summaryrefslogtreecommitdiffstats
path: root/drivers/media/rc/st_rc.c
blob: 8f0cddb9e8f2f4ce0076a9f7a4d4ba0cada0d7b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
/*
 * Copyright (C) 2013 STMicroelectronics Limited
 * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <media/rc-core.h>
#include <linux/pinctrl/consumer.h>

struct st_rc_device {
	struct device			*dev;
	int				irq;
	int				irq_wake;
	struct clk			*sys_clock;
	void				*base;	/* Register base address */
	void				*rx_base;/* RX Register base address */
	struct rc_dev			*rdev;
	bool				overclocking;
	int				sample_mult;
	int				sample_div;
	bool				rxuhfmode;
	struct	reset_control		*rstc;
};

/* Registers */
#define IRB_SAMPLE_RATE_COMM	0x64	/* sample freq divisor*/
#define IRB_CLOCK_SEL		0x70	/* clock select       */
#define IRB_CLOCK_SEL_STATUS	0x74	/* clock status       */
/* IRB IR/UHF receiver registers */
#define IRB_RX_ON               0x40	/* pulse time capture */
#define IRB_RX_SYS              0X44	/* sym period capture */
#define IRB_RX_INT_EN           0x48	/* IRQ enable (R/W)   */
#define IRB_RX_INT_STATUS       0x4c	/* IRQ status (R/W)   */
#define IRB_RX_EN               0x50	/* Receive enable     */
#define IRB_MAX_SYM_PERIOD      0x54	/* max sym value      */
#define IRB_RX_INT_CLEAR        0x58	/* overrun status     */
#define IRB_RX_STATUS           0x6c	/* receive status     */
#define IRB_RX_NOISE_SUPPR      0x5c	/* noise suppression  */
#define IRB_RX_POLARITY_INV     0x68	/* polarity inverter  */

/**
 * IRQ set: Enable full FIFO                 1  -> bit  3;
 *          Enable overrun IRQ               1  -> bit  2;
 *          Enable last symbol IRQ           1  -> bit  1:
 *          Enable RX interrupt              1  -> bit  0;
 */
#define IRB_RX_INTS		0x0f
#define IRB_RX_OVERRUN_INT	0x04
 /* maximum symbol period (microsecs),timeout to detect end of symbol train */
#define MAX_SYMB_TIME		0x5000
#define IRB_SAMPLE_FREQ		10000000
#define	IRB_FIFO_NOT_EMPTY	0xff00
#define IRB_OVERFLOW		0x4
#define IRB_TIMEOUT		0xffff
#define IR_ST_NAME "st-rc"

static void st_rc_send_lirc_timeout(struct rc_dev *rdev)
{
	DEFINE_IR_RAW_EVENT(ev);
	ev.timeout = true;
	ir_raw_event_store(rdev, &ev);
}

/**
 * RX graphical example to better understand the difference between ST IR block
 * output and standard definition used by LIRC (and most of the world!)
 *
 *           mark                                     mark
 *      |-IRB_RX_ON-|                            |-IRB_RX_ON-|
 *      ___  ___  ___                            ___  ___  ___             _
 *      | |  | |  | |                            | |  | |  | |             |
 *      | |  | |  | |         space 0            | |  | |  | |   space 1   |
 * _____| |__| |__| |____________________________| |__| |__| |_____________|
 *
 *      |--------------- IRB_RX_SYS -------------|------ IRB_RX_SYS -------|
 *
 *      |------------- encoding bit 0 -----------|---- encoding bit 1 -----|
 *
 * ST hardware returns mark (IRB_RX_ON) and total symbol time (IRB_RX_SYS), so
 * convert to standard mark/space we have to calculate space=(IRB_RX_SYS-mark)
 * The mark time represents the amount of time the carrier (usually 36-40kHz)
 * is detected.The above examples shows Pulse Width Modulation encoding where
 * bit 0 is represented by space>mark.
 */

static irqreturn_t st_rc_rx_interrupt(int irq, void *data)
{
	unsigned int symbol, mark = 0;
	struct st_rc_device *dev = data;
	int last_symbol = 0;
	u32 status;
	DEFINE_IR_RAW_EVENT(ev);

	if (dev->irq_wake)
		pm_wakeup_event(dev->dev, 0);

	status  = readl(dev->rx_base + IRB_RX_STATUS);

	while (status & (IRB_FIFO_NOT_EMPTY | IRB_OVERFLOW)) {
		u32 int_status = readl(dev->rx_base + IRB_RX_INT_STATUS);
		if (unlikely(int_status & IRB_RX_OVERRUN_INT)) {
			/* discard the entire collection in case of errors!  */
			ir_raw_event_reset(dev->rdev);
			dev_info(dev->dev, "IR RX overrun\n");
			writel(IRB_RX_OVERRUN_INT,
					dev->rx_base + IRB_RX_INT_CLEAR);
			continue;
		}

		symbol = readl(dev->rx_base + IRB_RX_SYS);
		mark = readl(dev->rx_base + IRB_RX_ON);

		if (symbol == IRB_TIMEOUT)
			last_symbol = 1;

