summaryrefslogtreecommitdiffstats
path: root/drivers/ide/cris/ide-v10.c
blob: 5b40220d3ddceea457e12c6d8ab0961c36263211 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
/* $Id: ide.c,v 1.4 2004/10/12 07:55:48 starvik Exp $
 *
 * Etrax specific IDE functions, like init and PIO-mode setting etc.
 * Almost the entire ide.c is used for the rest of the Etrax ATA driver.
 * Copyright (c) 2000-2004 Axis Communications AB
 *
 * Authors:    Bjorn Wesen        (initial version)
 *             Mikael Starvik     (pio setup stuff, Linux 2.6 port)
 */

/* Regarding DMA:
 *
 * There are two forms of DMA - "DMA handshaking" between the interface and the drive,
 * and DMA between the memory and the interface. We can ALWAYS use the latter, since it's
 * something built-in in the Etrax. However only some drives support the DMA-mode handshaking
 * on the ATA-bus. The normal PC driver and Triton interface disables memory-if DMA when the
 * device can't do DMA handshaking for some stupid reason. We don't need to do that.
 */

#undef REALLY_SLOW_IO           /* most systems can safely undef this */

#include <linux/config.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/blkdev.h>
#include <linux/hdreg.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/scatterlist.h>

#include <asm/io.h>
#include <asm/arch/svinto.h>
#include <asm/dma.h>

/* number of Etrax DMA descriptors */
#define MAX_DMA_DESCRS 64

/* number of times to retry busy-flags when reading/writing IDE-registers
 * this can't be too high because a hung harddisk might cause the watchdog
 * to trigger (sometimes INB and OUTB are called with irq's disabled)
 */

#define IDE_REGISTER_TIMEOUT 300

static int e100_read_command = 0;

#define LOWDB(x)
#define D(x)

static int e100_ide_build_dmatable (ide_drive_t *drive);
static ide_startstop_t etrax_dma_intr (ide_drive_t *drive);

void
etrax100_ide_outw(unsigned short data, unsigned long reg) {
	int timeleft;
	LOWDB(printk("ow: data 0x%x, reg 0x%x\n", data, reg));

	/* note the lack of handling any timeouts. we stop waiting, but we don't
	 * really notify anybody.
	 */

	timeleft = IDE_REGISTER_TIMEOUT;
	/* wait for busy flag */
	while(timeleft && (*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)))
		timeleft--;

	/*
	 * Fall through at a timeout, so the ongoing command will be
	 * aborted by the write below, which is expected to be a dummy
	 * command to the command register.  This happens when a faulty
	 * drive times out on a command.  See comment on timeout in
	 * INB.
	 */
	if(!timeleft)
		printk("ATA timeout reg 0x%lx := 0x%x\n", reg, data);

	*R_ATA_CTRL_DATA = reg | data; /* write data to the drive's register */

	timeleft = IDE_REGISTER_TIMEOUT;
	/* wait for transmitter ready */
	while(timeleft && !(*R_ATA_STATUS_DATA &
			    IO_MASK(R_ATA_STATUS_DATA, tr_rdy)))
		timeleft--;
}

void
etrax100_ide_outb(unsigned char data, unsigned long reg)
{
	etrax100_ide_outw(data, reg);
}

void
etrax100_ide_outbsync(ide_drive_t *drive, u8 addr, unsigned long port)
{
	etrax100_ide_outw(addr, port);
}

unsigned short
etrax100_ide_inw(unsigned long reg) {
	int status;
	int timeleft;

	timeleft = IDE_REGISTER_TIMEOUT;
	/* wait for busy flag */
	while(timeleft && (*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)))
		timeleft--;

