summaryrefslogtreecommitdiffstats
path: root/arch/ppc64/kernel/eeh.c
blob: af5272fedadf4d8f4a2705edd735479dd9d96751 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
/*
 * eeh.c
 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/notifier.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/rbtree.h>
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <asm/eeh.h>
#include <asm/io.h>
#include <asm/machdep.h>
#include <asm/rtas.h>
#include <asm/atomic.h>
#include <asm/systemcfg.h>
#include "pci.h"

#undef DEBUG

/** Overview:
 *  EEH, or "Extended Error Handling" is a PCI bridge technology for
 *  dealing with PCI bus errors that can't be dealt with within the
 *  usual PCI framework, except by check-stopping the CPU.  Systems
 *  that are designed for high-availability/reliability cannot afford
 *  to crash due to a "mere" PCI error, thus the need for EEH.
 *  An EEH-capable bridge operates by converting a detected error
 *  into a "slot freeze", taking the PCI adapter off-line, making
 *  the slot behave, from the OS'es point of view, as if the slot
 *  were "empty": all reads return 0xff's and all writes are silently
 *  ignored.  EEH slot isolation events can be triggered by parity
 *  errors on the address or data busses (e.g. during posted writes),
 *  which in turn might be caused by dust, vibration, humidity,
 *  radioactivity or plain-old failed hardware.
 *
 *  Note, however, that one of the leading causes of EEH slot
 *  freeze events are buggy device drivers, buggy device microcode,
 *  or buggy device hardware.  This is because any attempt by the
 *  device to bus-master data to a memory address that is not
 *  assigned to the device will trigger a slot freeze.   (The idea
 *  is to prevent devices-gone-wild from corrupting system memory).
 *  Buggy hardware/drivers will have a miserable time co-existing
 *  with EEH.
 *
 *  Ideally, a PCI device driver, when suspecting that an isolation
 *  event has occured (e.g. by reading 0xff's), will then ask EEH
 *  whether this is the case, and then take appropriate steps to
 *  reset the PCI slot, the PCI device, and then resume operations.
 *  However, until that day,  the checking is done here, with the
 *  eeh_check_failure() routine embedded in the MMIO macros.  If
 *  the slot is found to be isolated, an "EEH Event" is synthesized
 *  and sent out for processing.
 */

/** Bus Unit ID macros; get low and hi 32-bits of the 64-bit BUID */
#define BUID_HI(buid) ((buid) >> 32)
#define BUID_LO(buid) ((buid) & 0xffffffff)

/* EEH event workqueue setup. */
static DEFINE_SPINLOCK(eeh_eventlist_lock);
LIST_HEAD(eeh_eventlist);
static void eeh_event_handler(void *);
DECLARE_WORK(eeh_event_wq, eeh_event_handler, NULL);

static struct notifier_block *eeh_notifier_chain;

/*
 * If a device driver keeps reading an MMIO register in an interrupt
 * handler after a slot isolation event has occurred, we assume it
 * is broken and panic.  This sets the threshold for how many read
 * attempts we allow before panicking.
 */
#define EEH_MAX_FAILS	1000
static atomic_t eeh_fail_count;

/* RTAS tokens */
static int ibm_set_eeh_option;
static int ibm_set_slot_reset;
static int ibm_read_slot_reset_state;
static int ibm_read_slot_reset_state2;
static int ibm_slot_error_detail;

static int eeh_subsystem_enabled;

/* Buffer for reporting slot-error-detail rtas calls */
static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
static DEFINE_SPINLOCK(slot_errbuf_lock);
static int eeh_error_buf_size;

/* System monitoring statistics */
static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
static DEFINE_PER_CPU(unsigned long, false_positives);
static DEFINE_PER_CPU(unsigned long, ignored_failures);
static DEFINE_PER_CPU(unsigned long, slot_resets);

