summaryrefslogtreecommitdiffstats
path: root/drivers/char/mmtimer.c
blob: 95e8122b8068d47bd617fdc7726b78eafffbdb7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
/*
 * Timer device implementation for SGI SN platforms.
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (c) 2001-2006 Silicon Graphics, Inc.  All rights reserved.
 *
 * This driver exports an API that should be supportable by any HPET or IA-PC
 * multimedia timer.  The code below is currently specific to the SGI Altix
 * SHub RTC, however.
 *
 * 11/01/01 - jbarnes - initial revision
 * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
 * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
 * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
 *		support via the posix timer interface
 */

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/ioctl.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/mmtimer.h>
#include <linux/miscdevice.h>
#include <linux/posix-timers.h>
#include <linux/interrupt.h>

#include <asm/uaccess.h>
#include <asm/sn/addrs.h>
#include <asm/sn/intr.h>
#include <asm/sn/shub_mmr.h>
#include <asm/sn/nodepda.h>
#include <asm/sn/shubio.h>

MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
MODULE_DESCRIPTION("SGI Altix RTC Timer");
MODULE_LICENSE("GPL");

/* name of the device, usually in /dev */
#define MMTIMER_NAME "mmtimer"
#define MMTIMER_DESC "SGI Altix RTC Timer"
#define MMTIMER_VERSION "2.1"

#define RTC_BITS 55 /* 55 bits for this implementation */

extern unsigned long sn_rtc_cycles_per_second;

#define RTC_COUNTER_ADDR        ((long *)LOCAL_MMR_ADDR(SH_RTC))

#define rtc_time()              (*RTC_COUNTER_ADDR)

static int mmtimer_ioctl(struct inode *inode, struct file *file,
			 unsigned int cmd, unsigned long arg);
static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma);

/*
 * Period in femtoseconds (10^-15 s)
 */
static unsigned long mmtimer_femtoperiod = 0;

static struct file_operations mmtimer_fops = {
	.owner =	THIS_MODULE,
	.mmap =		mmtimer_mmap,
	.ioctl =	mmtimer_ioctl,
};

/*
 * We only have comparison registers RTC1-4 currently available per
 * node.  RTC0 is used by SAL.
 */
#define NUM_COMPARATORS 3
/* Check for an RTC interrupt pending */
static int inline mmtimer_int_pending(int comparator)
{
	if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) &
			SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator)
		return 1;
	else
		return 0;
}
/* Clear the RTC interrupt pending bit */
static void inline mmtimer_clr_int_pending(int comparator)
{
	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
		SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator);
}

/* Setup timer on comparator RTC1 */
static void inline mmtimer_setup_int_0(u64 expires)
{
	u64 val;

	/* Disable interrupt */
	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL);

	/* Initialize comparator value */
	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L);

	/* Clear pending bit */
	mmtimer_clr_int_pending(0);

	val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) |
		((u64)cpu_physical_id(smp_processor_id()) <<
			SH_RTC1_INT_CONFIG_PID_SHFT);

	/* Set configuration */
	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val);

	/* Enable RTC interrupts */
	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL);

	/* Initialize comparator value */
	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires);


}

/* Setup timer on comparator RTC2 */
static void inline mmtimer_setup_int_1(u64 expires)
{
	u64 val;

	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL);

	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L);

	mmtimer_clr_int_pending(1);

	val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) |
		((u64)cpu_physical_id(smp_processor_id()) <<
			SH_RTC2_INT_CONFIG_PID_SHFT);

	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val);

	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL);

	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires);
}

/* Setup timer on comparator RTC3 */
static void inline mmtimer_setup_int_2(u64 expires)
{
	u64 val;

	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL);

	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L);

	mmtimer_clr_int_pending(2);

	val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) |
		((u64)cpu_physical_id(smp_processor_id()) <<
			SH_RTC3_INT_CONFIG_PID_SHFT);

	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val);

	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL);

	HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires);
}

/*
 * This function must be called with interrupts disabled and preemption off
 * in order to insure that the setup succeeds in a deterministic time frame.
 * It will check if the interrupt setup succeeded.
 */
static int inline mmtimer_setup(int comparator, unsigned long expires)
{

	switch (comparator) {
	case 0:
		mmtimer_setup_int_0(expires);
		break;
	case 1:
		mmtimer_setup_int_1(expires);
		break;
	case 2:
		mmtimer_setup_int_2(expires);
		break;
	}
	/* We might've missed our expiration time */
	if (rtc_time() < expires)
		return 1;

	/*
	 * If an interrupt is already pending then its okay
	 * if not then we failed
	 */
	return mmtimer_int_pending(comparator);
}

static int inline mmtimer_disable_int(long nasid, int comparator)
{
	switch (comparator) {
	case 0:
		nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE),
			0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL);
		break;
	case 1:
		nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE),
			0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL);
		break;
	case 2:
		nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE),
			0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL);
		break;
	default:
		return -EFAULT;
	}
	return 0;
}

#define TIMER_OFF 0xbadcabLL

/* There is one of these for each comparator */
typedef struct mmtimer {
	spinlock_t lock ____cacheline_aligned;
	struct k_itimer *timer;
	int i;
	int cpu;
	struct tasklet_struct tasklet;
} mmtimer_t;

static mmtimer_t ** timers;

/**
 * mmtimer_ioctl - ioctl interface for /dev/mmtimer
 * @inode: inode of the device
 * @file: file structure for the device
 * @cmd: command to execute
 * @arg: optional argument to command
 *
 * Executes the command specified by @cmd.  Returns 0 for success, < 0 for
 * failure.
 *
 * Valid commands:
 *
 * %MMTIMER_GETOFFSET - Should return the offset (relative to the start
 * of the page where the registers are mapped) for the counter in question.
 *
 * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
 * seconds
 *
 * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
 * specified by @arg
 *
 * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
 *
 * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
 *
 * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
 * in the address specified by @arg.
 */
static int mmtimer_ioctl(struct inode *inode, struct file *file,
			 unsigned int cmd, unsigned long arg)
{
	int ret = 0;

	switch (cmd) {
	case MMTIMER_GETOFFSET:	/* offset of the counter */
		/*
		 * SN RTC registers are on their own 64k page
		 */
		if(PAGE_SIZE <= (1 << 16))
			ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8;
		else
			ret = -ENOSYS;
		break;

	case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */
		if(copy_to_user((unsigned long __user *)arg,
				&mmtimer_femtoperiod, sizeof(unsigned long)))
			return -EFAULT;
		break;

	case MMTIMER_GETFREQ: /* frequency in Hz */
		if(copy_to_user((unsigned long __user *)arg,
				&sn_rtc_cycles_per_second,
				sizeof(unsigned long)))
			return -EFAULT;
		ret = 0;
		break;

	case MMTIMER_GETBITS: /* number of bits in the clock */
		ret = RTC_BITS;
		break;

	case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */
		ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0;
		break;

	case MMTIMER_GETCOUNTER:
		if(copy_to_user((unsigned long __user *)arg,
				RTC_COUNTER_ADDR, sizeof(unsigned long)))
			return -EFAULT;
		break;
	default:
		ret = -ENOSYS;
		break;
	}

	return ret;
}

/**
 * mmtimer_mmap - maps the clock's registers into userspace
 * @file: file structure for the device
 * @vma: VMA to map the registers into
 *
 * Calls remap_pfn_range() to map the clock's registers into
 * the calling process' address space.
 */
static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma)
{
	unsigned long mmtimer_addr;

	if (vma->vm_end - vma->vm_start != PAGE_SIZE)
		return -EINVAL;

	if (vma->vm_flags & VM_WRITE)
		return -EPERM;

	if (PAGE_SIZE > (1 << 16))
		return -ENOSYS;