	if(!timeleft) {
		/*
		 * If we're asked to read the status register, like for
		 * example when a command does not complete for an
		 * extended time, but the ATA interface is stuck in a
		 * busy state at the *ETRAX* ATA interface level (as has
		 * happened repeatedly with at least one bad disk), then
		 * the best thing to do is to pretend that we read
		 * "busy" in the status register, so the IDE driver will
		 * time-out, abort the ongoing command and perform a
		 * reset sequence.  Note that the subsequent OUT_BYTE
		 * call will also timeout on busy, but as long as the
		 * write is still performed, everything will be fine.
		 */
		if ((reg & IO_MASK (R_ATA_CTRL_DATA, addr))
		    == IO_FIELD (R_ATA_CTRL_DATA, addr, IDE_STATUS_OFFSET))
			return BUSY_STAT;
		else
			/* For other rare cases we assume 0 is good enough.  */
			return 0;
	}

	*R_ATA_CTRL_DATA = reg | IO_STATE(R_ATA_CTRL_DATA, rw, read); /* read data */

	timeleft = IDE_REGISTER_TIMEOUT;
	/* wait for available */
	while(timeleft && !((status = *R_ATA_STATUS_DATA) &
			    IO_MASK(R_ATA_STATUS_DATA, dav)))
		timeleft--;

	if(!timeleft)
		return 0;

	LOWDB(printk("inb: 0x%x from reg 0x%x\n", status & 0xff, reg));

        return (unsigned short)status;
}

unsigned char
etrax100_ide_inb(unsigned long reg)
{
	return (unsigned char)etrax100_ide_inw(reg);
}

/* PIO timing (in R_ATA_CONFIG)
 *
 *                        _____________________________
 * ADDRESS :     ________/
 *
 *                            _______________
 * DIOR    :     ____________/               \__________
 *
 *                               _______________
 * DATA    :     XXXXXXXXXXXXXXXX_______________XXXXXXXX
 *
 *
 * DIOR is unbuffered while address and data is buffered.
 * This creates two problems:
 * 1. The DIOR pulse is to early (because it is unbuffered)
 * 2. The rise time of DIOR is long
 *
 * There are at least three different plausible solutions
 * 1. Use a pad capable of larger currents in Etrax
 * 2. Use an external buffer
 * 3. Make the strobe pulse longer
 *
 * Some of the strobe timings below are modified to compensate
 * for this. This implies a slight performance decrease.
 *
 * THIS SHOULD NEVER BE CHANGED!
 *
 * TODO: Is this true for the latest LX boards still ?
 */

#define ATA_DMA2_STROBE  4
#define ATA_DMA2_HOLD    0
#define ATA_DMA1_STROBE  4
#define ATA_DMA1_HOLD    1
#define ATA_DMA0_STROBE 12
#define ATA_DMA0_HOLD    9
#define ATA_PIO4_SETUP   1
#define ATA_PIO4_STROBE  5
#define ATA_PIO4_HOLD    0
#define ATA_PIO3_SETUP   1
#define ATA_PIO3_STROBE  5
#define ATA_PIO3_HOLD    1
#define ATA_PIO2_SETUP   1
#define ATA_PIO2_STROBE  6
#define ATA_PIO2_HOLD    2
#define ATA_PIO1_SETUP   2
#define ATA_PIO1_STROBE 11
#define ATA_PIO1_HOLD    4
#define ATA_PIO0_SETUP   4
#define ATA_PIO0_STROBE 19
#define ATA_PIO0_HOLD    4

static int e100_dma_check (ide_drive_t *drive);
static void e100_dma_start(ide_drive_t *drive);
static int e100_dma_end (ide_drive_t *drive);
static void e100_ide_input_data (ide_drive_t *drive, void *, unsigned int);
static void e100_ide_output_data (ide_drive_t *drive, void *, unsigned int);
static void e100_atapi_input_bytes(ide_drive_t *drive, void *, unsigned int);
static void e100_atapi_output_bytes(ide_drive_t *drive, void *, unsigned int);
static int e100_dma_off (ide_drive_t *drive);


