC checking and generation on */
#define BR_WP           0x00000100
#define BR_WP_SHIFT              8
#define BR_MSEL         0x000000E0
#define BR_MSEL_SHIFT            5
#define BR_MS_GPCM      0x00000000  /* GPCM */
#define BR_MS_FCM       0x00000020  /* FCM */
#define BR_MS_SDRAM     0x00000060  /* SDRAM */
#define BR_MS_UPMA      0x00000080  /* UPMA */
#define BR_MS_UPMB      0x000000A0  /* UPMB */
#define BR_MS_UPMC      0x000000C0  /* UPMC */
#define BR_V            0x00000001
#define BR_V_SHIFT               0
#define BR_RES          ~(BR_BA|BR_PS|BR_DECC|BR_WP|BR_MSEL|BR_V)

	__be32 or;             /**< Base Register  */
#define OR0 0x5004
#define OR1 0x500C
#define OR2 0x5014
#define OR3 0x501C
#define OR4 0x5024
#define OR5 0x502C
#define OR6 0x5034
#define OR7 0x503C

#define OR_FCM_AM               0xFFFF8000
#define OR_FCM_AM_SHIFT                 15
#define OR_FCM_BCTLD            0x00001000
#define OR_FCM_BCTLD_SHIFT              12
#define OR_FCM_PGS              0x00000400
#define OR_FCM_PGS_SHIFT                10
#define OR_FCM_CSCT             0x00000200
#define OR_FCM_CSCT_SHIFT                9
#define OR_FCM_CST              0x00000100
#define OR_FCM_CST_SHIFT                 8
#define OR_FCM_CHT              0x00000080
#define OR_FCM_CHT_SHIFT                 7
#define OR_FCM_SCY              0x00000070
#define OR_FCM_SCY_SHIFT                 4
#define OR_FCM_SCY_1            0x00000010
#define OR_FCM_SCY_2            0x00000020
#define OR_FCM_SCY_3            0x00000030
#define OR_FCM_SCY_4            0x00000040
#define OR_FCM_SCY_5            0x00000050
#define OR_FCM_SCY_6            0x00000060
#define OR_FCM_SCY_7            0x00000070
#define OR_FCM_RST              0x00000008
#define OR_FCM_RST_SHIFT                 3
#define OR_FCM_TRLX             0x00000004
#define OR_FCM_TRLX_SHIFT                2
#define OR_FCM_EHTR             0x00000002
#define OR_FCM_EHTR_SHIFT                1
};