	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);

	mmtimer_addr = __pa(RTC_COUNTER_ADDR);
	mmtimer_addr &= ~(PAGE_SIZE - 1);
	mmtimer_addr &= 0xfffffffffffffffUL;

	if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT,
					PAGE_SIZE, vma->vm_page_prot)) {
		printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n");
		return -EAGAIN;
	}

	return 0;
}

static struct miscdevice mmtimer_miscdev = {
	SGI_MMTIMER,
	MMTIMER_NAME,
	&mmtimer_fops
};

static struct timespec sgi_clock_offset;
static int sgi_clock_period;

/*
 * Posix Timer Interface
 */

static struct timespec sgi_clock_offset;
static int sgi_clock_period;

static int sgi_clock_get(clockid_t clockid, struct timespec *tp)
{
	u64 nsec;

	nsec = rtc_time() * sgi_clock_period
			+ sgi_clock_offset.tv_nsec;
	tp->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tp->tv_nsec)
			+ sgi_clock_offset.tv_sec;
	return 0;
};

static int sgi_clock_set(clockid_t clockid, struct timespec *tp)
{

	u64 nsec;
	u64 rem;

	nsec = rtc_time() * sgi_clock_period;

	sgi_clock_offset.tv_sec = tp->tv_sec - div_long_long_rem(nsec, NSEC_PER_SEC, &rem);

	if (rem <= tp->tv_nsec)
		sgi_clock_offset.tv_nsec = tp->tv_sec - rem;
	else {
		sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem;
		sgi_clock_offset.tv_sec--;
	}
	return 0;
}

/*
 * Schedule the next periodic interrupt. This function will attempt
 * to schedule a periodic interrupt later if necessary. If the scheduling
 * of an interrupt fails then the time to skip is lengthened
 * exponentially in order to ensure that the next interrupt
 * can be properly scheduled..
 */
static int inline reschedule_periodic_timer(mmtimer_t *x)
{
	int n;
	struct k_itimer *t = x->timer;

	t->it.mmtimer.clock = x->i;
	t->it_overrun--;

	n = 0;
	do {

		t->it.mmtimer.expires += t->it.mmtimer.incr << n;
		t->it_overrun += 1 << n;
		n++;
		if (n > 20)
			return 1;

	} while (!mmtimer_setup(x->i, t->it.mmtimer.expires));

	return 0;
}

/**
 * mmtimer_interrupt - timer interrupt handler
 * @irq: irq received
 * @dev_id: device the irq came from
 * @regs: register state upon receipt of the interrupt
 *
 * Called when one of the comarators matches the counter, This
 * routine will send signals to processes that have requested
 * them.
 *
 * This interrupt is run in an interrupt context
 * by the SHUB. It is therefore safe to locally access SHub
 * registers.
 */
static irqreturn_t
mmtimer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	int i;
	unsigned long expires = 0;
	int result = IRQ_NONE;
	unsigned indx = cpu_to_node(smp_processor_id());

	/*
	 * Do this once for each comparison register
	 */
	for (i = 0; i < NUM_COMPARATORS; i++) {
		mmtimer_t *base = timers[indx] + i;
		/* Make sure this doesn't get reused before tasklet_sched */
		spin_lock(&base->lock);
		if (base->cpu == smp_processor_id()) {
			if (base->timer)
				expires = base->timer->it.mmtimer.expires;
			/* expires test won't work with shared irqs */
			if ((mmtimer_int_pending(i) > 0) ||
				(expires && (expires < rtc_time()))) {
				mmtimer_clr_int_pending(i);
				tasklet_schedule(&base->tasklet);
				result = IRQ_HANDLED;
			}
		}
		spin_unlock(&base->lock);
		expires = 0;
	}
	return result;
}

void mmtimer_tasklet(unsigned long data) {
	mmtimer_t *x = (mmtimer_t *)data;
	struct k_itimer *t = x->timer;
	unsigned long flags;

	if (t == NULL)
		return;