/**
 * The pci address cache subsystem.  This subsystem places
 * PCI device address resources into a red-black tree, sorted
 * according to the address range, so that given only an i/o
 * address, the corresponding PCI device can be **quickly**
 * found. It is safe to perform an address lookup in an interrupt
 * context; this ability is an important feature.
 *
 * Currently, the only customer of this code is the EEH subsystem;
 * thus, this code has been somewhat tailored to suit EEH better.
 * In particular, the cache does *not* hold the addresses of devices
 * for which EEH is not enabled.
 *
 * (Implementation Note: The RB tree seems to be better/faster
 * than any hash algo I could think of for this problem, even
 * with the penalty of slow pointer chases for d-cache misses).
 */
struct pci_io_addr_range
{
	struct rb_node rb_node;
	unsigned long addr_lo;
	unsigned long addr_hi;
	struct pci_dev *pcidev;
	unsigned int flags;
};

static struct pci_io_addr_cache
{
	struct rb_root rb_root;
	spinlock_t piar_lock;
} pci_io_addr_cache_root;

static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
{
	struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;

	while (n) {
		struct pci_io_addr_range *piar;
		piar = rb_entry(n, struct pci_io_addr_range, rb_node);

		if (addr < piar->addr_lo) {
			n = n->rb_left;
		} else {
			if (addr > piar->addr_hi) {
				n = n->rb_right;
			} else {
				pci_dev_get(piar->pcidev);
				return piar->pcidev;
			}
		}
	}

	return NULL;
}

/**
 * pci_get_device_by_addr - Get device, given only address
 * @addr: mmio (PIO) phys address or i/o port number
 *
 * Given an mmio phys address, or a port number, find a pci device
 * that implements this address.  Be sure to pci_dev_put the device
 * when finished.  I/O port numbers are assumed to be offset
 * from zero (that is, they do *not* have pci_io_addr added in).
 * It is safe to call this function within an interrupt.
 */
static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
{
	struct pci_dev *dev;
	unsigned long flags;

	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
	dev = __pci_get_device_by_addr(addr);
	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
	return dev;
}

#ifdef DEBUG
/*
 * Handy-dandy debug print routine, does nothing more
 * than print out the contents of our addr cache.
 */
static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
{
	struct rb_node *n;
	int cnt = 0;

	n = rb_first(&cache->rb_root);
	while (n) {
		struct pci_io_addr_range *piar;
		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
		printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s %s\n",
		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
		       piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev),
		       pci_pretty_name(piar->pcidev));
		cnt++;
		n = rb_next(n);
	}
}
#endif

/* Insert address range into the rb tree. */
static struct pci_io_addr_range *
pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
		      unsigned long ahi, unsigned int flags)
{
	struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct pci_io_addr_range *piar;

	/* Walk tree, find a place to insert into tree */
	while (*p) {
		parent = *p;
		piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
		if (alo < piar->addr_lo) {
			p = &parent->rb_left;
		} else if (ahi > piar->addr_hi) {
			p = &parent->rb_right;
		} else {
			if (dev != piar->pcidev ||
			    alo != piar->addr_lo || ahi != piar->addr_hi) {
				printk(KERN_WARNING "PIAR: overlapping address range\n");
			}
			return piar;
		}
	}
	piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
	if (!piar)
		return NULL;

	piar->addr_lo = alo;
	piar->addr_hi = ahi;
	piar->pcidev = dev;
	piar->flags = flags;

	rb_link_node(&piar->rb_node, parent, p);
	rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);

	return piar;
}

static void __pci_addr_cache_insert_device(struct pci_dev *dev)
{
	struct device_node *dn;
	int i;
	int inserted = 0;

	dn = pci_device_to_OF_node(dev);
	if (!dn) {
		printk(KERN_WARNING "PCI: no pci dn found for dev=%s %s\n",
			pci_name(dev), pci_pretty_name(dev));
		return;
	}

	/* Skip any devices for which EEH is not enabled. */
	if (!(dn->eeh_mode & EEH_MODE_SUPPORTED) ||
	    dn->eeh_mode & EEH_MODE_NOCHECK) {
#ifdef DEBUG
		printk(KERN_INFO "PCI: skip building address cache for=%s %s\n",
		       pci_name(dev), pci_pretty_name(dev));
#endif
		return;
	}