struct elbc_regs {
	struct elbc_bank bank[8];
	u8 res0[0x28];
	__be32 mar;             /**< UPM Address Register */
	u8 res1[0x4];
	__be32 mamr;            /**< UPMA Mode Register */
	__be32 mbmr;            /**< UPMB Mode Register */
	__be32 mcmr;            /**< UPMC Mode Register */
	u8 res2[0x8];
	__be32 mrtpr;           /**< Memory Refresh Timer Prescaler Register */
	__be32 mdr;             /**< UPM Data Register */
	u8 res3[0x4];
	__be32 lsor;            /**< Special Operation Initiation Register */
	__be32 lsdmr;           /**< SDRAM Mode Register */
	u8 res4[0x8];
	__be32 lurt;            /**< UPM Refresh Timer */
	__be32 lsrt;            /**< SDRAM Refresh Timer */
	u8 res5[0x8];
	__be32 ltesr;           /**< Transfer Error Status Register */
#define LTESR_BM   0x80000000
#define LTESR_FCT  0x40000000
#define LTESR_PAR  0x20000000
#define LTESR_WP   0x04000000
#define LTESR_ATMW 0x00800000
#define LTESR_ATMR 0x00400000
#define LTESR_CS   0x00080000
#define LTESR_CC   0x00000001
#define LTESR_NAND_MASK (LTESR_FCT | LTESR_PAR | LTESR_CC)
	__be32 ltedr;           /**< Transfer Error Disable Register */
	__be32 lteir;           /**< Transfer Error Interrupt Register */
	__be32 lteatr;          /**< Transfer Error Attributes Register */
	__be32 ltear;           /**< Transfer Error Address Register */
	u8 res6[0xC];
	__be32 lbcr;            /**< Configuration Register */
#define LBCR_LDIS  0x80000000
#define LBCR_LDIS_SHIFT    31
#define LBCR_BCTLC 0x00C00000
#define LBCR_BCTLC_SHIFT   22
#define LBCR_AHD   0x00200000
#define LBCR_LPBSE 0x00020000
#define LBCR_LPBSE_SHIFT   17
#define LBCR_EPAR  0x00010000
#define LBCR_EPAR_SHIFT    16
#define LBCR_BMT   0x0000FF00
#define LBCR_BMT_SHIFT      8
#define LBCR_INIT  0x00040000
	__be32 lcrr;            /**< Clock Ratio Register */
#define LCRR_DBYP    0x80000000
#define LCRR_DBYP_SHIFT      31
#define LCRR_BUFCMDC 0x30000000
#define LCRR_BUFCMDC_SHIFT   28
#define LCRR_ECL     0x03000000
#define LCRR_ECL_SHIFT       24
#define LCRR_EADC    0x00030000
#define LCRR_EADC_SHIFT      16
#define LCRR_CLKDIV  0x0000000F
#define LCRR_CLKDIV_SHIFT     0
	u8 res7[0x8];
	__be32 fmr;             /**< Flash Mode Register */
#define FMR_CWTO     0x0000F000
#define FMR_CWTO_SHIFT       12
#define FMR_BOOT     0x00000800
#define FMR_ECCM     0x00000100
#define FMR_AL       0x00000030
#define FMR_AL_SHIFT          4
#define FMR_OP       0x00000003
#define FMR_OP_SHIFT          0
	__be32 fir;             /**< Flash Instruction Register */
#define FIR_OP0      0xF0000000
#define FIR_OP0_SHIFT        28
#define FIR_OP1      0x0F000000
#define FIR_OP1_SHIFT        24
#define FIR_OP2      0x00F00000
#define FIR_OP2_SHIFT        20
#define FIR_OP3      0x000F0000
#define FIR_OP3_SHIFT        16
#define FIR_OP4      0x0000F000
#define FIR_OP4_SHIFT        12
#define FIR_OP5      0x00000F00
#define FIR_OP5_SHIFT         8
#define FIR_OP6      0x000000F0
#define FIR_OP6_SHIFT         4
#define FIR_OP7      0x0000000F
#define FIR_OP7_SHIFT         0
#define FIR_OP_NOP   0x0	/* No operation and end of sequence */
#define FIR_OP_CA    0x1        /* Issue current column address */
#define FIR_OP_PA    0x2        /* Issue current block+page address */
#define FIR_OP_UA    0x3        /* Issue user defined address */
#define FIR_OP_CM0   0x4        /* Issue command from FCR[CMD0] */
#define FIR_OP_CM1   0x5        /* Issue command from FCR[CMD1] */
#define FIR_OP_CM2   0x6        /* Issue command from FCR[CMD2] */
#define FIR_OP_CM3   0x7        /* Issue command from FCR[CMD3] */
#define FIR_OP_WB    0x8        /* Write FBCR bytes from FCM buffer */
#define FIR_OP_WS    0x9        /* Write 1 or 2 bytes from MDR[AS] */
#define FIR_OP_RB    0xA        /* Read FBCR bytes to FCM buffer */
#define FIR_OP_RS    0xB        /* Read 1 or 2 bytes to MDR[AS] */
#define FIR_OP_CW0   0xC        /* Wait then issue FCR[CMD0] */
#define FIR_OP_CW1   0xD        /* Wait then issue FCR[CMD1] */
#define FIR_OP_RBW   0xE        /* Wait then read FBCR bytes */
#define FIR_OP_RSW   0xE        /* Wait then read 1 or 2 bytes */
	__be32 fcr;             /**< Flash Command Register */
#define FCR_CMD0     0xFF000000
#define FCR_CMD0_SHIFT       24
#define FCR_CMD1     0x00FF0000
#define FCR_CMD1_SHIFT       16
#define FCR_CMD2     0x0000FF00
#define FCR_CMD2_SHIFT        8
#define FCR_CMD3     0x000000FF
#define FCR_CMD3_SHIFT        0
	__be32 fbar;            /**< Flash Block Address Register */
#define FBAR_BLK     0x00FFFFFF
	__be32 fpar;            /**< Flash Page Address Register */
#define FPAR_SP_PI   0x00007C00
#define FPAR_SP_PI_SHIFT     10
#define FPAR_SP_MS   0x00000200
#define FPAR_SP_CI   0x000001FF
#define FPAR_SP_CI_SHIFT      0
#define FPAR_LP_PI   0x0003F000
#define FPAR_LP_PI_SHIFT     12
#define FPAR_LP_MS   0x00000800
#define FPAR_LP_CI   0x000007FF
#define FPAR_LP_CI_SHIFT      0
	__be32 fbcr;            /**< Flash Byte Count Register */
#define FBCR_BC      0x00000FFF
	u8 res11[0x8];
	u8 res8[0xF00];
};

struct fsl_elbc_ctrl;