	/* Send signal and deal with periodic signals */
	spin_lock_irqsave(&t->it_lock, flags);
	spin_lock(&x->lock);
	/* If timer was deleted between interrupt and here, leave */
	if (t != x->timer)
		goto out;
	t->it_overrun = 0;

	if (posix_timer_event(t, 0) != 0) {

		// printk(KERN_WARNING "mmtimer: cannot deliver signal.\n");

		t->it_overrun++;
	}
	if(t->it.mmtimer.incr) {
		/* Periodic timer */
		if (reschedule_periodic_timer(x)) {
			printk(KERN_WARNING "mmtimer: unable to reschedule\n");
			x->timer = NULL;
		}
	} else {
		/* Ensure we don't false trigger in mmtimer_interrupt */
		t->it.mmtimer.expires = 0;
	}
	t->it_overrun_last = t->it_overrun;
out:
	spin_unlock(&x->lock);
	spin_unlock_irqrestore(&t->it_lock, flags);
}

static int sgi_timer_create(struct k_itimer *timer)
{
	/* Insure that a newly created timer is off */
	timer->it.mmtimer.clock = TIMER_OFF;
	return 0;
}

/* This does not really delete a timer. It just insures
 * that the timer is not active
 *
 * Assumption: it_lock is already held with irq's disabled
 */
static int sgi_timer_del(struct k_itimer *timr)
{
	int i = timr->it.mmtimer.clock;
	cnodeid_t nodeid = timr->it.mmtimer.node;
	mmtimer_t *t = timers[nodeid] + i;
	unsigned long irqflags;

	if (i != TIMER_OFF) {
		spin_lock_irqsave(&t->lock, irqflags);
		mmtimer_disable_int(cnodeid_to_nasid(nodeid),i);
		t->timer = NULL;
		timr->it.mmtimer.clock = TIMER_OFF;
		timr->it.mmtimer.expires = 0;
		spin_unlock_irqrestore(&t->lock, irqflags);
	}
	return 0;
}

#define timespec_to_ns(x) ((x).tv_nsec + (x).tv_sec * NSEC_PER_SEC)
#define ns_to_timespec(ts, nsec) (ts).tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &(ts).tv_nsec)

/* Assumption: it_lock is already held with irq's disabled */
static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
{

	if (timr->it.mmtimer.clock == TIMER_OFF) {
		cur_setting->it_interval.tv_nsec = 0;
		cur_setting->it_interval.tv_sec = 0;
		cur_setting->it_value.tv_nsec = 0;
		cur_setting->it_value.tv_sec =0;
		return;
	}

	ns_to_timespec(cur_setting->it_interval, timr->it.mmtimer.incr * sgi_clock_period);
	ns_to_timespec(cur_setting->it_value, (timr->it.mmtimer.expires - rtc_time())* sgi_clock_period);
	return;
}


static int sgi_timer_set(struct k_itimer *timr, int flags,
	struct itimerspec * new_setting,
	struct itimerspec * old_setting)
{

	int i;
	unsigned long when, period, irqflags;
	int err = 0;
	cnodeid_t nodeid;
	mmtimer_t *base;

	if (old_setting)
		sgi_timer_get(timr, old_setting);

	sgi_timer_del(timr);
	when = timespec_to_ns(new_setting->it_value);
	period = timespec_to_ns(new_setting->it_interval);

	if (when == 0)
		/* Clear timer */
		return 0;

	if (flags & TIMER_ABSTIME) {
		struct timespec n;
		unsigned long now;

		getnstimeofday(&n);
		now = timespec_to_ns(n);
		if (when > now)
			when -= now;
		else
			/* Fire the timer immediately */
			when = 0;
	}

	/*
	 * Convert to sgi clock period. Need to keep rtc_time() as near as possible
	 * to getnstimeofday() in order to be as faithful as possible to the time
	 * specified.
	 */
	when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time();
	period = (period + sgi_clock_period - 1)  / sgi_clock_period;

