summaryrefslogtreecommitdiffstats
path: root/arch/sh/kernel/kgdb_stub.c
blob: ffe3e3ee580d6bf85bff97a9bf21ecee850a2a14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
/*
 * May be copied or modified under the terms of the GNU General Public
 * License.  See linux/COPYING for more information.
 *
 * Containes extracts from code by Glenn Engel, Jim Kingdon,
 * David Grothe <dave@gcom.com>, Tigran Aivazian <tigran@sco.com>,
 * Amit S. Kale <akale@veritas.com>,  William Gatliff <bgat@open-widgets.com>,
 * Ben Lee, Steve Chamberlain and Benoit Miller <fulg@iname.com>.
 *
 * This version by Henry Bell <henry.bell@st.com>
 * Minor modifications by Jeremy Siegel <jsiegel@mvista.com>
 *
 * Contains low-level support for remote debug using GDB.
 *
 * To enable debugger support, two things need to happen. A call to
 * set_debug_traps() is necessary in order to allow any breakpoints
 * or error conditions to be properly intercepted and reported to gdb.
 * A breakpoint also needs to be generated to begin communication.  This
 * is most easily accomplished by a call to breakpoint() which does
 * a trapa if the initialisation phase has been successfully completed.
 *
 * In this case, set_debug_traps() is not used to "take over" exceptions;
 * other kernel code is modified instead to enter the kgdb functions here
 * when appropriate (see entry.S for breakpoint traps and NMI interrupts,
 * see traps.c for kernel error exceptions).
 *
 * The following gdb commands are supported:
 *
 *    Command       Function                               Return value
 *
 *    g             return the value of the CPU registers  hex data or ENN
 *    G             set the value of the CPU registers     OK or ENN
 *
 *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN
 *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN
 *    XAA..AA,LLLL: Same, but data is binary (not hex)     OK or ENN
 *
 *    c             Resume at current address              SNN   ( signal NN)
 *    cAA..AA       Continue at address AA..AA             SNN
 *    CNN;          Resume at current address with signal  SNN
 *    CNN;AA..AA    Resume at address AA..AA with signal   SNN
 *
 *    s             Step one instruction                   SNN
 *    sAA..AA       Step one instruction from AA..AA       SNN
 *    SNN;          Step one instruction with signal       SNN
 *    SNNAA..AA     Step one instruction from AA..AA w/NN  SNN
 *
 *    k             kill (Detach GDB)
 *
 *    d             Toggle debug flag
 *    D             Detach GDB
 *
 *    Hct           Set thread t for operations,           OK or ENN
 *                  c = 'c' (step, cont), c = 'g' (other
 *                  operations)
 *
 *    qC            Query current thread ID                QCpid
 *    qfThreadInfo  Get list of current threads (first)    m<id>
 *    qsThreadInfo   "    "  "     "      "   (subsequent)
 *    qOffsets      Get section offsets                  Text=x;Data=y;Bss=z
 *
 *    TXX           Find if thread XX is alive             OK or ENN
 *    ?             What was the last sigval ?             SNN   (signal NN)
 *    O             Output to GDB console
 *
 * Remote communication protocol.
 *
 *    A debug packet whose contents are <data> is encapsulated for
 *    transmission in the form:
 *
 *       $ <data> # CSUM1 CSUM2
 *
 *       <data> must be ASCII alphanumeric and cannot include characters
 *       '$' or '#'.  If <data> starts with two characters followed by
 *       ':', then the existing stubs interpret this as a sequence number.
 *
 *       CSUM1 and CSUM2 are ascii hex representation of an 8-bit
 *       checksum of <data>, the most significant nibble is sent first.
 *       the hex digits 0-9,a-f are used.
 *
 *    Receiver responds with:
 *
 *       +       - if CSUM is correct and ready for next packet
 *       -       - if CSUM is incorrect
 *
 * Responses can be run-length encoded to save space.  A '*' means that
 * the next character is an ASCII encoding giving a repeat count which
 * stands for that many repititions of the character preceding the '*'.
 * The encoding is n+29, yielding a printable character where n >=3
 * (which is where RLE starts to win).  Don't use an n > 126.
 *
 * So "0* " means the same as "0000".
 */

#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/linkage.h>
#include <linux/init.h>
#include <linux/console.h>
#include <linux/sysrq.h>
#include <asm/system.h>
#include <asm/cacheflush.h>
#include <asm/current.h>
#include <asm/signal.h>
#include <asm/pgtable.h>
#include <asm/ptrace.h>
#include <asm/kgdb.h>
#include <asm/io.h>