/* mtd information per set */

struct fsl_elbc_mtd {
	struct mtd_info mtd;
	struct nand_chip chip;
	struct fsl_elbc_ctrl *ctrl;

	struct device *dev;
	int bank;               /* Chip select bank number           */
	u8 __iomem *vbase;      /* Chip select base virtual address  */
	int page_size;          /* NAND page size (0=512, 1=2048)    */
	unsigned int fmr;       /* FCM Flash Mode Register value     */
};

/* overview of the fsl elbc controller */

struct fsl_elbc_ctrl {
	struct nand_hw_control controller;
	struct fsl_elbc_mtd *chips[MAX_BANKS];

	/* device info */
	struct device *dev;
	struct elbc_regs __iomem *regs;
	int irq;
	wait_queue_head_t irq_wait;
	unsigned int irq_status; /* status read from LTESR by irq handler */
	u8 __iomem *addr;        /* Address of assigned FCM buffer        */
	unsigned int page;       /* Last page written to / read from      */
	unsigned int read_bytes; /* Number of bytes read during command   */
	unsigned int column;     /* Saved column from SEQIN               */
	unsigned int index;      /* Pointer to next byte to 'read'        */
	unsigned int status;     /* status read from LTESR after last op  */
	unsigned int mdr;        /* UPM/FCM Data Register value           */
	unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
	unsigned int oob;        /* Non zero if operating on OOB data     */
	char *oob_poi;           /* Place to write ECC after read back    */
};

/* These map to the positions used by the FCM hardware ECC generator */

/* Small Page FLASH with FMR[ECCM] = 0 */
static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
	.eccbytes = 3,
	.eccpos = {6, 7, 8},
	.oobfree = { {0, 5}, {9, 7} },
	.oobavail = 12,
};

/* Small Page FLASH with FMR[ECCM] = 1 */
static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
	.eccbytes = 3,
	.eccpos = {8, 9, 10},
	.oobfree = { {0, 5}, {6, 2}, {11, 5} },
	.oobavail = 12,
};

/* Large Page FLASH with FMR[ECCM] = 0 */
static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
	.eccbytes = 12,
	.eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
	.oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
	.oobavail = 48,
};

/* Large Page FLASH with FMR[ECCM] = 1 */
static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
	.eccbytes = 12,
	.eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
	.oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
	.oobavail = 48,
};

/*=================================*/

/*
 * Set up the FCM hardware block and page address fields, and the fcm
 * structure addr field to point to the correct FCM buffer in memory
 */
static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_elbc_mtd *priv = chip->priv;
	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
	struct elbc_regs __iomem *lbc = ctrl->regs;
	int buf_num;

	ctrl->page = page_addr;

	out_be32(&lbc->fbar,
	         page_addr >> (chip->phys_erase_shift - chip->page_shift));

	if (priv->page_size) {
		out_be32(&lbc->fpar,
		         ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
		         (oob ? FPAR_LP_MS : 0) | column);
		buf_num = (page_addr & 1) << 2;
	} else {
		out_be32(&lbc->fpar,
		         ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
		         (oob ? FPAR_SP_MS : 0) | column);
		buf_num = page_addr & 7;
	}

	ctrl->addr = priv->vbase + buf_num * 1024;
	ctrl->index = column;

	/* for OOB data point to the second half of the buffer */
	if (oob)
		ctrl->index += priv->page_size ? 2048 : 512;

	dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
	                    "index %x, pes %d ps %d\n",
	         buf_num, ctrl->addr, priv->vbase, ctrl->index,
	         chip->phys_erase_shift, chip->page_shift);
}

/*
 * execute FCM command and wait for it to complete
 */
static int fsl_elbc_run_command(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_elbc_mtd *priv = chip->priv;
	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
	struct elbc_regs __iomem *lbc = ctrl->regs;

	/* Setup the FMR[OP] to execute without write protection */
	out_be32(&lbc->fmr, priv->fmr | 3);
	if (ctrl->use_mdr)
		out_be32(&lbc->mdr, ctrl->mdr);

	dev_vdbg(ctrl->dev,
	         "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
	         in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
	dev_vdbg(ctrl->dev,
	         "fsl_elbc_run_command: fbar=%08x fpar=%08x "
	         "fbcr=%08x bank=%d\n",
	         in_be32(&lbc->fbar), in_be32(&lbc->fpar),
	         in_be32(&lbc->fbcr), priv->bank);

	/* execute special operation */
	out_be32(&lbc->lsor, priv->bank);