/*
 * good_dma_drives() lists the model names (from "hdparm -i")
 * of drives which do not support mword2 DMA but which are
 * known to work fine with this interface under Linux.
 */

const char *good_dma_drives[] = {"Micropolis 2112A",
				 "CONNER CTMA 4000",
				 "CONNER CTT8000-A",
				 NULL};

static void tune_e100_ide(ide_drive_t *drive, byte pio)
{
	pio = 4;
	/* pio = ide_get_best_pio_mode(drive, pio, 4, NULL); */

	/* set pio mode! */

	switch(pio) {
		case 0:
			*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable,     1 ) |
					  IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, dma_hold,   ATA_DMA2_HOLD ) |
					  IO_FIELD( R_ATA_CONFIG, pio_setup,  ATA_PIO0_SETUP ) |
					  IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO0_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, pio_hold,   ATA_PIO0_HOLD ) );
			break;
		case 1:
			*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable,     1 ) |
					  IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, dma_hold,   ATA_DMA2_HOLD ) |
					  IO_FIELD( R_ATA_CONFIG, pio_setup,  ATA_PIO1_SETUP ) |
					  IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO1_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, pio_hold,   ATA_PIO1_HOLD ) );
			break;
		case 2:
			*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable,     1 ) |
					  IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, dma_hold,   ATA_DMA2_HOLD ) |
					  IO_FIELD( R_ATA_CONFIG, pio_setup,  ATA_PIO2_SETUP ) |
					  IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO2_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, pio_hold,   ATA_PIO2_HOLD ) );
			break;
		case 3:
			*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable,     1 ) |
					  IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, dma_hold,   ATA_DMA2_HOLD ) |
					  IO_FIELD( R_ATA_CONFIG, pio_setup,  ATA_PIO3_SETUP ) |
					  IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO3_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, pio_hold,   ATA_PIO3_HOLD ) );
			break;
		case 4:
			*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable,     1 ) |
					  IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, dma_hold,   ATA_DMA2_HOLD ) |
					  IO_FIELD( R_ATA_CONFIG, pio_setup,  ATA_PIO4_SETUP ) |
					  IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO4_STROBE ) |
					  IO_FIELD( R_ATA_CONFIG, pio_hold,   ATA_PIO4_HOLD ) );
			break;
	}
}

static int e100_dma_setup(ide_drive_t *drive)
{
	struct request *rq = drive->hwif->hwgroup->rq;

	if (rq_data_dir(rq)) {
		e100_read_command = 0;

		RESET_DMA(ATA_TX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */
		WAIT_DMA(ATA_TX_DMA_NBR);
	} else {
		e100_read_command = 1;

		RESET_DMA(ATA_RX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */
		WAIT_DMA(ATA_RX_DMA_NBR);
	}

	/* set up the Etrax DMA descriptors */
	if (e100_ide_build_dmatable(drive)) {
		ide_map_sg(drive, rq);
		return 1;
	}

	return 0;
}

static void e100_dma_exec_cmd(ide_drive_t *drive, u8 command)
{
	/* set the irq handler which will finish the request when DMA is done */
	ide_set_handler(drive, &etrax_dma_intr, WAIT_CMD, NULL);

	/* issue cmd to drive */
	etrax100_ide_outb(command, IDE_COMMAND_REG);
}

void __init
init_e100_ide (void)
{
	volatile unsigned int dummy;
	int h;

	printk("ide: ETRAX 100LX built-in ATA DMA controller\n");

	/* first fill in some stuff in the ide_hwifs fields */

	for(h = 0; h < MAX_HWIFS; h++) {
		ide_hwif_t *hwif = &ide_hwifs[h];
		hwif->mmio = 2;
		hwif->chipset = ide_etrax100;
		hwif->tuneproc = &tune_e100_ide;
                hwif->ata_input_data = &e100_ide_input_data;
                hwif->ata_output_data = &e100_ide_output_data;
                hwif->atapi_input_bytes = &e100_atapi_input_bytes;
                hwif->atapi_output_bytes = &e100_atapi_output_bytes;
                hwif->ide_dma_check = &e100_dma_check;
                hwif->ide_dma_end = &e100_dma_end;
		hwif->dma_setup = &e100_dma_setup;
		hwif->dma_exec_cmd = &e100_dma_exec_cmd;
		hwif->dma_start = &e100_dma_start;
		hwif->OUTB = &etrax100_ide_outb;
		hwif->OUTW = &etrax100_ide_outw;
		hwif->OUTBSYNC = &etrax100_ide_outbsync;
		hwif->INB = &etrax100_ide_inb;
		hwif->INW = &etrax100_ide_inw;
		hwif->ide_dma_off_quietly = &e100_dma_off;
	}