/* Function pointers for linkage */
kgdb_debug_hook_t *kgdb_debug_hook;
kgdb_bus_error_hook_t *kgdb_bus_err_hook;

int (*kgdb_getchar)(void);
void (*kgdb_putchar)(int);

static void put_debug_char(int c)
{
	if (!kgdb_putchar)
		return;
	(*kgdb_putchar)(c);
}
static int get_debug_char(void)
{
	if (!kgdb_getchar)
		return -1;
	return (*kgdb_getchar)();
}

/* Num chars in in/out bound buffers, register packets need NUMREGBYTES * 2 */
#define BUFMAX 1024
#define NUMREGBYTES (MAXREG*4)
#define OUTBUFMAX (NUMREGBYTES*2+512)

enum regs {
	R0 = 0, R1,  R2,  R3,   R4,   R5,  R6, R7,
	R8, R9, R10, R11, R12,  R13,  R14, R15,
	PC, PR, GBR, VBR, MACH, MACL, SR,
	/*  */
	MAXREG
};

static unsigned int registers[MAXREG];
struct kgdb_regs trap_registers;

char kgdb_in_gdb_mode;
char in_nmi;			/* Set during NMI to prevent reentry */
int kgdb_nofault;		/* Boolean to ignore bus errs (i.e. in GDB) */
int kgdb_enabled = 1;		/* Default to enabled, cmdline can disable */

/* Exposed for user access */
struct task_struct *kgdb_current;
unsigned int kgdb_g_imask;
int kgdb_trapa_val;
int kgdb_excode;

/* Default values for SCI (can override via kernel args in setup.c) */
#ifndef CONFIG_KGDB_DEFPORT
#define CONFIG_KGDB_DEFPORT 1
#endif

#ifndef CONFIG_KGDB_DEFBAUD
#define CONFIG_KGDB_DEFBAUD 115200
#endif

#if defined(CONFIG_KGDB_DEFPARITY_E)
#define CONFIG_KGDB_DEFPARITY 'E'
#elif defined(CONFIG_KGDB_DEFPARITY_O)
#define CONFIG_KGDB_DEFPARITY 'O'
#else /* CONFIG_KGDB_DEFPARITY_N */
#define CONFIG_KGDB_DEFPARITY 'N'
#endif

#ifdef CONFIG_KGDB_DEFBITS_7
#define CONFIG_KGDB_DEFBITS '7'
#else /* CONFIG_KGDB_DEFBITS_8 */
#define CONFIG_KGDB_DEFBITS '8'
#endif

/* SCI/UART settings, used in kgdb_console_setup() */
int  kgdb_portnum = CONFIG_KGDB_DEFPORT;
int  kgdb_baud = CONFIG_KGDB_DEFBAUD;
char kgdb_parity = CONFIG_KGDB_DEFPARITY;
char kgdb_bits = CONFIG_KGDB_DEFBITS;

/* Jump buffer for setjmp/longjmp */
static jmp_buf rem_com_env;

/* TRA differs sh3/4 */
#if defined(CONFIG_CPU_SH3)
#define TRA 0xffffffd0
#elif defined(CONFIG_CPU_SH4)
#define TRA 0xff000020
#endif

/* Macros for single step instruction identification */
#define OPCODE_BT(op)         (((op) & 0xff00) == 0x8900)
#define OPCODE_BF(op)         (((op) & 0xff00) == 0x8b00)
#define OPCODE_BTF_DISP(op)   (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
			      (((op) & 0x7f ) << 1))
#define OPCODE_BFS(op)        (((op) & 0xff00) == 0x8f00)
#define OPCODE_BTS(op)        (((op) & 0xff00) == 0x8d00)
#define OPCODE_BRA(op)        (((op) & 0xf000) == 0xa000)
#define OPCODE_BRA_DISP(op)   (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
			      (((op) & 0x7ff) << 1))
#define OPCODE_BRAF(op)       (((op) & 0xf0ff) == 0x0023)
#define OPCODE_BRAF_REG(op)   (((op) & 0x0f00) >> 8)
#define OPCODE_BSR(op)        (((op) & 0xf000) == 0xb000)
#define OPCODE_BSR_DISP(op)   (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
			      (((op) & 0x7ff) << 1))
#define OPCODE_BSRF(op)       (((op) & 0xf0ff) == 0x0003)
#define OPCODE_BSRF_REG(op)   (((op) >> 8) & 0xf)
#define OPCODE_JMP(op)        (((op) & 0xf0ff) == 0x402b)
#define OPCODE_JMP_REG(op)    (((op) >> 8) & 0xf)
#define OPCODE_JSR(op)        (((op) & 0xf0ff) == 0x400b)
#define OPCODE_JSR_REG(op)    (((op) >> 8) & 0xf)
#define OPCODE_RTS(op)        ((op) == 0xb)
#define OPCODE_RTE(op)        ((op) == 0x2b)