	/* wait for FCM complete flag or timeout */
	ctrl->irq_status = 0;
	wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
	                   FCM_TIMEOUT_MSECS * HZ/1000);
	ctrl->status = ctrl->irq_status;

	/* store mdr value in case it was needed */
	if (ctrl->use_mdr)
		ctrl->mdr = in_be32(&lbc->mdr);

	ctrl->use_mdr = 0;

	dev_vdbg(ctrl->dev,
	         "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
	         ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));

	/* returns 0 on success otherwise non-zero) */
	return ctrl->status == LTESR_CC ? 0 : -EIO;
}

static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
{
	struct fsl_elbc_mtd *priv = chip->priv;
	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
	struct elbc_regs __iomem *lbc = ctrl->regs;

	if (priv->page_size) {
		out_be32(&lbc->fir,
		         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
		         (FIR_OP_CW1 << FIR_OP3_SHIFT) |
		         (FIR_OP_RBW << FIR_OP4_SHIFT));

		out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
		                    (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
	} else {
		out_be32(&lbc->fir,
		         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
		         (FIR_OP_RBW << FIR_OP3_SHIFT));

		if (oob)
			out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
		else
			out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
	}
}

/* cmdfunc send commands to the FCM */
static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
                             int column, int page_addr)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_elbc_mtd *priv = chip->priv;
	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
	struct elbc_regs __iomem *lbc = ctrl->regs;

	ctrl->use_mdr = 0;

	/* clear the read buffer */
	ctrl->read_bytes = 0;
	if (command != NAND_CMD_PAGEPROG)
		ctrl->index = 0;

	switch (command) {
	/* READ0 and READ1 read the entire buffer to use hardware ECC. */
	case NAND_CMD_READ1:
		column += 256;

	/* fall-through */
	case NAND_CMD_READ0:
		dev_dbg(ctrl->dev,
		        "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
		        " 0x%x, column: 0x%x.\n", page_addr, column);


		out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
		set_addr(mtd, 0, page_addr, 0);

		ctrl->read_bytes = mtd->writesize + mtd->oobsize;
		ctrl->index += column;

		fsl_elbc_do_read(chip, 0);
		fsl_elbc_run_command(mtd);
		return;

	/* READOOB reads only the OOB because no ECC is performed. */
	case NAND_CMD_READOOB:
		dev_vdbg(ctrl->dev,
		         "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
			 " 0x%x, column: 0x%x.\n", page_addr, column);

		out_be32(&lbc->fbcr, mtd->oobsize - column);
		set_addr(mtd, column, page_addr, 1);

		ctrl->read_bytes = mtd->writesize + mtd->oobsize;

		fsl_elbc_do_read(chip, 1);
		fsl_elbc_run_command(mtd);
		return;

	/* READID must read all 5 possible bytes while CEB is active */
	case NAND_CMD_READID:
		dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");

		out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
		                    (FIR_OP_UA  << FIR_OP1_SHIFT) |
		                    (FIR_OP_RBW << FIR_OP2_SHIFT));
		out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
		/* 5 bytes for manuf, device and exts */
		out_be32(&lbc->fbcr, 5);
		ctrl->read_bytes = 5;
		ctrl->use_mdr = 1;
		ctrl->mdr = 0;

		set_addr(mtd, 0, 0, 0);
		fsl_elbc_run_command(mtd);
		return;

	/* ERASE1 stores the block and page address */
	case NAND_CMD_ERASE1:
		dev_vdbg(ctrl->dev,
		         "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
		         "page_addr: 0x%x.\n", page_addr);
		set_addr(mtd, 0, page_addr, 0);
		return;

	/* ERASE2 uses the block and page address from ERASE1 */
	case NAND_CMD_ERASE2:
		dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");

		out_be32(&lbc->fir,
		         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
		         (FIR_OP_PA  << FIR_OP1_SHIFT) |
		         (FIR_OP_CM1 << FIR_OP2_SHIFT));

		out_be32(&lbc->fcr,
		         (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
		         (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));

		out_be32(&lbc->fbcr, 0);
		ctrl->read_bytes = 0;

		fsl_elbc_run_command(mtd);
		return;