	/* The cache holds a reference to the device... */
	pci_dev_get(dev);

	/* Walk resources on this device, poke them into the tree */
	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
		unsigned long start = pci_resource_start(dev,i);
		unsigned long end = pci_resource_end(dev,i);
		unsigned int flags = pci_resource_flags(dev,i);

		/* We are interested only bus addresses, not dma or other stuff */
		if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
			continue;
		if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
			 continue;
		pci_addr_cache_insert(dev, start, end, flags);
		inserted = 1;
	}

	/* If there was nothing to add, the cache has no reference... */
	if (!inserted)
		pci_dev_put(dev);
}

/**
 * pci_addr_cache_insert_device - Add a device to the address cache
 * @dev: PCI device whose I/O addresses we are interested in.
 *
 * In order to support the fast lookup of devices based on addresses,
 * we maintain a cache of devices that can be quickly searched.
 * This routine adds a device to that cache.
 */
void pci_addr_cache_insert_device(struct pci_dev *dev)
{
	unsigned long flags;

	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
	__pci_addr_cache_insert_device(dev);
	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
}

static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
{
	struct rb_node *n;
	int removed = 0;

restart:
	n = rb_first(&pci_io_addr_cache_root.rb_root);
	while (n) {
		struct pci_io_addr_range *piar;
		piar = rb_entry(n, struct pci_io_addr_range, rb_node);

		if (piar->pcidev == dev) {
			rb_erase(n, &pci_io_addr_cache_root.rb_root);
			removed = 1;
			kfree(piar);
			goto restart;
		}
		n = rb_next(n);
	}

	/* The cache no longer holds its reference to this device... */
	if (removed)
		pci_dev_put(dev);
}

/**
 * pci_addr_cache_remove_device - remove pci device from addr cache
 * @dev: device to remove
 *
 * Remove a device from the addr-cache tree.
 * This is potentially expensive, since it will walk
 * the tree multiple times (once per resource).
 * But so what; device removal doesn't need to be that fast.
 */
void pci_addr_cache_remove_device(struct pci_dev *dev)
{
	unsigned long flags;

	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
	__pci_addr_cache_remove_device(dev);
	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
}

/**
 * pci_addr_cache_build - Build a cache of I/O addresses
 *
 * Build a cache of pci i/o addresses.  This cache will be used to
 * find the pci device that corresponds to a given address.
 * This routine scans all pci busses to build the cache.
 * Must be run late in boot process, after the pci controllers
 * have been scaned for devices (after all device resources are known).
 */
void __init pci_addr_cache_build(void)
{
	struct pci_dev *dev = NULL;

	spin_lock_init(&pci_io_addr_cache_root.piar_lock);

	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
		/* Ignore PCI bridges ( XXX why ??) */
		if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
			continue;
		}
		pci_addr_cache_insert_device(dev);
	}

#ifdef DEBUG
	/* Verify tree built up above, echo back the list of addrs. */
	pci_addr_cache_print(&pci_io_addr_cache_root);
#endif
}

/* --------------------------------------------------------------- */
/* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */

/**
 * eeh_register_notifier - Register to find out about EEH events.
 * @nb: notifier block to callback on events
 */
int eeh_register_notifier(struct notifier_block *nb)
{
	return notifier_chain_register(&eeh_notifier_chain, nb);
}

/**
 * eeh_unregister_notifier - Unregister to an EEH event notifier.
 * @nb: notifier block to callback on events
 */
int eeh_unregister_notifier(struct notifier_block *nb)
{
	return notifier_chain_unregister(&eeh_notifier_chain, nb);
}

/**
 * read_slot_reset_state - Read the reset state of a device node's slot
 * @dn: device node to read
 * @rets: array to return results in
 */
static int read_slot_reset_state(struct device_node *dn, int rets[])
{
	int token, outputs;

	if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
		token = ibm_read_slot_reset_state2;
		outputs = 4;
	} else {
		token = ibm_read_slot_reset_state;
		outputs = 3;
	}

	return rtas_call(token, 3, outputs, rets, dn->eeh_config_addr,
			 BUID_HI(dn->phb->buid), BUID_LO(dn->phb->buid));
}