#define SR_T_BIT_MASK           0x1
#define STEP_OPCODE             0xc320
#define BIOS_CALL_TRAP          0x3f

/* Exception codes as per SH-4 core manual */
#define ADDRESS_ERROR_LOAD_VEC   7
#define ADDRESS_ERROR_STORE_VEC  8
#define TRAP_VEC                 11
#define INVALID_INSN_VEC         12
#define INVALID_SLOT_VEC         13
#define NMI_VEC                  14
#define USER_BREAK_VEC           15
#define SERIAL_BREAK_VEC         58

/* Misc static */
static int stepped_address;
static short stepped_opcode;
static char in_buffer[BUFMAX];
static char out_buffer[OUTBUFMAX];

static void kgdb_to_gdb(const char *s);

/* Convert ch to hex */
static int hex(const char ch)
{
	if ((ch >= 'a') && (ch <= 'f'))
		return (ch - 'a' + 10);
	if ((ch >= '0') && (ch <= '9'))
		return (ch - '0');
	if ((ch >= 'A') && (ch <= 'F'))
		return (ch - 'A' + 10);
	return (-1);
}

/* Convert the memory pointed to by mem into hex, placing result in buf.
   Returns a pointer to the last char put in buf (null) */
static char *mem_to_hex(const char *mem, char *buf, const int count)
{
	int i;
	int ch;
	unsigned short s_val;
	unsigned long l_val;

	/* Check for 16 or 32 */
	if (count == 2 && ((long) mem & 1) == 0) {
		s_val = *(unsigned short *) mem;
		mem = (char *) &s_val;
	} else if (count == 4 && ((long) mem & 3) == 0) {
		l_val = *(unsigned long *) mem;
		mem = (char *) &l_val;
	}
	for (i = 0; i < count; i++) {
		ch = *mem++;
		*buf++ = highhex(ch);
		*buf++ = lowhex(ch);
	}
	*buf = 0;
	return (buf);
}

/* Convert the hex array pointed to by buf into binary, to be placed in mem.
   Return a pointer to the character after the last byte written */
static char *hex_to_mem(const char *buf, char *mem, const int count)
{
	int i;
	unsigned char ch;

	for (i = 0; i < count; i++) {
		ch = hex(*buf++) << 4;
		ch = ch + hex(*buf++);
		*mem++ = ch;
	}
	return (mem);
}

/* While finding valid hex chars, convert to an integer, then return it */
static int hex_to_int(char **ptr, int *int_value)
{
	int num_chars = 0;
	int hex_value;

	*int_value = 0;

	while (**ptr) {
		hex_value = hex(**ptr);
		if (hex_value >= 0) {
			*int_value = (*int_value << 4) | hex_value;
			num_chars++;
		} else
			break;
		(*ptr)++;
	}
	return num_chars;
}

/*  Copy the binary array pointed to by buf into mem.  Fix $, #,
    and 0x7d escaped with 0x7d.  Return a pointer to the character
    after the last byte written. */
static char *ebin_to_mem(const char *buf, char *mem, int count)
{
	for (; count > 0; count--, buf++) {
		if (*buf == 0x7d)
			*mem++ = *(++buf) ^ 0x20;
		else
			*mem++ = *buf;
	}
	return mem;
}

/* Pack a hex byte */
static char *pack_hex_byte(char *pkt, int byte)
{
	*pkt++ = hexchars[(byte >> 4) & 0xf];
	*pkt++ = hexchars[(byte & 0xf)];
	return pkt;
}

/* Scan for the start char '$', read the packet and check the checksum */
static void get_packet(char *buffer, int buflen)
{
	unsigned char checksum;
	unsigned char xmitcsum;
	int i;
	int count;
	char ch;

	do {
		/* Ignore everything until the start character */
		while ((ch = get_debug_char()) != '$');

		checksum = 0;
		xmitcsum = -1;
		count = 0;