	/* actually reset and configure the etrax100 ide/ata interface */

	*R_ATA_CTRL_DATA = 0;
	*R_ATA_TRANSFER_CNT = 0;
	*R_ATA_CONFIG = 0;

	genconfig_shadow = (genconfig_shadow &
			    ~IO_MASK(R_GEN_CONFIG, dma2) &
			    ~IO_MASK(R_GEN_CONFIG, dma3) &
			    ~IO_MASK(R_GEN_CONFIG, ata)) |
		( IO_STATE( R_GEN_CONFIG, dma3, ata    ) |
		  IO_STATE( R_GEN_CONFIG, dma2, ata    ) |
		  IO_STATE( R_GEN_CONFIG, ata,  select ) );

	*R_GEN_CONFIG = genconfig_shadow;

        /* pull the chosen /reset-line low */

#ifdef CONFIG_ETRAX_IDE_G27_RESET
        REG_SHADOW_SET(R_PORT_G_DATA, port_g_data_shadow, 27, 0);
#endif
#ifdef CONFIG_ETRAX_IDE_CSE1_16_RESET
        REG_SHADOW_SET(port_cse1_addr, port_cse1_shadow, 16, 0);
#endif
#ifdef CONFIG_ETRAX_IDE_CSP0_8_RESET
        REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, 8, 0);
#endif
#ifdef CONFIG_ETRAX_IDE_PB7_RESET
	port_pb_dir_shadow = port_pb_dir_shadow |
		IO_STATE(R_PORT_PB_DIR, dir7, output);
	*R_PORT_PB_DIR = port_pb_dir_shadow;
	REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, 7, 1);
#endif

	/* wait some */

	udelay(25);

	/* de-assert bus-reset */

#ifdef CONFIG_ETRAX_IDE_CSE1_16_RESET
	REG_SHADOW_SET(port_cse1_addr, port_cse1_shadow, 16, 1);
#endif
#ifdef CONFIG_ETRAX_IDE_CSP0_8_RESET
	REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, 8, 1);
#endif
#ifdef CONFIG_ETRAX_IDE_G27_RESET
	REG_SHADOW_SET(R_PORT_G_DATA, port_g_data_shadow, 27, 1);
#endif

	/* make a dummy read to set the ata controller in a proper state */
	dummy = *R_ATA_STATUS_DATA;

	*R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable,     1 ) |
			  IO_FIELD( R_ATA_CONFIG, dma_strobe, ATA_DMA2_STROBE ) |
			  IO_FIELD( R_ATA_CONFIG, dma_hold,   ATA_DMA2_HOLD ) |
			  IO_FIELD( R_ATA_CONFIG, pio_setup,  ATA_PIO4_SETUP ) |
			  IO_FIELD( R_ATA_CONFIG, pio_strobe, ATA_PIO4_STROBE ) |
			  IO_FIELD( R_ATA_CONFIG, pio_hold,   ATA_PIO4_HOLD ) );

	*R_ATA_CTRL_DATA = ( IO_STATE( R_ATA_CTRL_DATA, rw,   read) |
			     IO_FIELD( R_ATA_CTRL_DATA, addr, 1   ) );

	while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); /* wait for busy flag*/