	/* SEQIN sets up the addr buffer and all registers except the length */
	case NAND_CMD_SEQIN: {
		__be32 fcr;
		dev_vdbg(ctrl->dev,
		         "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
		         "page_addr: 0x%x, column: 0x%x.\n",
		         page_addr, column);

		ctrl->column = column;
		ctrl->oob = 0;

		fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
		      (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);

		if (priv->page_size) {
			out_be32(&lbc->fir,
			         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
			         (FIR_OP_CA  << FIR_OP1_SHIFT) |
			         (FIR_OP_PA  << FIR_OP2_SHIFT) |
			         (FIR_OP_WB  << FIR_OP3_SHIFT) |
			         (FIR_OP_CW1 << FIR_OP4_SHIFT));

			fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
		} else {
			out_be32(&lbc->fir,
			         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
			         (FIR_OP_CM2 << FIR_OP1_SHIFT) |
			         (FIR_OP_CA  << FIR_OP2_SHIFT) |
			         (FIR_OP_PA  << FIR_OP3_SHIFT) |
			         (FIR_OP_WB  << FIR_OP4_SHIFT) |
			         (FIR_OP_CW1 << FIR_OP5_SHIFT));

			if (column >= mtd->writesize) {
				/* OOB area --> READOOB */
				column -= mtd->writesize;
				fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
				ctrl->oob = 1;
			} else if (column < 256) {
				/* First 256 bytes --> READ0 */
				fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
			} else {
				/* Second 256 bytes --> READ1 */
				fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
			}
		}

		out_be32(&lbc->fcr, fcr);
		set_addr(mtd, column, page_addr, ctrl->oob);
		return;
	}

	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
	case NAND_CMD_PAGEPROG: {
		int full_page;
		dev_vdbg(ctrl->dev,
		         "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
		         "writing %d bytes.\n", ctrl->index);

		/* if the write did not start at 0 or is not a full page
		 * then set the exact length, otherwise use a full page
		 * write so the HW generates the ECC.
		 */
		if (ctrl->oob || ctrl->column != 0 ||
		    ctrl->index != mtd->writesize + mtd->oobsize) {
			out_be32(&lbc->fbcr, ctrl->index);
			full_page = 0;
		} else {
			out_be32(&lbc->fbcr, 0);
			full_page = 1;
		}

		fsl_elbc_run_command(mtd);

		/* Read back the page in order to fill in the ECC for the
		 * caller.  Is this really needed?
		 */
		if (full_page && ctrl->oob_poi) {
			out_be32(&lbc->fbcr, 3);
			set_addr(mtd, 6, page_addr, 1);

			ctrl->read_bytes = mtd->writesize + 9;

			fsl_elbc_do_read(chip, 1);
			fsl_elbc_run_command(mtd);

			memcpy_fromio(ctrl->oob_poi + 6,
			              &ctrl->addr[ctrl->index], 3);
			ctrl->index += 3;
		}

		ctrl->oob_poi = NULL;
		return;
	}

	/* CMD_STATUS must read the status byte while CEB is active */
	/* Note - it does not wait for the ready line */
	case NAND_CMD_STATUS:
		out_be32(&lbc->fir,
		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
		         (FIR_OP_RBW << FIR_OP1_SHIFT));
		out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
		out_be32(&lbc->fbcr, 1);
		set_addr(mtd, 0, 0, 0);
		ctrl->read_bytes = 1;

		fsl_elbc_run_command(mtd);

		/* The chip always seems to report that it is
		 * write-protected, even when it is not.
		 */
		setbits8(ctrl->addr, NAND_STATUS_WP);
		return;

	/* RESET without waiting for the ready line */
	case NAND_CMD_RESET:
		dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
		out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
		out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
		fsl_elbc_run_command(mtd);
		return;

	default:
		dev_err(ctrl->dev,
		        "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
		        command);
	}
}

static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
{
	/* The hardware does not seem to support multiple
	 * chips per bank.
	 */
}

/*
 * Write buf to the FCM Controller Data Buffer
 */
static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_elbc_mtd *priv = chip->priv;
	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
	unsigned int bufsize = mtd->writesize + mtd->oobsize;

	if (len < 0) {
		dev_err(ctrl->dev, "write_buf of %d bytes", len);
		ctrl->status = 0;
		return;
	}

	if ((unsigned int)len > bufsize - ctrl->index) {
		dev_err(ctrl->dev,
		        "write_buf beyond end of buffer "
		        "(%d requested, %u available)\n",
		        len, bufsize - ctrl->index);
		len = bufsize - ctrl->index;
	}

	memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
	ctrl->index += len;
}

/*
 * read a byte from either the FCM hardware buffer if it has any data left
 * otherwise issue a command to read a single byte.
 */
static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_elbc_mtd *priv = chip->priv;
	struct fsl_elbc_ctrl *ctrl = priv->ctrl;