	/*
	 * We are allocating a local SHub comparator. If we would be moved to another
	 * cpu then another SHub may be local to us. Prohibit that by switching off
	 * preemption.
	 */
	preempt_disable();

	nodeid =  cpu_to_node(smp_processor_id());
retry:
	/* Don't use an allocated timer, or a deleted one that's pending */
	for(i = 0; i< NUM_COMPARATORS; i++) {
		base = timers[nodeid] + i;
		if (!base->timer && !base->tasklet.state) {
			break;
		}
	}

	if (i == NUM_COMPARATORS) {
		preempt_enable();
		return -EBUSY;
	}

	spin_lock_irqsave(&base->lock, irqflags);

	if (base->timer || base->tasklet.state != 0) {
		spin_unlock_irqrestore(&base->lock, irqflags);
		goto retry;
	}
	base->timer = timr;
	base->cpu = smp_processor_id();

	timr->it.mmtimer.clock = i;
	timr->it.mmtimer.node = nodeid;
	timr->it.mmtimer.incr = period;
	timr->it.mmtimer.expires = when;

	if (period == 0) {
		if (!mmtimer_setup(i, when)) {
			mmtimer_disable_int(-1, i);
			posix_timer_event(timr, 0);
			timr->it.mmtimer.expires = 0;
		}
	} else {
		timr->it.mmtimer.expires -= period;
		if (reschedule_periodic_timer(base))
			err = -EINVAL;
	}

	spin_unlock_irqrestore(&base->lock, irqflags);

	preempt_enable();

	return err;
}

static struct k_clock sgi_clock = {
	.res = 0,
	.clock_set = sgi_clock_set,
	.clock_get = sgi_clock_get,
	.timer_create = sgi_timer_create,
	.nsleep = do_posix_clock_nonanosleep,
	.timer_set = sgi_timer_set,
	.timer_del = sgi_timer_del,
	.timer_get = sgi_timer_get
};

/**
 * mmtimer_init - device initialization routine
 *
 * Does initial setup for the mmtimer device.
 */
static int __init mmtimer_init(void)
{
	unsigned i;
	cnodeid_t node, maxn = -1;

	if (!ia64_platform_is("sn2"))
		return 0;

	/*
	 * Sanity check the cycles/sec variable
	 */
	if (sn_rtc_cycles_per_second < 100000) {
		printk(KERN_ERR "%s: unable to determine clock frequency\n",
		       MMTIMER_NAME);
		return -1;
	}

	mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second /
			       2) / sn_rtc_cycles_per_second;

	if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, SA_PERCPU_IRQ, MMTIMER_NAME, NULL)) {
		printk(KERN_WARNING "%s: unable to allocate interrupt.",
			MMTIMER_NAME);
		return -1;
	}

	if (misc_register(&mmtimer_miscdev)) {
		printk(KERN_ERR "%s: failed to register device\n",
		       MMTIMER_NAME);
		return -1;
	}

	/* Get max numbered node, calculate slots needed */
	for_each_online_node(node) {
		maxn = node;
	}
	maxn++;

	/* Allocate list of node ptrs to mmtimer_t's */
	timers = kmalloc(sizeof(mmtimer_t *)*maxn, GFP_KERNEL);
	if (timers == NULL) {
		printk(KERN_ERR "%s: failed to allocate memory for device\n",
				MMTIMER_NAME);
		return -1;
	}

	/* Allocate mmtimer_t's for each online node */
	for_each_online_node(node) {
		timers[node] = kmalloc_node(sizeof(mmtimer_t)*NUM_COMPARATORS, GFP_KERNEL, node);
		if (timers[node] == NULL) {
			printk(KERN_ERR "%s: failed to allocate memory for device\n",
				MMTIMER_NAME);
			return -1;
		}
		for (i=0; i< NUM_COMPARATORS; i++) {
			mmtimer_t * base = timers[node] + i;

			spin_lock_init(&base->lock);
			base->timer = NULL;
			base->cpu = 0;
			base->i = i;
			tasklet_init(&base->tasklet, mmtimer_tasklet,
				(unsigned long) (base));
		}
	}

	sgi_clock_period = sgi_clock.res = NSEC_PER_SEC / sn_rtc_cycles_per_second;
	register_posix_clock(CLOCK_SGI_CYCLE, &sgi_clock);

	printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION,
	       sn_rtc_cycles_per_second/(unsigned long)1E6);

	return 0;
}

module_init(mmtimer_init);

OpenPOWER on IntegriCloud