		 /* Ignore any noise */
		if ((mark > 2) && (symbol > 1)) {
			symbol -= mark;
			if (dev->overclocking) { /* adjustments to timings */
				symbol *= dev->sample_mult;
				symbol /= dev->sample_div;
				mark *= dev->sample_mult;
				mark /= dev->sample_div;
			}

			ev.duration = US_TO_NS(mark);
			ev.pulse = true;
			ir_raw_event_store(dev->rdev, &ev);

			if (!last_symbol) {
				ev.duration = US_TO_NS(symbol);
				ev.pulse = false;
				ir_raw_event_store(dev->rdev, &ev);
			} else  {
				st_rc_send_lirc_timeout(dev->rdev);
			}

		}
		last_symbol = 0;
		status  = readl(dev->rx_base + IRB_RX_STATUS);
	}

	writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_CLEAR);

	/* Empty software fifo */
	ir_raw_event_handle(dev->rdev);
	return IRQ_HANDLED;
}

static void st_rc_hardware_init(struct st_rc_device *dev)
{
	int baseclock, freqdiff;
	unsigned int rx_max_symbol_per = MAX_SYMB_TIME;
	unsigned int rx_sampling_freq_div;

	/* Enable the IP */
	if (dev->rstc)
		reset_control_deassert(dev->rstc);

	clk_prepare_enable(dev->sys_clock);
	baseclock = clk_get_rate(dev->sys_clock);

	/* IRB input pins are inverted internally from high to low. */
	writel(1, dev->rx_base + IRB_RX_POLARITY_INV);

	rx_sampling_freq_div = baseclock / IRB_SAMPLE_FREQ;
	writel(rx_sampling_freq_div, dev->base + IRB_SAMPLE_RATE_COMM);

	freqdiff = baseclock - (rx_sampling_freq_div * IRB_SAMPLE_FREQ);
	if (freqdiff) { /* over clocking, workout the adjustment factors */
		dev->overclocking = true;
		dev->sample_mult = 1000;
		dev->sample_div = baseclock / (10000 * rx_sampling_freq_div);
		rx_max_symbol_per = (rx_max_symbol_per * 1000)/dev->sample_div;
	}

	writel(rx_max_symbol_per, dev->rx_base + IRB_MAX_SYM_PERIOD);
}

static int st_rc_remove(struct platform_device *pdev)
{
	struct st_rc_device *rc_dev = platform_get_drvdata(pdev);
	clk_disable_unprepare(rc_dev->sys_clock);
	rc_unregister_device(rc_dev->rdev);
	return 0;
}

static int st_rc_open(struct rc_dev *rdev)
{
	struct st_rc_device *dev = rdev->priv;
	unsigned long flags;
	local_irq_save(flags);
	/* enable interrupts and receiver */
	writel(IRB_RX_INTS, dev->rx_base + IRB_RX_INT_EN);
	writel(0x01, dev->rx_base + IRB_RX_EN);
	local_irq_restore(flags);

	return 0;
}

static void st_rc_close(struct rc_dev *rdev)
{
	struct st_rc_device *dev = rdev->priv;
	/* disable interrupts and receiver */
	writel(0x00, dev->rx_base + IRB_RX_EN);
	writel(0x00, dev->rx_base + IRB_RX_INT_EN);
}

static int st_rc_probe(struct platform_device *pdev)
{
	int ret = -EINVAL;
	struct rc_dev *rdev;
	struct device *dev = &pdev->dev;
	struct resource *res;
	struct st_rc_device *rc_dev;
	struct device_node *np = pdev->dev.of_node;
	const char *rx_mode;

	rc_dev = devm_kzalloc(dev, sizeof(struct st_rc_device), GFP_KERNEL);

	if (!rc_dev)
		return -ENOMEM;

	rdev = rc_allocate_device();

	if (!rdev)
		return -ENOMEM;

	if (np && !of_property_read_string(np, "rx-mode", &rx_mode)) {

		if (!strcmp(rx_mode, "uhf")) {
			rc_dev->rxuhfmode = true;
		} else if (!strcmp(rx_mode, "infrared")) {
			rc_dev->rxuhfmode = false;
		} else {
			dev_err(dev, "Unsupported rx mode [%s]\n", rx_mode);
			goto err;
		}

	} else {
		goto err;
	}

	rc_dev->sys_clock = devm_clk_get(dev, NULL);
	if (IS_ERR(rc_dev->sys_clock)) {
		dev_err(dev, "System clock not found\n");
		ret = PTR_ERR(rc_dev->sys_clock);
		goto err;
	}

	rc_dev->irq = platform_get_irq(pdev, 0);
	if (rc_dev->irq < 0) {
		ret = rc_dev->irq;
		goto err;
	}