/**
 * eeh_panic - call panic() for an eeh event that cannot be handled.
 * The philosophy of this routine is that it is better to panic and
 * halt the OS than it is to risk possible data corruption by
 * oblivious device drivers that don't know better.
 *
 * @dev pci device that had an eeh event
 * @reset_state current reset state of the device slot
 */
static void eeh_panic(struct pci_dev *dev, int reset_state)
{
	/*
	 * XXX We should create a separate sysctl for this.
	 *
	 * Since the panic_on_oops sysctl is used to halt the system
	 * in light of potential corruption, we can use it here.
	 */
	if (panic_on_oops)
		panic("EEH: MMIO failure (%d) on device:%s %s\n", reset_state,
		      pci_name(dev), pci_pretty_name(dev));
	else {
		__get_cpu_var(ignored_failures)++;
		printk(KERN_INFO "EEH: Ignored MMIO failure (%d) on device:%s %s\n",
		       reset_state, pci_name(dev), pci_pretty_name(dev));
	}
}

/**
 * eeh_event_handler - dispatch EEH events.  The detection of a frozen
 * slot can occur inside an interrupt, where it can be hard to do
 * anything about it.  The goal of this routine is to pull these
 * detection events out of the context of the interrupt handler, and
 * re-dispatch them for processing at a later time in a normal context.
 *
 * @dummy - unused
 */
static void eeh_event_handler(void *dummy)
{
	unsigned long flags;
	struct eeh_event	*event;

	while (1) {
		spin_lock_irqsave(&eeh_eventlist_lock, flags);
		event = NULL;
		if (!list_empty(&eeh_eventlist)) {
			event = list_entry(eeh_eventlist.next, struct eeh_event, list);
			list_del(&event->list);
		}
		spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
		if (event == NULL)
			break;

		printk(KERN_INFO "EEH: MMIO failure (%d), notifiying device "
		       "%s %s\n", event->reset_state,
		       pci_name(event->dev), pci_pretty_name(event->dev));

		atomic_set(&eeh_fail_count, 0);
		notifier_call_chain (&eeh_notifier_chain,
				     EEH_NOTIFY_FREEZE, event);

		__get_cpu_var(slot_resets)++;

		pci_dev_put(event->dev);
		kfree(event);
	}
}

/**
 * eeh_token_to_phys - convert EEH address token to phys address
 * @token i/o token, should be address in the form 0xE....
 */
static inline unsigned long eeh_token_to_phys(unsigned long token)
{
	pte_t *ptep;
	unsigned long pa;

	ptep = find_linux_pte(init_mm.pgd, token);
	if (!ptep)
		return token;
	pa = pte_pfn(*ptep) << PAGE_SHIFT;

	return pa | (token & (PAGE_SIZE-1));
}

/**
 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
 * @dn device node
 * @dev pci device, if known
 *
 * Check for an EEH failure for the given device node.  Call this
 * routine if the result of a read was all 0xff's and you want to
 * find out if this is due to an EEH slot freeze.  This routine
 * will query firmware for the EEH status.
 *
 * Returns 0 if there has not been an EEH error; otherwise returns
 * a non-zero value and queues up a solt isolation event notification.
 *
 * It is safe to call this routine in an interrupt context.
 */
int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
{
	int ret;
	int rets[3];
	unsigned long flags;
	int rc, reset_state;
	struct eeh_event  *event;

	__get_cpu_var(total_mmio_ffs)++;

	if (!eeh_subsystem_enabled)
		return 0;

	if (!dn)
		return 0;