	*R_IRQ_MASK0_SET = ( IO_STATE( R_IRQ_MASK0_SET, ata_irq0, set ) |
			     IO_STATE( R_IRQ_MASK0_SET, ata_irq1, set ) |
			     IO_STATE( R_IRQ_MASK0_SET, ata_irq2, set ) |
			     IO_STATE( R_IRQ_MASK0_SET, ata_irq3, set ) );

	printk("ide: waiting %d seconds for drives to regain consciousness\n",
	       CONFIG_ETRAX_IDE_DELAY);

	h = jiffies + (CONFIG_ETRAX_IDE_DELAY * HZ);
	while(time_before(jiffies, h)) /* nothing */ ;

	/* reset the dma channels we will use */

	RESET_DMA(ATA_TX_DMA_NBR);
	RESET_DMA(ATA_RX_DMA_NBR);
	WAIT_DMA(ATA_TX_DMA_NBR);
	WAIT_DMA(ATA_RX_DMA_NBR);

}

static int e100_dma_off (ide_drive_t *drive)
{
	return 0;
}

static etrax_dma_descr mydescr;

/*
 * The following routines are mainly used by the ATAPI drivers.
 *
 * These routines will round up any request for an odd number of bytes,
 * so if an odd bytecount is specified, be sure that there's at least one
 * extra byte allocated for the buffer.
 */
static void
e100_atapi_input_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount)
{
	unsigned long data_reg = IDE_DATA_REG;

	D(printk("atapi_input_bytes, dreg 0x%x, buffer 0x%x, count %d\n",
		 data_reg, buffer, bytecount));

	if(bytecount & 1) {
		printk("warning, odd bytecount in cdrom_in_bytes = %d.\n", bytecount);
		bytecount++; /* to round off */
	}

	/* make sure the DMA channel is available */
	RESET_DMA(ATA_RX_DMA_NBR);
	WAIT_DMA(ATA_RX_DMA_NBR);

	/* setup DMA descriptor */

	mydescr.sw_len = bytecount;
	mydescr.ctrl   = d_eol;
	mydescr.buf    = virt_to_phys(buffer);

	/* start the dma channel */

	*R_DMA_CH3_FIRST = virt_to_phys(&mydescr);
	*R_DMA_CH3_CMD   = IO_STATE(R_DMA_CH3_CMD, cmd, start);

	/* initiate a multi word dma read using PIO handshaking */

	*R_ATA_TRANSFER_CNT = IO_FIELD(R_ATA_TRANSFER_CNT, count, bytecount >> 1);

	*R_ATA_CTRL_DATA = data_reg |
		IO_STATE(R_ATA_CTRL_DATA, rw,       read) |
		IO_STATE(R_ATA_CTRL_DATA, src_dst,  dma) |
		IO_STATE(R_ATA_CTRL_DATA, handsh,   pio) |
		IO_STATE(R_ATA_CTRL_DATA, multi,    on) |
		IO_STATE(R_ATA_CTRL_DATA, dma_size, word);

	/* wait for completion */

	LED_DISK_READ(1);
	WAIT_DMA(ATA_RX_DMA_NBR);
	LED_DISK_READ(0);

#if 0
        /* old polled transfer code
	 * this should be moved into a new function that can do polled
	 * transfers if DMA is not available
	 */

        /* initiate a multi word read */

        *R_ATA_TRANSFER_CNT = wcount << 1;

        *R_ATA_CTRL_DATA = data_reg |
                IO_STATE(R_ATA_CTRL_DATA, rw,       read) |
                IO_STATE(R_ATA_CTRL_DATA, src_dst,  register) |
                IO_STATE(R_ATA_CTRL_DATA, handsh,   pio) |
                IO_STATE(R_ATA_CTRL_DATA, multi,    on) |
                IO_STATE(R_ATA_CTRL_DATA, dma_size, word);

        /* svinto has a latency until the busy bit actually is set */

        nop(); nop();
        nop(); nop();
        nop(); nop();
        nop(); nop();
        nop(); nop();