		/* Now, read until a # or end of buffer is found */
		while (count < (buflen - 1)) {
			ch = get_debug_char();

			if (ch == '#')
				break;

			checksum = checksum + ch;
			buffer[count] = ch;
			count = count + 1;
		}

		buffer[count] = 0;

		/* Continue to read checksum following # */
		if (ch == '#') {
			xmitcsum = hex(get_debug_char()) << 4;
			xmitcsum += hex(get_debug_char());

			/* Checksum */
			if (checksum != xmitcsum)
				put_debug_char('-');	/* Failed checksum */
			else {
				/* Ack successful transfer */
				put_debug_char('+');

				/* If a sequence char is present, reply
				   the sequence ID */
				if (buffer[2] == ':') {
					put_debug_char(buffer[0]);
					put_debug_char(buffer[1]);

					/* Remove sequence chars from buffer */
					count = strlen(buffer);
					for (i = 3; i <= count; i++)
						buffer[i - 3] = buffer[i];
				}
			}
		}
	}
	while (checksum != xmitcsum);	/* Keep trying while we fail */
}

/* Send the packet in the buffer with run-length encoding */
static void put_packet(char *buffer)
{
	int checksum;
	char *src;
	int runlen;
	int encode;

	do {
		src = buffer;
		put_debug_char('$');
		checksum = 0;

		/* Continue while we still have chars left */
		while (*src) {
			/* Check for runs up to 99 chars long */
			for (runlen = 1; runlen < 99; runlen++) {
				if (src[0] != src[runlen])
					break;
			}

			if (runlen > 3) {
				/* Got a useful amount, send encoding */
				encode = runlen + ' ' - 4;
				put_debug_char(*src);   checksum += *src;
				put_debug_char('*');    checksum += '*';
				put_debug_char(encode); checksum += encode;
				src += runlen;
			} else {
				/* Otherwise just send the current char */
				put_debug_char(*src);   checksum += *src;
				src += 1;
			}
		}

		/* '#' Separator, put high and low components of checksum */
		put_debug_char('#');
		put_debug_char(highhex(checksum));
		put_debug_char(lowhex(checksum));
	}
	while ((get_debug_char()) != '+');	/* While no ack */
}

/* A bus error has occurred - perform a longjmp to return execution and
   allow handling of the error */
static void kgdb_handle_bus_error(void)
{
	longjmp(rem_com_env, 1);
}

/* Translate SH-3/4 exception numbers to unix-like signal values */
static int compute_signal(const int excep_code)
{
	int sigval;

	switch (excep_code) {

	case INVALID_INSN_VEC:
	case INVALID_SLOT_VEC:
		sigval = SIGILL;
		break;
	case ADDRESS_ERROR_LOAD_VEC:
	case ADDRESS_ERROR_STORE_VEC:
		sigval = SIGSEGV;
		break;

	case SERIAL_BREAK_VEC:
	case NMI_VEC:
		sigval = SIGINT;
		break;

	case USER_BREAK_VEC:
	case TRAP_VEC:
		sigval = SIGTRAP;
		break;

	default:
		sigval = SIGBUS;	/* "software generated" */
		break;
	}

	return (sigval);
}

/* Make a local copy of the registers passed into the handler (bletch) */
static void kgdb_regs_to_gdb_regs(const struct kgdb_regs *regs,
				  int *gdb_regs)
{
	gdb_regs[R0] = regs->regs[R0];
	gdb_regs[R1] = regs->regs[R1];
	gdb_regs[R2] = regs->regs[R2];
	gdb_regs[R3] = regs->regs[R3];
	gdb_regs[R4] = regs->regs[R4];
	gdb_regs[R5] = regs->regs[R5];
	gdb_regs[R6] = regs->regs[R6];
	gdb_regs[R7] = regs->regs[R7];
	gdb_regs[R8] = regs->regs[R8];
	gdb_regs[R9] = regs->regs[R9];
	gdb_regs[R10] = regs->regs[R10];
	gdb_regs[R11] = regs->regs[R11];
	gdb_regs[R12] = regs->regs[R12];
	gdb_regs[R13] = regs->regs[R13];
	gdb_regs[R14] = regs->regs[R14];
	gdb_regs[R15] = regs->regs[R15];
	gdb_regs[PC] = regs->pc;
	gdb_regs[PR] = regs->pr;
	gdb_regs[GBR] = regs->gbr;
	gdb_regs[MACH] = regs->mach;
	gdb_regs[MACL] = regs->macl;
	gdb_regs[SR] = regs->sr;
	gdb_regs[VBR] = regs->vbr;
}