	/* Access to IO BARs might get this far and still not want checking. */
	if (!(dn->eeh_mode & EEH_MODE_SUPPORTED) ||
	    dn->eeh_mode & EEH_MODE_NOCHECK) {
		return 0;
	}

	if (!dn->eeh_config_addr) {
		return 0;
	}

	/*
	 * If we already have a pending isolation event for this
	 * slot, we know it's bad already, we don't need to check...
	 */
	if (dn->eeh_mode & EEH_MODE_ISOLATED) {
		atomic_inc(&eeh_fail_count);
		if (atomic_read(&eeh_fail_count) >= EEH_MAX_FAILS) {
			/* re-read the slot reset state */
			if (read_slot_reset_state(dn, rets) != 0)
				rets[0] = -1;	/* reset state unknown */
			eeh_panic(dev, rets[0]);
		}
		return 0;
	}

	/*
	 * Now test for an EEH failure.  This is VERY expensive.
	 * Note that the eeh_config_addr may be a parent device
	 * in the case of a device behind a bridge, or it may be
	 * function zero of a multi-function device.
	 * In any case they must share a common PHB.
	 */
	ret = read_slot_reset_state(dn, rets);
	if (!(ret == 0 && rets[1] == 1 && (rets[0] == 2 || rets[0] == 4))) {
		__get_cpu_var(false_positives)++;
		return 0;
	}

	/* prevent repeated reports of this failure */
	dn->eeh_mode |= EEH_MODE_ISOLATED;

	reset_state = rets[0];

	spin_lock_irqsave(&slot_errbuf_lock, flags);
	memset(slot_errbuf, 0, eeh_error_buf_size);

	rc = rtas_call(ibm_slot_error_detail,
	               8, 1, NULL, dn->eeh_config_addr,
	               BUID_HI(dn->phb->buid),
	               BUID_LO(dn->phb->buid), NULL, 0,
	               virt_to_phys(slot_errbuf),
	               eeh_error_buf_size,
	               1 /* Temporary Error */);

	if (rc == 0)
		log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
	spin_unlock_irqrestore(&slot_errbuf_lock, flags);

	printk(KERN_INFO "EEH: MMIO failure (%d) on device: %s %s\n",
	       rets[0], dn->name, dn->full_name);
	event = kmalloc(sizeof(*event), GFP_ATOMIC);
	if (event == NULL) {
		eeh_panic(dev, reset_state);
		return 1;
 	}

	event->dev = dev;
	event->dn = dn;
	event->reset_state = reset_state;

	/* We may or may not be called in an interrupt context */
	spin_lock_irqsave(&eeh_eventlist_lock, flags);
	list_add(&event->list, &eeh_eventlist);
	spin_unlock_irqrestore(&eeh_eventlist_lock, flags);

	/* Most EEH events are due to device driver bugs.  Having
	 * a stack trace will help the device-driver authors figure
	 * out what happened.  So print that out. */
	dump_stack();
	schedule_work(&eeh_event_wq);

	return 0;
}

EXPORT_SYMBOL(eeh_dn_check_failure);

/**
 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
 * @token i/o token, should be address in the form 0xA....
 * @val value, should be all 1's (XXX why do we need this arg??)
 *
 * Check for an eeh failure at the given token address.
 * Check for an EEH failure at the given token address.  Call this
 * routine if the result of a read was all 0xff's and you want to
 * find out if this is due to an EEH slot freeze event.  This routine
 * will query firmware for the EEH status.
 *
 * Note this routine is safe to call in an interrupt context.
 */
unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
{
	unsigned long addr;
	struct pci_dev *dev;
	struct device_node *dn;

	/* Finding the phys addr + pci device; this is pretty quick. */
	addr = eeh_token_to_phys((unsigned long __force) token);
	dev = pci_get_device_by_addr(addr);
	if (!dev)
		return val;

	dn = pci_device_to_OF_node(dev);
	eeh_dn_check_failure (dn, dev);

	pci_dev_put(dev);
	return val;
}

EXPORT_SYMBOL(eeh_check_failure);

struct eeh_early_enable_info {
	unsigned int buid_hi;
	unsigned int buid_lo;
};