	/* If there are still bytes in the FCM, then use the next byte. */
	if (ctrl->index < ctrl->read_bytes)
		return in_8(&ctrl->addr[ctrl->index++]);

	dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
	return ERR_BYTE;
}

/*
 * Read from the FCM Controller Data Buffer
 */
static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_elbc_mtd *priv = chip->priv;
	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
	int avail;

	if (len < 0)
		return;

	avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
	memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
	ctrl->index += avail;

	if (len > avail)
		dev_err(ctrl->dev,
		        "read_buf beyond end of buffer "
		        "(%d requested, %d available)\n",
		        len, avail);
}

/*
 * Verify buffer against the FCM Controller Data Buffer
 */
static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_elbc_mtd *priv = chip->priv;
	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
	int i;

	if (len < 0) {
		dev_err(ctrl->dev, "write_buf of %d bytes", len);
		return -EINVAL;
	}

	if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
		dev_err(ctrl->dev,
		        "verify_buf beyond end of buffer "
		        "(%d requested, %u available)\n",
		        len, ctrl->read_bytes - ctrl->index);

		ctrl->index = ctrl->read_bytes;
		return -EINVAL;
	}

	for (i = 0; i < len; i++)
		if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
			break;

	ctrl->index += len;
	return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
}

/* This function is called after Program and Erase Operations to
 * check for success or failure.
 */
static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct fsl_elbc_mtd *priv = chip->priv;
	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
	struct elbc_regs __iomem *lbc = ctrl->regs;

	if (ctrl->status != LTESR_CC)
		return NAND_STATUS_FAIL;

	/* Use READ_STATUS command, but wait for the device to be ready */
	ctrl->use_mdr = 0;
	out_be32(&lbc->fir,
	         (FIR_OP_CW0 << FIR_OP0_SHIFT) |
	         (FIR_OP_RBW << FIR_OP1_SHIFT));
	out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
	out_be32(&lbc->fbcr, 1);
	set_addr(mtd, 0, 0, 0);
	ctrl->read_bytes = 1;

	fsl_elbc_run_command(mtd);

	if (ctrl->status != LTESR_CC)
		return NAND_STATUS_FAIL;

	/* The chip always seems to report that it is
	 * write-protected, even when it is not.
	 */
	setbits8(ctrl->addr, NAND_STATUS_WP);
	return fsl_elbc_read_byte(mtd);
}

static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd->priv;
	struct fsl_elbc_mtd *priv = chip->priv;
	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
	struct elbc_regs __iomem *lbc = ctrl->regs;
	unsigned int al;

	/* calculate FMR Address Length field */
	al = 0;
	if (chip->pagemask & 0xffff0000)
		al++;
	if (chip->pagemask & 0xff000000)
		al++;

	/* add to ECCM mode set in fsl_elbc_init */
	priv->fmr |= (12 << FMR_CWTO_SHIFT) |  /* Timeout > 12 ms */
	             (al << FMR_AL_SHIFT);

	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
	        chip->numchips);
	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %ld\n",
	        chip->chipsize);
	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
	        chip->pagemask);
	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
	        chip->chip_delay);
	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
	        chip->badblockpos);
	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
	        chip->chip_shift);
	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
	        chip->page_shift);
	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
	        chip->phys_erase_shift);
	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
	        chip->ecclayout);
	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
	        chip->ecc.mode);
	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
	        chip->ecc.steps);
	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
	        chip->ecc.bytes);
	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
	        chip->ecc.total);
	dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
	        chip->ecc.layout);
	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %d\n", mtd->size);
	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
	        mtd->erasesize);
	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
	        mtd->writesize);
	dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
	        mtd->oobsize);

	/* adjust Option Register and ECC to match Flash page size */
	if (mtd->writesize == 512) {
		priv->page_size = 0;
		clrbits32(&lbc->bank[priv->bank].or, ~OR_FCM_PGS);
	} else if (mtd->writesize == 2048) {
		priv->page_size = 1;
		setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
		/* adjust ecc setup if needed */
		if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
		    BR_DECC_CHK_GEN) {
			chip->ecc.size = 512;
			chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
			                   &fsl_elbc_oob_lp_eccm1 :
			                   &fsl_elbc_oob_lp_eccm0;
			mtd->ecclayout = chip->ecc.layout;
			mtd->oobavail = chip->ecc.layout->oobavail;
		}
	} else {
		dev_err(ctrl->dev,
		        "fsl_elbc_init: page size %d is not supported\n",
		        mtd->writesize);
		return -1;
	}