/* Copy local gdb registers back to kgdb regs, for later copy to kernel */
static void gdb_regs_to_kgdb_regs(const int *gdb_regs,
				  struct kgdb_regs *regs)
{
	regs->regs[R0] = gdb_regs[R0];
	regs->regs[R1] = gdb_regs[R1];
	regs->regs[R2] = gdb_regs[R2];
	regs->regs[R3] = gdb_regs[R3];
	regs->regs[R4] = gdb_regs[R4];
	regs->regs[R5] = gdb_regs[R5];
	regs->regs[R6] = gdb_regs[R6];
	regs->regs[R7] = gdb_regs[R7];
	regs->regs[R8] = gdb_regs[R8];
	regs->regs[R9] = gdb_regs[R9];
	regs->regs[R10] = gdb_regs[R10];
	regs->regs[R11] = gdb_regs[R11];
	regs->regs[R12] = gdb_regs[R12];
	regs->regs[R13] = gdb_regs[R13];
	regs->regs[R14] = gdb_regs[R14];
	regs->regs[R15] = gdb_regs[R15];
	regs->pc = gdb_regs[PC];
	regs->pr = gdb_regs[PR];
	regs->gbr = gdb_regs[GBR];
	regs->mach = gdb_regs[MACH];
	regs->macl = gdb_regs[MACL];
	regs->sr = gdb_regs[SR];
	regs->vbr = gdb_regs[VBR];
}

/* Calculate the new address for after a step */
static short *get_step_address(void)
{
	short op = *(short *) trap_registers.pc;
	long addr;

	/* BT */
	if (OPCODE_BT(op)) {
		if (trap_registers.sr & SR_T_BIT_MASK)
			addr = trap_registers.pc + 4 + OPCODE_BTF_DISP(op);
		else
			addr = trap_registers.pc + 2;
	}

	/* BTS */
	else if (OPCODE_BTS(op)) {
		if (trap_registers.sr & SR_T_BIT_MASK)
			addr = trap_registers.pc + 4 + OPCODE_BTF_DISP(op);
		else
			addr = trap_registers.pc + 4;	/* Not in delay slot */
	}

	/* BF */
	else if (OPCODE_BF(op)) {
		if (!(trap_registers.sr & SR_T_BIT_MASK))
			addr = trap_registers.pc + 4 + OPCODE_BTF_DISP(op);
		else
			addr = trap_registers.pc + 2;
	}

	/* BFS */
	else if (OPCODE_BFS(op)) {
		if (!(trap_registers.sr & SR_T_BIT_MASK))
			addr = trap_registers.pc + 4 + OPCODE_BTF_DISP(op);
		else
			addr = trap_registers.pc + 4;	/* Not in delay slot */
	}

	/* BRA */
	else if (OPCODE_BRA(op))
		addr = trap_registers.pc + 4 + OPCODE_BRA_DISP(op);

	/* BRAF */
	else if (OPCODE_BRAF(op))
		addr = trap_registers.pc + 4
		    + trap_registers.regs[OPCODE_BRAF_REG(op)];

	/* BSR */
	else if (OPCODE_BSR(op))
		addr = trap_registers.pc + 4 + OPCODE_BSR_DISP(op);

	/* BSRF */
	else if (OPCODE_BSRF(op))
		addr = trap_registers.pc + 4
		    + trap_registers.regs[OPCODE_BSRF_REG(op)];

	/* JMP */
	else if (OPCODE_JMP(op))
		addr = trap_registers.regs[OPCODE_JMP_REG(op)];

	/* JSR */
	else if (OPCODE_JSR(op))
		addr = trap_registers.regs[OPCODE_JSR_REG(op)];

	/* RTS */
	else if (OPCODE_RTS(op))
		addr = trap_registers.pr;

	/* RTE */
	else if (OPCODE_RTE(op))
		addr = trap_registers.regs[15];