        /* unit should be busy during multi transfer */
        while((status = *R_ATA_STATUS_DATA) & IO_MASK(R_ATA_STATUS_DATA, busy)) {
                while(!(status & IO_MASK(R_ATA_STATUS_DATA, dav)))
                        status = *R_ATA_STATUS_DATA;
                *ptr++ = (unsigned short)(status & 0xffff);
        }
#endif
}

static void
e100_atapi_output_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount)
{
	unsigned long data_reg = IDE_DATA_REG;

	D(printk("atapi_output_bytes, dreg 0x%x, buffer 0x%x, count %d\n",
		 data_reg, buffer, bytecount));

	if(bytecount & 1) {
		printk("odd bytecount %d in atapi_out_bytes!\n", bytecount);
		bytecount++;
	}

	/* make sure the DMA channel is available */
	RESET_DMA(ATA_TX_DMA_NBR);
	WAIT_DMA(ATA_TX_DMA_NBR);

	/* setup DMA descriptor */

	mydescr.sw_len = bytecount;
	mydescr.ctrl   = d_eol;
	mydescr.buf    = virt_to_phys(buffer);

	/* start the dma channel */

	*R_DMA_CH2_FIRST = virt_to_phys(&mydescr);
	*R_DMA_CH2_CMD   = IO_STATE(R_DMA_CH2_CMD, cmd, start);

	/* initiate a multi word dma write using PIO handshaking */

	*R_ATA_TRANSFER_CNT = IO_FIELD(R_ATA_TRANSFER_CNT, count, bytecount >> 1);

	*R_ATA_CTRL_DATA = data_reg |
		IO_STATE(R_ATA_CTRL_DATA, rw,       write) |
		IO_STATE(R_ATA_CTRL_DATA, src_dst,  dma) |
		IO_STATE(R_ATA_CTRL_DATA, handsh,   pio) |
		IO_STATE(R_ATA_CTRL_DATA, multi,    on) |
		IO_STATE(R_ATA_CTRL_DATA, dma_size, word);

	/* wait for completion */

	LED_DISK_WRITE(1);
	WAIT_DMA(ATA_TX_DMA_NBR);
	LED_DISK_WRITE(0);

#if 0
        /* old polled write code - see comment in input_bytes */

	/* wait for busy flag */
        while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy));

        /* initiate a multi word write */

        *R_ATA_TRANSFER_CNT = bytecount >> 1;

        ctrl = data_reg |
                IO_STATE(R_ATA_CTRL_DATA, rw,       write) |
                IO_STATE(R_ATA_CTRL_DATA, src_dst,  register) |
                IO_STATE(R_ATA_CTRL_DATA, handsh,   pio) |
                IO_STATE(R_ATA_CTRL_DATA, multi,    on) |
                IO_STATE(R_ATA_CTRL_DATA, dma_size, word);

        LED_DISK_WRITE(1);

        /* Etrax will set busy = 1 until the multi pio transfer has finished
         * and tr_rdy = 1 after each successful word transfer.
         * When the last byte has been transferred Etrax will first set tr_tdy = 1
         * and then busy = 0 (not in the same cycle). If we read busy before it
         * has been set to 0 we will think that we should transfer more bytes
         * and then tr_rdy would be 0 forever. This is solved by checking busy
         * in the inner loop.
         */

        do {
                *R_ATA_CTRL_DATA = ctrl | *ptr++;
                while(!(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, tr_rdy)) &&
                      (*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)));
        } while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy));

        LED_DISK_WRITE(0);
#endif

}

/*
 * This is used for most PIO data transfers *from* the IDE interface
 */
static void
e100_ide_input_data (ide_drive_t *drive, void *buffer, unsigned int wcount)
{
	e100_atapi_input_bytes(drive, buffer, wcount << 2);
}

/*
 * This is used for most PIO data transfers *to* the IDE interface
 */
static void
e100_ide_output_data (ide_drive_t *drive, void *buffer, unsigned int wcount)
{
	e100_atapi_output_bytes(drive, buffer, wcount << 2);
}