/* Enable eeh for the given device node. */
static void *early_enable_eeh(struct device_node *dn, void *data)
{
	struct eeh_early_enable_info *info = data;
	int ret;
	char *status = get_property(dn, "status", NULL);
	u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
	u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
	u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
	u32 *regs;
	int enable;

	dn->eeh_mode = 0;

	if (status && strcmp(status, "ok") != 0)
		return NULL;	/* ignore devices with bad status */

	/* Ignore bad nodes. */
	if (!class_code || !vendor_id || !device_id)
		return NULL;

	/* There is nothing to check on PCI to ISA bridges */
	if (dn->type && !strcmp(dn->type, "isa")) {
		dn->eeh_mode |= EEH_MODE_NOCHECK;
		return NULL;
	}

	/*
	 * Now decide if we are going to "Disable" EEH checking
	 * for this device.  We still run with the EEH hardware active,
	 * but we won't be checking for ff's.  This means a driver
	 * could return bad data (very bad!), an interrupt handler could
	 * hang waiting on status bits that won't change, etc.
	 * But there are a few cases like display devices that make sense.
	 */
	enable = 1;	/* i.e. we will do checking */
	if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
		enable = 0;

	if (!enable)
		dn->eeh_mode |= EEH_MODE_NOCHECK;

	/* Ok... see if this device supports EEH.  Some do, some don't,
	 * and the only way to find out is to check each and every one. */
	regs = (u32 *)get_property(dn, "reg", NULL);
	if (regs) {
		/* First register entry is addr (00BBSS00)  */
		/* Try to enable eeh */
		ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
				regs[0], info->buid_hi, info->buid_lo,
				EEH_ENABLE);
		if (ret == 0) {
			eeh_subsystem_enabled = 1;
			dn->eeh_mode |= EEH_MODE_SUPPORTED;
			dn->eeh_config_addr = regs[0];
#ifdef DEBUG
			printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name);
#endif
		} else {

			/* This device doesn't support EEH, but it may have an
			 * EEH parent, in which case we mark it as supported. */
			if (dn->parent && (dn->parent->eeh_mode & EEH_MODE_SUPPORTED)) {
				/* Parent supports EEH. */
				dn->eeh_mode |= EEH_MODE_SUPPORTED;
				dn->eeh_config_addr = dn->parent->eeh_config_addr;
				return NULL;
			}
		}
	} else {
		printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
		       dn->full_name);
	}

	return NULL; 
}

/*
 * Initialize EEH by trying to enable it for all of the adapters in the system.
 * As a side effect we can determine here if eeh is supported at all.
 * Note that we leave EEH on so failed config cycles won't cause a machine
 * check.  If a user turns off EEH for a particular adapter they are really
 * telling Linux to ignore errors.  Some hardware (e.g. POWER5) won't
 * grant access to a slot if EEH isn't enabled, and so we always enable
 * EEH for all slots/all devices.
 *
 * The eeh-force-off option disables EEH checking globally, for all slots.
 * Even if force-off is set, the EEH hardware is still enabled, so that
 * newer systems can boot.
 */
void __init eeh_init(void)
{
	struct device_node *phb, *np;
	struct eeh_early_enable_info info;

	np = of_find_node_by_path("/rtas");
	if (np == NULL)
		return;

	ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
	ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
	ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
	ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
	ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");

	if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
		return;

	eeh_error_buf_size = rtas_token("rtas-error-log-max");
	if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
		eeh_error_buf_size = 1024;
	}
	if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
		printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
		      "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
		eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
	}

	/* Enable EEH for all adapters.  Note that eeh requires buid's */
	for (phb = of_find_node_by_name(NULL, "pci"); phb;
	     phb = of_find_node_by_name(phb, "pci")) {
		unsigned long buid;

		buid = get_phb_buid(phb);
		if (buid == 0)
			continue;

		info.buid_lo = BUID_LO(buid);
		info.buid_hi = BUID_HI(buid);
		traverse_pci_devices(phb, early_enable_eeh, &info);
	}

	if (eeh_subsystem_enabled)
		printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
	else
		printk(KERN_WARNING "EEH: No capable adapters found\n");
}