	/* Other */
	else
		addr = trap_registers.pc + 2;

	kgdb_flush_icache_range(addr, addr + 2);
	return (short *) addr;
}

/* Set up a single-step.  Replace the instruction immediately after the
   current instruction (i.e. next in the expected flow of control) with a
   trap instruction, so that returning will cause only a single instruction
   to be executed. Note that this model is slightly broken for instructions
   with delay slots (e.g. B[TF]S, BSR, BRA etc), where both the branch
   and the instruction in the delay slot will be executed. */
static void do_single_step(void)
{
	unsigned short *addr = 0;

	/* Determine where the target instruction will send us to */
	addr = get_step_address();
	stepped_address = (int)addr;

	/* Replace it */
	stepped_opcode = *(short *)addr;
	*addr = STEP_OPCODE;

	/* Flush and return */
	kgdb_flush_icache_range((long) addr, (long) addr + 2);
	return;
}

/* Undo a single step */
static void undo_single_step(void)
{
	/* If we have stepped, put back the old instruction */
	/* Use stepped_address in case we stopped elsewhere */
	if (stepped_opcode != 0) {
		*(short*)stepped_address = stepped_opcode;
		kgdb_flush_icache_range(stepped_address, stepped_address + 2);
	}
	stepped_opcode = 0;
}

/* Send a signal message */
static void send_signal_msg(const int signum)
{
	out_buffer[0] = 'S';
	out_buffer[1] = highhex(signum);
	out_buffer[2] = lowhex(signum);
	out_buffer[3] = 0;
	put_packet(out_buffer);
}

/* Reply that all was well */
static void send_ok_msg(void)
{
	strcpy(out_buffer, "OK");
	put_packet(out_buffer);
}

/* Reply that an error occurred */
static void send_err_msg(void)
{
	strcpy(out_buffer, "E01");
	put_packet(out_buffer);
}

/* Empty message indicates unrecognised command */
static void send_empty_msg(void)
{
	put_packet("");
}

/* Read memory due to 'm' message */
static void read_mem_msg(void)
{
	char *ptr;
	int addr;
	int length;

	/* Jmp, disable bus error handler */
	if (setjmp(rem_com_env) == 0) {

		kgdb_nofault = 1;

		/* Walk through, have m<addr>,<length> */
		ptr = &in_buffer[1];
		if (hex_to_int(&ptr, &addr) && (*ptr++ == ','))
			if (hex_to_int(&ptr, &length)) {
				ptr = 0;
				if (length * 2 > OUTBUFMAX)
					length = OUTBUFMAX / 2;
				mem_to_hex((char *) addr, out_buffer, length);
			}
		if (ptr)
			send_err_msg();
		else
			put_packet(out_buffer);
	} else
		send_err_msg();

	/* Restore bus error handler */
	kgdb_nofault = 0;
}

/* Write memory due to 'M' or 'X' message */
static void write_mem_msg(int binary)
{
	char *ptr;
	int addr;
	int length;

	if (setjmp(rem_com_env) == 0) {

		kgdb_nofault = 1;

		/* Walk through, have M<addr>,<length>:<data> */
		ptr = &in_buffer[1];
		if (hex_to_int(&ptr, &addr) && (*ptr++ == ','))
			if (hex_to_int(&ptr, &length) && (*ptr++ == ':')) {
				if (binary)
					ebin_to_mem(ptr, (char*)addr, length);
				else
					hex_to_mem(ptr, (char*)addr, length);
				kgdb_flush_icache_range(addr, addr + length);
				ptr = 0;
				send_ok_msg();
			}
		if (ptr)
			send_err_msg();
	} else
		send_err_msg();

	/* Restore bus error handler */
	kgdb_nofault = 0;
}

/* Continue message  */
static void continue_msg(void)
{
	/* Try to read optional parameter, PC unchanged if none */
	char *ptr = &in_buffer[1];
	int addr;

	if (hex_to_int(&ptr, &addr))
		trap_registers.pc = addr;
}

/* Continue message with signal */
static void continue_with_sig_msg(void)
{
	int signal;
	char *ptr = &in_buffer[1];
	int addr;

	/* Report limitation */
	kgdb_to_gdb("Cannot force signal in kgdb, continuing anyway.\n");

	/* Signal */
	hex_to_int(&ptr, &signal);
	if (*ptr == ';')
		ptr++;

	/* Optional address */
	if (hex_to_int(&ptr, &addr))
		trap_registers.pc = addr;
}

/* Step message */
static void step_msg(void)
{
	continue_msg();
	do_single_step();
}

/* Step message with signal */
static void step_with_sig_msg(void)
{
	continue_with_sig_msg();
	do_single_step();
}