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

	rc_dev->base = devm_ioremap_resource(dev, res);
	if (IS_ERR(rc_dev->base)) {
		ret = PTR_ERR(rc_dev->base);
		goto err;
	}

	if (rc_dev->rxuhfmode)
		rc_dev->rx_base = rc_dev->base + 0x40;
	else
		rc_dev->rx_base = rc_dev->base;


	rc_dev->rstc = reset_control_get(dev, NULL);
	if (IS_ERR(rc_dev->rstc))
		rc_dev->rstc = NULL;

	rc_dev->dev = dev;
	platform_set_drvdata(pdev, rc_dev);
	st_rc_hardware_init(rc_dev);

	rdev->driver_type = RC_DRIVER_IR_RAW;
	rdev->allowed_protos = RC_BIT_ALL;
	/* rx sampling rate is 10Mhz */
	rdev->rx_resolution = 100;
	rdev->timeout = US_TO_NS(MAX_SYMB_TIME);
	rdev->priv = rc_dev;
	rdev->open = st_rc_open;
	rdev->close = st_rc_close;
	rdev->driver_name = IR_ST_NAME;
	rdev->map_name = RC_MAP_LIRC;
	rdev->input_name = "ST Remote Control Receiver";

	/* enable wake via this device */
	device_set_wakeup_capable(dev, true);
	device_set_wakeup_enable(dev, true);

	ret = rc_register_device(rdev);
	if (ret < 0)
		goto clkerr;

	rc_dev->rdev = rdev;
	if (devm_request_irq(dev, rc_dev->irq, st_rc_rx_interrupt,
			IRQF_NO_SUSPEND, IR_ST_NAME, rc_dev) < 0) {
		dev_err(dev, "IRQ %d register failed\n", rc_dev->irq);
		ret = -EINVAL;
		goto rcerr;
	}

	/**
	 * for LIRC_MODE_MODE2 or LIRC_MODE_PULSE or LIRC_MODE_RAW
	 * lircd expects a long space first before a signal train to sync.
	 */
	st_rc_send_lirc_timeout(rdev);

	dev_info(dev, "setup in %s mode\n", rc_dev->rxuhfmode ? "UHF" : "IR");

	return ret;
rcerr:
	rc_unregister_device(rdev);
	rdev = NULL;
clkerr:
	clk_disable_unprepare(rc_dev->sys_clock);
err:
	rc_free_device(rdev);
	dev_err(dev, "Unable to register device (%d)\n", ret);
	return ret;
}

#ifdef CONFIG_PM
static int st_rc_suspend(struct device *dev)
{
	struct st_rc_device *rc_dev = dev_get_drvdata(dev);

	if (device_may_wakeup(dev)) {
		if (!enable_irq_wake(rc_dev->irq))
			rc_dev->irq_wake = 1;
		else
			return -EINVAL;
	} else {
		pinctrl_pm_select_sleep_state(dev);
		writel(0x00, rc_dev->rx_base + IRB_RX_EN);
		writel(0x00, rc_dev->rx_base + IRB_RX_INT_EN);
		clk_disable_unprepare(rc_dev->sys_clock);
		if (rc_dev->rstc)
			reset_control_assert(rc_dev->rstc);
	}

	return 0;
}

static int st_rc_resume(struct device *dev)
{
	struct st_rc_device *rc_dev = dev_get_drvdata(dev);
	struct rc_dev	*rdev = rc_dev->rdev;

	if (rc_dev->irq_wake) {
		disable_irq_wake(rc_dev->irq);
		rc_dev->irq_wake = 0;
	} else {
		pinctrl_pm_select_default_state(dev);
		st_rc_hardware_init(rc_dev);
		if (rdev->users) {
			writel(IRB_RX_INTS, rc_dev->rx_base + IRB_RX_INT_EN);
			writel(0x01, rc_dev->rx_base + IRB_RX_EN);
		}
	}

	return 0;
}

static SIMPLE_DEV_PM_OPS(st_rc_pm_ops, st_rc_suspend, st_rc_resume);
#endif

#ifdef CONFIG_OF
static struct of_device_id st_rc_match[] = {
	{ .compatible = "st,comms-irb", },
	{},
};

MODULE_DEVICE_TABLE(of, st_rc_match);
#endif

static struct platform_driver st_rc_driver = {
	.driver = {
		.name = IR_ST_NAME,
		.owner	= THIS_MODULE,
		.of_match_table = of_match_ptr(st_rc_match),
#ifdef CONFIG_PM
		.pm     = &st_rc_pm_ops,
#endif
	},
	.probe = st_rc_probe,
	.remove = st_rc_remove,
};

module_platform_driver(st_rc_driver);

MODULE_DESCRIPTION("RC Transceiver driver for STMicroelectronics platforms");
MODULE_AUTHOR("STMicroelectronics (R&D) Ltd");
MODULE_LICENSE("GPL");
OpenPOWER on IntegriCloud