/* we only have one DMA channel on the chip for ATA, so we can keep these statically */
static etrax_dma_descr ata_descrs[MAX_DMA_DESCRS];
static unsigned int ata_tot_size;

/*
 * e100_ide_build_dmatable() prepares a dma request.
 * Returns 0 if all went okay, returns 1 otherwise.
 */
static int e100_ide_build_dmatable (ide_drive_t *drive)
{
	ide_hwif_t *hwif = HWIF(drive);
	struct scatterlist* sg;
	struct request *rq  = HWGROUP(drive)->rq;
	unsigned long size, addr;
	unsigned int count = 0;
	int i = 0;

	sg = hwif->sg_table;

	ata_tot_size = 0;

	ide_map_sg(drive, rq);

	i = hwif->sg_nents;

	while(i) {
		/*
		 * Determine addr and size of next buffer area.  We assume that
		 * individual virtual buffers are always composed linearly in
		 * physical memory.  For example, we assume that any 8kB buffer
		 * is always composed of two adjacent physical 4kB pages rather
		 * than two possibly non-adjacent physical 4kB pages.
		 */
		/* group sequential buffers into one large buffer */
		addr = page_to_phys(sg->page) + sg->offset;
		size = sg_dma_len(sg);
		while (sg++, --i) {
			if ((addr + size) != page_to_phys(sg->page) + sg->offset)
				break;
			size += sg_dma_len(sg);
		}

		/* did we run out of descriptors? */

		if(count >= MAX_DMA_DESCRS) {
			printk("%s: too few DMA descriptors\n", drive->name);
			return 1;
		}

		/* however, this case is more difficult - R_ATA_TRANSFER_CNT cannot be more
		   than 65536 words per transfer, so in that case we need to either
		   1) use a DMA interrupt to re-trigger R_ATA_TRANSFER_CNT and continue with
		      the descriptors, or
		   2) simply do the request here, and get dma_intr to only ide_end_request on
		      those blocks that were actually set-up for transfer.
		*/

		if(ata_tot_size + size > 131072) {
			printk("too large total ATA DMA request, %d + %d!\n", ata_tot_size, (int)size);
			return 1;
		}

		/* If size > 65536 it has to be splitted into new descriptors. Since we don't handle
                   size > 131072 only one split is necessary */

		if(size > 65536) {
 		        /* ok we want to do IO at addr, size bytes. set up a new descriptor entry */
                        ata_descrs[count].sw_len = 0;  /* 0 means 65536, this is a 16-bit field */
                        ata_descrs[count].ctrl = 0;
                        ata_descrs[count].buf = addr;
                        ata_descrs[count].next = virt_to_phys(&ata_descrs[count + 1]);
                        count++;
                        ata_tot_size += 65536;
                        /* size and addr should refere to not handled data */
                        size -= 65536;
                        addr += 65536;
                }
		/* ok we want to do IO at addr, size bytes. set up a new descriptor entry */
                if(size == 65536) {
			ata_descrs[count].sw_len = 0;  /* 0 means 65536, this is a 16-bit field */
                } else {
			ata_descrs[count].sw_len = size;
                }
		ata_descrs[count].ctrl = 0;
		ata_descrs[count].buf = addr;
		ata_descrs[count].next = virt_to_phys(&ata_descrs[count + 1]);
		count++;
		ata_tot_size += size;
	}

	if (count) {
		/* set the end-of-list flag on the last descriptor */
		ata_descrs[count - 1].ctrl |= d_eol;
		/* return and say all is ok */
		return 0;
	}

	printk("%s: empty DMA table?\n", drive->name);
	return 1;	/* let the PIO routines handle this weirdness */
}

static int config_drive_for_dma (ide_drive_t *drive)
{
        const char **list;
        struct hd_driveid *id = drive->id;

        if (id && (id->capability & 1)) {
                /* Enable DMA on any drive that supports mword2 DMA */
                if ((id->field_valid & 2) && (id->dma_mword & 0x404) == 0x404) {
                        drive->using_dma = 1;
                        return 0;               /* DMA enabled */
                }