	/* The default u-boot configuration on MPC8313ERDB causes errors;
	 * more delay is needed.  This should be safe for other boards
	 * as well.
	 */
	setbits32(&lbc->bank[priv->bank].or, 0x70);
	return 0;
}

static int fsl_elbc_read_page(struct mtd_info *mtd,
                              struct nand_chip *chip,
                              uint8_t *buf)
{
	fsl_elbc_read_buf(mtd, buf, mtd->writesize);
	fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);

	if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
		mtd->ecc_stats.failed++;

	return 0;
}

/* ECC will be calculated automatically, and errors will be detected in
 * waitfunc.
 */
static void fsl_elbc_write_page(struct mtd_info *mtd,
                                struct nand_chip *chip,
                                const uint8_t *buf)
{
	struct fsl_elbc_mtd *priv = chip->priv;
	struct fsl_elbc_ctrl *ctrl = priv->ctrl;

	fsl_elbc_write_buf(mtd, buf, mtd->writesize);
	fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);

	ctrl->oob_poi = chip->oob_poi;
}

static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
{
	struct fsl_elbc_ctrl *ctrl = priv->ctrl;
	struct elbc_regs __iomem *lbc = ctrl->regs;
	struct nand_chip *chip = &priv->chip;

	dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);

	/* Fill in fsl_elbc_mtd structure */
	priv->mtd.priv = chip;
	priv->mtd.owner = THIS_MODULE;
	priv->fmr = 0; /* rest filled in later */

	/* fill in nand_chip structure */
	/* set up function call table */
	chip->read_byte = fsl_elbc_read_byte;
	chip->write_buf = fsl_elbc_write_buf;
	chip->read_buf = fsl_elbc_read_buf;
	chip->verify_buf = fsl_elbc_verify_buf;
	chip->select_chip = fsl_elbc_select_chip;
	chip->cmdfunc = fsl_elbc_cmdfunc;
	chip->waitfunc = fsl_elbc_wait;

	/* set up nand options */
	chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;

	chip->controller = &ctrl->controller;
	chip->priv = priv;

	chip->ecc.read_page = fsl_elbc_read_page;
	chip->ecc.write_page = fsl_elbc_write_page;

	/* If CS Base Register selects full hardware ECC then use it */
	if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
	    BR_DECC_CHK_GEN) {
		chip->ecc.mode = NAND_ECC_HW;
		/* put in small page settings and adjust later if needed */
		chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
				&fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
		chip->ecc.size = 512;
		chip->ecc.bytes = 3;
	} else {
		/* otherwise fall back to default software ECC */
		chip->ecc.mode = NAND_ECC_SOFT;
	}

	return 0;
}

static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
{
	struct fsl_elbc_ctrl *ctrl = priv->ctrl;

	nand_release(&priv->mtd);

	if (priv->vbase)
		iounmap(priv->vbase);

	ctrl->chips[priv->bank] = NULL;
	kfree(priv);

	return 0;
}

static int fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
                               struct device_node *node)
{
	struct elbc_regs __iomem *lbc = ctrl->regs;
	struct fsl_elbc_mtd *priv;
	struct resource res;
#ifdef CONFIG_MTD_PARTITIONS
	static const char *part_probe_types[]
		= { "cmdlinepart", "RedBoot", NULL };
	struct mtd_partition *parts;
#endif
	int ret;
	int bank;

	/* get, allocate and map the memory resource */
	ret = of_address_to_resource(node, 0, &res);
	if (ret) {
		dev_err(ctrl->dev, "failed to get resource\n");
		return ret;
	}

	/* find which chip select it is connected to */
	for (bank = 0; bank < MAX_BANKS; bank++)
		if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
		    (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
		    (in_be32(&lbc->bank[bank].br) &
		     in_be32(&lbc->bank[bank].or) & BR_BA)
		     == res.start)
			break;

	if (bank >= MAX_BANKS) {
		dev_err(ctrl->dev, "address did not match any chip selects\n");
		return -ENODEV;
	}

	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	ctrl->chips[bank] = priv;
	priv->bank = bank;
	priv->ctrl = ctrl;
	priv->dev = ctrl->dev;

	priv->vbase = ioremap(res.start, res.end - res.start + 1);
	if (!priv->vbase) {
		dev_err(ctrl->dev, "failed to map chip region\n");
		ret = -ENOMEM;
		goto err;
	}

	ret = fsl_elbc_chip_init(priv);
	if (ret)
		goto err;

	ret = nand_scan_ident(&priv->mtd, 1);
	if (ret)
		goto err;

	ret = fsl_elbc_chip_init_tail(&priv->mtd);
	if (ret)
		goto err;

	ret = nand_scan_tail(&priv->mtd);
	if (ret)
		goto err;

#ifdef CONFIG_MTD_PARTITIONS
	/* First look for RedBoot table or partitions on the command
	 * line, these take precedence over device tree information */
	ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
	if (ret < 0)
		goto err;