/* Send register contents */
static void send_regs_msg(void)
{
	kgdb_regs_to_gdb_regs(&trap_registers, registers);
	mem_to_hex((char *) registers, out_buffer, NUMREGBYTES);
	put_packet(out_buffer);
}

/* Set register contents - currently can't set other thread's registers */
static void set_regs_msg(void)
{
	kgdb_regs_to_gdb_regs(&trap_registers, registers);
	hex_to_mem(&in_buffer[1], (char *) registers, NUMREGBYTES);
	gdb_regs_to_kgdb_regs(registers, &trap_registers);
	send_ok_msg();
}

#ifdef CONFIG_SH_KGDB_CONSOLE
/*
 * Bring up the ports..
 */
static int kgdb_serial_setup(void)
{
	extern int kgdb_console_setup(struct console *co, char *options);
	struct console dummy;

	kgdb_console_setup(&dummy, 0);

	return 0;
}
#else
#define kgdb_serial_setup()	0
#endif

/* The command loop, read and act on requests */
static void kgdb_command_loop(const int excep_code, const int trapa_value)
{
	int sigval;

	if (excep_code == NMI_VEC) {
#ifndef CONFIG_KGDB_NMI
		printk(KERN_NOTICE "KGDB: Ignoring unexpected NMI?\n");
		return;
#else /* CONFIG_KGDB_NMI */
		if (!kgdb_enabled) {
			kgdb_enabled = 1;
			kgdb_init();
		}
#endif /* CONFIG_KGDB_NMI */
	}

	/* Ignore if we're disabled */
	if (!kgdb_enabled)
		return;

	/* Enter GDB mode (e.g. after detach) */
	if (!kgdb_in_gdb_mode) {
		/* Do serial setup, notify user, issue preemptive ack */
		printk(KERN_NOTICE "KGDB: Waiting for GDB\n");
		kgdb_in_gdb_mode = 1;
		put_debug_char('+');
	}

	/* Reply to host that an exception has occurred */
	sigval = compute_signal(excep_code);
	send_signal_msg(sigval);

	/* TRAP_VEC exception indicates a software trap inserted in place of
	   code by GDB so back up PC by one instruction, as this instruction
	   will later be replaced by its original one.  Do NOT do this for
	   trap 0xff, since that indicates a compiled-in breakpoint which
	   will not be replaced (and we would retake the trap forever) */
	if ((excep_code == TRAP_VEC) && (trapa_value != (0x3c << 2)))
		trap_registers.pc -= instruction_size(trap_registers.pc);

	/* Undo any stepping we may have done */
	undo_single_step();

	while (1) {
		out_buffer[0] = 0;
		get_packet(in_buffer, BUFMAX);

		/* Examine first char of buffer to see what we need to do */
		switch (in_buffer[0]) {
		case '?':	/* Send which signal we've received */
			send_signal_msg(sigval);
			break;

		case 'g':	/* Return the values of the CPU registers */
			send_regs_msg();
			break;

		case 'G':	/* Set the value of the CPU registers */
			set_regs_msg();
			break;

		case 'm':	/* Read LLLL bytes address AA..AA */
			read_mem_msg();
			break;

		case 'M':	/* Write LLLL bytes address AA..AA, ret OK */
			write_mem_msg(0);	/* 0 = data in hex */
			break;

		case 'X':	/* Write LLLL bytes esc bin address AA..AA */
			if (kgdb_bits == '8')
				write_mem_msg(1); /* 1 = data in binary */
			else
				send_empty_msg();
			break;

		case 'C':	/* Continue, signum included, we ignore it */
			continue_with_sig_msg();
			return;

		case 'c':	/* Continue at address AA..AA (optional) */
			continue_msg();
			return;

		case 'S':	/* Step, signum included, we ignore it */
			step_with_sig_msg();
			return;

		case 's':	/* Step one instruction from AA..AA */
			step_msg();
			return;

		case 'k':	/* 'Kill the program' with a kernel ? */
			break;

		case 'D':	/* Detach from program, send reply OK */
			kgdb_in_gdb_mode = 0;
			send_ok_msg();
			get_debug_char();
			return;

		default:
			send_empty_msg();
			break;
		}
	}
}

/* There has been an exception, most likely a breakpoint. */
static void handle_exception(struct pt_regs *regs)
{
	int excep_code, vbr_val;
	int count;
	int trapa_value = ctrl_inl(TRA);