                /* Consult the list of known "good" drives */
                list = good_dma_drives;
                while (*list) {
                        if (!strcmp(*list++,id->model)) {
                                drive->using_dma = 1;
                                return 0;       /* DMA enabled */
                        }
                }
        }
        return 1;       /* DMA not enabled */
}

/*
 * etrax_dma_intr() is the handler for disk read/write DMA interrupts
 */
static ide_startstop_t etrax_dma_intr (ide_drive_t *drive)
{
	LED_DISK_READ(0);
	LED_DISK_WRITE(0);

	return ide_dma_intr(drive);
}

/*
 * Functions below initiates/aborts DMA read/write operations on a drive.
 *
 * The caller is assumed to have selected the drive and programmed the drive's
 * sector address using CHS or LBA.  All that remains is to prepare for DMA
 * and then issue the actual read/write DMA/PIO command to the drive.
 *
 * Returns 0 if all went well.
 * Returns 1 if DMA read/write could not be started, in which case
 * the caller should revert to PIO for the current request.
 */

static int e100_dma_check(ide_drive_t *drive)
{
	return config_drive_for_dma (drive);
}

static int e100_dma_end(ide_drive_t *drive)
{
	/* TODO: check if something went wrong with the DMA */
	return 0;
}

static void e100_dma_start(ide_drive_t *drive)
{
	if (e100_read_command) {
		/* begin DMA */

		/* need to do this before RX DMA due to a chip bug
		 * it is enough to just flush the part of the cache that
		 * corresponds to the buffers we start, but since HD transfers
		 * usually are more than 8 kB, it is easier to optimize for the
		 * normal case and just flush the entire cache. its the only
		 * way to be sure! (OB movie quote)
		 */
		flush_etrax_cache();
		*R_DMA_CH3_FIRST = virt_to_phys(ata_descrs);
		*R_DMA_CH3_CMD   = IO_STATE(R_DMA_CH3_CMD, cmd, start);

		/* initiate a multi word dma read using DMA handshaking */

		*R_ATA_TRANSFER_CNT =
			IO_FIELD(R_ATA_TRANSFER_CNT, count, ata_tot_size >> 1);

		*R_ATA_CTRL_DATA =
			IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) |
			IO_STATE(R_ATA_CTRL_DATA, rw,       read) |
			IO_STATE(R_ATA_CTRL_DATA, src_dst,  dma)  |
			IO_STATE(R_ATA_CTRL_DATA, handsh,   dma)  |
			IO_STATE(R_ATA_CTRL_DATA, multi,    on)   |
			IO_STATE(R_ATA_CTRL_DATA, dma_size, word);

		LED_DISK_READ(1);

		D(printk("dma read of %d bytes.\n", ata_tot_size));

	} else {
		/* writing */
		/* begin DMA */

		*R_DMA_CH2_FIRST = virt_to_phys(ata_descrs);
		*R_DMA_CH2_CMD   = IO_STATE(R_DMA_CH2_CMD, cmd, start);

		/* initiate a multi word dma write using DMA handshaking */

		*R_ATA_TRANSFER_CNT =
			IO_FIELD(R_ATA_TRANSFER_CNT, count, ata_tot_size >> 1);

		*R_ATA_CTRL_DATA =
			IO_FIELD(R_ATA_CTRL_DATA, data,     IDE_DATA_REG) |
			IO_STATE(R_ATA_CTRL_DATA, rw,       write) |
			IO_STATE(R_ATA_CTRL_DATA, src_dst,  dma) |
			IO_STATE(R_ATA_CTRL_DATA, handsh,   dma) |
			IO_STATE(R_ATA_CTRL_DATA, multi,    on) |
			IO_STATE(R_ATA_CTRL_DATA, dma_size, word);

		LED_DISK_WRITE(1);

		D(printk("dma write of %d bytes.\n", ata_tot_size));
	}
}
OpenPOWER on IntegriCloud