#ifdef CONFIG_MTD_OF_PARTS
	if (ret == 0) {
		ret = of_mtd_parse_partitions(priv->dev, &priv->mtd,
		                              node, &parts);
		if (ret < 0)
			goto err;
	}
#endif

	if (ret > 0)
		add_mtd_partitions(&priv->mtd, parts, ret);
	else
#endif
		add_mtd_device(&priv->mtd);

	printk(KERN_INFO "eLBC NAND device at 0x%zx, bank %d\n",
	       res.start, priv->bank);
	return 0;

err:
	fsl_elbc_chip_remove(priv);
	return ret;
}

static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
{
	struct elbc_regs __iomem *lbc = ctrl->regs;

	/* clear event registers */
	setbits32(&lbc->ltesr, LTESR_NAND_MASK);
	out_be32(&lbc->lteatr, 0);

	/* Enable interrupts for any detected events */
	out_be32(&lbc->lteir, LTESR_NAND_MASK);

	ctrl->read_bytes = 0;
	ctrl->index = 0;
	ctrl->addr = NULL;

	return 0;
}

static int __devexit fsl_elbc_ctrl_remove(struct of_device *ofdev)
{
	struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
	int i;

	for (i = 0; i < MAX_BANKS; i++)
		if (ctrl->chips[i])
			fsl_elbc_chip_remove(ctrl->chips[i]);

	if (ctrl->irq)
		free_irq(ctrl->irq, ctrl);

	if (ctrl->regs)
		iounmap(ctrl->regs);

	dev_set_drvdata(&ofdev->dev, NULL);
	kfree(ctrl);
	return 0;
}

/* NOTE: This interrupt is also used to report other localbus events,
 * such as transaction errors on other chipselects.  If we want to
 * capture those, we'll need to move the IRQ code into a shared
 * LBC driver.
 */

static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
{
	struct fsl_elbc_ctrl *ctrl = data;
	struct elbc_regs __iomem *lbc = ctrl->regs;
	__be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;

	if (status) {
		out_be32(&lbc->ltesr, status);
		out_be32(&lbc->lteatr, 0);

		ctrl->irq_status = status;
		smp_wmb();
		wake_up(&ctrl->irq_wait);

		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

/* fsl_elbc_ctrl_probe
 *
 * called by device layer when it finds a device matching
 * one our driver can handled. This code allocates all of
 * the resources needed for the controller only.  The
 * resources for the NAND banks themselves are allocated
 * in the chip probe function.
*/

static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
                                         const struct of_device_id *match)
{
	struct device_node *child;
	struct fsl_elbc_ctrl *ctrl;
	int ret;

	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
	if (!ctrl)
		return -ENOMEM;

	dev_set_drvdata(&ofdev->dev, ctrl);

	spin_lock_init(&ctrl->controller.lock);
	init_waitqueue_head(&ctrl->controller.wq);
	init_waitqueue_head(&ctrl->irq_wait);

	ctrl->regs = of_iomap(ofdev->node, 0);
	if (!ctrl->regs) {
		dev_err(&ofdev->dev, "failed to get memory region\n");
		ret = -ENODEV;
		goto err;
	}

	ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
	if (ctrl->irq == NO_IRQ) {
		dev_err(&ofdev->dev, "failed to get irq resource\n");
		ret = -ENODEV;
		goto err;
	}

	ctrl->dev = &ofdev->dev;

	ret = fsl_elbc_ctrl_init(ctrl);
	if (ret < 0)
		goto err;

	ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
	if (ret != 0) {
		dev_err(&ofdev->dev, "failed to install irq (%d)\n",
		        ctrl->irq);
		ret = ctrl->irq;
		goto err;
	}

	for_each_child_of_node(ofdev->node, child)
		if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
			fsl_elbc_chip_probe(ctrl, child);

	return 0;

err:
	fsl_elbc_ctrl_remove(ofdev);
	return ret;
}

static const struct of_device_id fsl_elbc_match[] = {
	{
		.compatible = "fsl,elbc",
	},
	{}
};

static struct of_platform_driver fsl_elbc_ctrl_driver = {
	.driver = {
		.name	= "fsl-elbc",
	},
	.match_table = fsl_elbc_match,
	.probe = fsl_elbc_ctrl_probe,
	.remove = __devexit_p(fsl_elbc_ctrl_remove),
};

static int __init fsl_elbc_init(void)
{
	return of_register_platform_driver(&fsl_elbc_ctrl_driver);
}

static void __exit fsl_elbc_exit(void)
{
	of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
}

module_init(fsl_elbc_init);
module_exit(fsl_elbc_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Freescale");
MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");
OpenPOWER on IntegriCloud