/**
 * eeh_add_device_early - enable EEH for the indicated device_node
 * @dn: device node for which to set up EEH
 *
 * This routine must be used to perform EEH initialization for PCI
 * devices that were added after system boot (e.g. hotplug, dlpar).
 * This routine must be called before any i/o is performed to the
 * adapter (inluding any config-space i/o).
 * Whether this actually enables EEH or not for this device depends
 * on the CEC architecture, type of the device, on earlier boot
 * command-line arguments & etc.
 */
void eeh_add_device_early(struct device_node *dn)
{
	struct pci_controller *phb;
	struct eeh_early_enable_info info;

	if (!dn)
		return;
	phb = dn->phb;
	if (NULL == phb || 0 == phb->buid) {
		printk(KERN_WARNING "EEH: Expected buid but found none\n");
		return;
	}

	info.buid_hi = BUID_HI(phb->buid);
	info.buid_lo = BUID_LO(phb->buid);
	early_enable_eeh(dn, &info);
}
EXPORT_SYMBOL(eeh_add_device_early);

/**
 * eeh_add_device_late - perform EEH initialization for the indicated pci device
 * @dev: pci device for which to set up EEH
 *
 * This routine must be used to complete EEH initialization for PCI
 * devices that were added after system boot (e.g. hotplug, dlpar).
 */
void eeh_add_device_late(struct pci_dev *dev)
{
	if (!dev || !eeh_subsystem_enabled)
		return;

#ifdef DEBUG
	printk(KERN_DEBUG "EEH: adding device %s %s\n", pci_name(dev),
	       pci_pretty_name(dev));
#endif

	pci_addr_cache_insert_device (dev);
}
EXPORT_SYMBOL(eeh_add_device_late);

/**
 * eeh_remove_device - undo EEH setup for the indicated pci device
 * @dev: pci device to be removed
 *
 * This routine should be when a device is removed from a running
 * system (e.g. by hotplug or dlpar).
 */
void eeh_remove_device(struct pci_dev *dev)
{
	if (!dev || !eeh_subsystem_enabled)
		return;

	/* Unregister the device with the EEH/PCI address search system */
#ifdef DEBUG
	printk(KERN_DEBUG "EEH: remove device %s %s\n", pci_name(dev),
	       pci_pretty_name(dev));
#endif
	pci_addr_cache_remove_device(dev);
}
EXPORT_SYMBOL(eeh_remove_device);

static int proc_eeh_show(struct seq_file *m, void *v)
{
	unsigned int cpu;
	unsigned long ffs = 0, positives = 0, failures = 0;
	unsigned long resets = 0;

	for_each_cpu(cpu) {
		ffs += per_cpu(total_mmio_ffs, cpu);
		positives += per_cpu(false_positives, cpu);
		failures += per_cpu(ignored_failures, cpu);
		resets += per_cpu(slot_resets, cpu);
	}

	if (0 == eeh_subsystem_enabled) {
		seq_printf(m, "EEH Subsystem is globally disabled\n");
		seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
	} else {
		seq_printf(m, "EEH Subsystem is enabled\n");
		seq_printf(m, "eeh_total_mmio_ffs=%ld\n"
			   "eeh_false_positives=%ld\n"
			   "eeh_ignored_failures=%ld\n"
			   "eeh_slot_resets=%ld\n"
				"eeh_fail_count=%d\n",
			   ffs, positives, failures, resets,
				eeh_fail_count.counter);
	}

	return 0;
}

static int proc_eeh_open(struct inode *inode, struct file *file)
{
	return single_open(file, proc_eeh_show, NULL);
}

static struct file_operations proc_eeh_operations = {
	.open      = proc_eeh_open,
	.read      = seq_read,
	.llseek    = seq_lseek,
	.release   = single_release,
};

static int __init eeh_init_proc(void)
{
	struct proc_dir_entry *e;

	if (systemcfg->platform & PLATFORM_PSERIES) {
		e = create_proc_entry("ppc64/eeh", 0, NULL);
		if (e)
			e->proc_fops = &proc_eeh_operations;
	}

	return 0;
}
__initcall(eeh_init_proc);
OpenPOWER on IntegriCloud