	/* Copy kernel regs (from stack) */
	for (count = 0; count < 16; count++)
		trap_registers.regs[count] = regs->regs[count];
	trap_registers.pc = regs->pc;
	trap_registers.pr = regs->pr;
	trap_registers.sr = regs->sr;
	trap_registers.gbr = regs->gbr;
	trap_registers.mach = regs->mach;
	trap_registers.macl = regs->macl;

	asm("stc vbr, %0":"=r"(vbr_val));
	trap_registers.vbr = vbr_val;

	/* Get excode for command loop call, user access */
	asm("stc r2_bank, %0":"=r"(excep_code));
	kgdb_excode = excep_code;

	/* Other interesting environment items for reference */
	asm("stc r6_bank, %0":"=r"(kgdb_g_imask));
	kgdb_current = current;
	kgdb_trapa_val = trapa_value;

	/* Act on the exception */
	kgdb_command_loop(excep_code, trapa_value);

	kgdb_current = NULL;

	/* Copy back the (maybe modified) registers */
	for (count = 0; count < 16; count++)
		regs->regs[count] = trap_registers.regs[count];
	regs->pc = trap_registers.pc;
	regs->pr = trap_registers.pr;
	regs->sr = trap_registers.sr;
	regs->gbr = trap_registers.gbr;
	regs->mach = trap_registers.mach;
	regs->macl = trap_registers.macl;

	vbr_val = trap_registers.vbr;
	asm("ldc %0, vbr": :"r"(vbr_val));
}

asmlinkage void kgdb_handle_exception(unsigned long r4, unsigned long r5,
				      unsigned long r6, unsigned long r7,
				      struct pt_regs __regs)
{
	struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
	handle_exception(regs);
}

/* Initialise the KGDB data structures and serial configuration */
int kgdb_init(void)
{
	if (!kgdb_enabled)
		return 1;

	in_nmi = 0;
	kgdb_nofault = 0;
	stepped_opcode = 0;
	kgdb_in_gdb_mode = 0;

	if (kgdb_serial_setup() != 0) {
		printk(KERN_NOTICE "KGDB: serial setup error\n");
		return -1;
	}

	/* Init ptr to exception handler */
	kgdb_debug_hook = handle_exception;
	kgdb_bus_err_hook = kgdb_handle_bus_error;

	/* Enter kgdb now if requested, or just report init done */
	printk(KERN_NOTICE "KGDB: stub is initialized.\n");

	return 0;
}

/* Make function available for "user messages"; console will use it too. */

char gdbmsgbuf[BUFMAX];
#define MAXOUT ((BUFMAX-2)/2)

static void kgdb_msg_write(const char *s, unsigned count)
{
	int i;
	int wcount;
	char *bufptr;

	/* 'O'utput */
	gdbmsgbuf[0] = 'O';

	/* Fill and send buffers... */
	while (count > 0) {
		bufptr = gdbmsgbuf + 1;

		/* Calculate how many this time */
		wcount = (count > MAXOUT) ? MAXOUT : count;

		/* Pack in hex chars */
		for (i = 0; i < wcount; i++)
			bufptr = pack_hex_byte(bufptr, s[i]);
		*bufptr = '\0';

		/* Move up */
		s += wcount;
		count -= wcount;

		/* Write packet */
		put_packet(gdbmsgbuf);
	}
}

static void kgdb_to_gdb(const char *s)
{
	kgdb_msg_write(s, strlen(s));
}

#ifdef CONFIG_SH_KGDB_CONSOLE
void kgdb_console_write(struct console *co, const char *s, unsigned count)
{
	/* Bail if we're not talking to GDB */
	if (!kgdb_in_gdb_mode)
		return;

	kgdb_msg_write(s, count);
}
#endif

#ifdef CONFIG_KGDB_SYSRQ
static void sysrq_handle_gdb(int key, struct tty_struct *tty)
{
	printk("Entering GDB stub\n");
	breakpoint();
}

static struct sysrq_key_op sysrq_gdb_op = {
        .handler        = sysrq_handle_gdb,
        .help_msg       = "Gdb",
        .action_msg     = "GDB",
};

static int gdb_register_sysrq(void)
{
	printk("Registering GDB sysrq handler\n");
	register_sysrq_key('g', &sysrq_gdb_op);
	return 0;
}
module_init(gdb_register_sysrq);
#endif
OpenPOWER on IntegriCloud