/* * Universal Interface for Intel High Definition Audio Codec * * Copyright (c) 2004 Takashi Iwai * * * This driver is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This driver is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include "hda_codec.h" #include #include #include #include "hda_local.h" MODULE_AUTHOR("Takashi Iwai "); MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec"); MODULE_LICENSE("GPL"); /* * vendor / preset table */ struct hda_vendor_id { unsigned int id; const char *name; }; /* codec vendor labels */ static struct hda_vendor_id hda_vendor_ids[] = { { 0x10ec, "Realtek" }, { 0x1057, "Motorola" }, { 0x11d4, "Analog Devices" }, { 0x13f6, "C-Media" }, { 0x14f1, "Conexant" }, { 0x434d, "C-Media" }, { 0x8384, "SigmaTel" }, {} /* terminator */ }; /* codec presets */ #include "hda_patch.h" /** * snd_hda_codec_read - send a command and get the response * @codec: the HDA codec * @nid: NID to send the command * @direct: direct flag * @verb: the verb to send * @parm: the parameter for the verb * * Send a single command and read the corresponding response. * * Returns the obtained response value, or -1 for an error. */ unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct, unsigned int verb, unsigned int parm) { unsigned int res; mutex_lock(&codec->bus->cmd_mutex); if (! codec->bus->ops.command(codec, nid, direct, verb, parm)) res = codec->bus->ops.get_response(codec); else res = (unsigned int)-1; mutex_unlock(&codec->bus->cmd_mutex); return res; } EXPORT_SYMBOL(snd_hda_codec_read); /** * snd_hda_codec_write - send a single command without waiting for response * @codec: the HDA codec * @nid: NID to send the command * @direct: direct flag * @verb: the verb to send * @parm: the parameter for the verb * * Send a single command without waiting for response. * * Returns 0 if successful, or a negative error code. */ int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct, unsigned int verb, unsigned int parm) { int err; mutex_lock(&codec->bus->cmd_mutex); err = codec->bus->ops.command(codec, nid, direct, verb, parm); mutex_unlock(&codec->bus->cmd_mutex); return err; } EXPORT_SYMBOL(snd_hda_codec_write); /** * snd_hda_sequence_write - sequence writes * @codec: the HDA codec * @seq: VERB array to send * * Send the commands sequentially from the given array. * The array must be terminated with NID=0. */ void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq) { for (; seq->nid; seq++) snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param); } EXPORT_SYMBOL(snd_hda_sequence_write); /** * snd_hda_get_sub_nodes - get the range of sub nodes * @codec: the HDA codec * @nid: NID to parse * @start_id: the pointer to store the start NID * * Parse the NID and store the start NID of its sub-nodes. * Returns the number of sub-nodes. */ int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id) { unsigned int parm; parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT); *start_id = (parm >> 16) & 0x7fff; return (int)(parm & 0x7fff); } EXPORT_SYMBOL(snd_hda_get_sub_nodes); /** * snd_hda_get_connections - get connection list * @codec: the HDA codec * @nid: NID to parse * @conn_list: connection list array * @max_conns: max. number of connections to store * * Parses the connection list of the given widget and stores the list * of NIDs. * * Returns the number of connections, or a negative error code. */ int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *conn_list, int max_conns) { unsigned int parm; int i, conn_len, conns; unsigned int shift, num_elems, mask; hda_nid_t prev_nid; snd_assert(conn_list && max_conns > 0, return -EINVAL); parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN); if (parm & AC_CLIST_LONG) { /* long form */ shift = 16; num_elems = 2; } else { /* short form */ shift = 8; num_elems = 4; } conn_len = parm & AC_CLIST_LENGTH; mask = (1 << (shift-1)) - 1; if (! conn_len) return 0; /* no connection */ if (conn_len == 1) { /* single connection */ parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0); conn_list[0] = parm & mask; return 1; } /* multi connection */ conns = 0; prev_nid = 0; for (i = 0; i < conn_len; i++) { int range_val; hda_nid_t val, n; if (i % num_elems == 0) parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, i); range_val = !! (parm & (1 << (shift-1))); /* ranges */ val = parm & mask; parm >>= shift; if (range_val) { /* ranges between the previous and this one */ if (! prev_nid || prev_nid >= val) { snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", prev_nid, val); continue; } for (n = prev_nid + 1; n <= val; n++) { if (conns >= max_conns) { snd_printk(KERN_ERR "Too many connections\n"); return -EINVAL; } conn_list[conns++] = n; } } else { if (conns >= max_conns) { snd_printk(KERN_ERR "Too many connections\n"); return -EINVAL; } conn_list[conns++] = val; } prev_nid = val; } return conns; } /** * snd_hda_queue_unsol_event - add an unsolicited event to queue * @bus: the BUS * @res: unsolicited event (lower 32bit of RIRB entry) * @res_ex: codec addr and flags (upper 32bit or RIRB entry) * * Adds the given event to the queue. The events are processed in * the workqueue asynchronously. Call this function in the interrupt * hanlder when RIRB receives an unsolicited event. * * Returns 0 if successful, or a negative error code. */ int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex) { struct hda_bus_unsolicited *unsol; unsigned int wp; if ((unsol = bus->unsol) == NULL) return 0; wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE; unsol->wp = wp; wp <<= 1; unsol->queue[wp] = res; unsol->queue[wp + 1] = res_ex; queue_work(unsol->workq, &unsol->work); return 0; } EXPORT_SYMBOL(snd_hda_queue_unsol_event); /* * process queueud unsolicited events */ static void process_unsol_events(void *data) { struct hda_bus *bus = data; struct hda_bus_unsolicited *unsol = bus->unsol; struct hda_codec *codec; unsigned int rp, caddr, res; while (unsol->rp != unsol->wp) { rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE; unsol->rp = rp; rp <<= 1; res = unsol->queue[rp]; caddr = unsol->queue[rp + 1]; if (! (caddr & (1 << 4))) /* no unsolicited event? */ continue; codec = bus->caddr_tbl[caddr & 0x0f]; if (codec && codec->patch_ops.unsol_event) codec->patch_ops.unsol_event(codec, res); } } /* * initialize unsolicited queue */ static int init_unsol_queue(struct hda_bus *bus) { struct hda_bus_unsolicited *unsol; if (bus->unsol) /* already initialized */ return 0; unsol = kzalloc(sizeof(*unsol), GFP_KERNEL); if (! unsol) { snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n"); return -ENOMEM; } unsol->workq = create_singlethread_workqueue("hda_codec"); if (! unsol->workq) { snd_printk(KERN_ERR "hda_codec: can't create workqueue\n"); kfree(unsol); return -ENOMEM; } INIT_WORK(&unsol->work, process_unsol_events, bus); bus->unsol = unsol; return 0; } /* * destructor */ static void snd_hda_codec_free(struct hda_codec *codec); static int snd_hda_bus_free(struct hda_bus *bus) { struct list_head *p, *n; if (! bus) return 0; if (bus->unsol) { destroy_workqueue(bus->unsol->workq); kfree(bus->unsol); } list_for_each_safe(p, n, &bus->codec_list) { struct hda_codec *codec = list_entry(p, struct hda_codec, list); snd_hda_codec_free(codec); } if (bus->ops.private_free) bus->ops.private_free(bus); kfree(bus); return 0; } static int snd_hda_bus_dev_free(struct snd_device *device) { struct hda_bus *bus = device->device_data; return snd_hda_bus_free(bus); } /** * snd_hda_bus_new - create a HDA bus * @card: the card entry * @temp: the template for hda_bus information * @busp: the pointer to store the created bus instance * * Returns 0 if successful, or a negative error code. */ int snd_hda_bus_new(struct snd_card *card, const struct hda_bus_template *temp, struct hda_bus **busp) { struct hda_bus *bus; int err; static struct snd_device_ops dev_ops = { .dev_free = snd_hda_bus_dev_free, }; snd_assert(temp, return -EINVAL); snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL); if (busp) *busp = NULL; bus = kzalloc(sizeof(*bus), GFP_KERNEL); if (bus == NULL) { snd_printk(KERN_ERR "can't allocate struct hda_bus\n"); return -ENOMEM; } bus->card = card; bus->private_data = temp->private_data; bus->pci = temp->pci; bus->modelname = temp->modelname; bus->ops = temp->ops; mutex_init(&bus->cmd_mutex); INIT_LIST_HEAD(&bus->codec_list); if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) { snd_hda_bus_free(bus); return err; } if (busp) *busp = bus; return 0; } EXPORT_SYMBOL(snd_hda_bus_new); /* * find a matching codec preset */ static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec) { const struct hda_codec_preset **tbl, *preset; for (tbl = hda_preset_tables; *tbl; tbl++) { for (preset = *tbl; preset->id; preset++) { u32 mask = preset->mask; if (! mask) mask = ~0; if (preset->id == (codec->vendor_id & mask) && (! preset->rev || preset->rev == codec->revision_id)) return preset; } } return NULL; } /* * snd_hda_get_codec_name - store the codec name */ void snd_hda_get_codec_name(struct hda_codec *codec, char *name, int namelen) { const struct hda_vendor_id *c; const char *vendor = NULL; u16 vendor_id = codec->vendor_id >> 16; char tmp[16]; for (c = hda_vendor_ids; c->id; c++) { if (c->id == vendor_id) { vendor = c->name; break; } } if (! vendor) { sprintf(tmp, "Generic %04x", vendor_id); vendor = tmp; } if (codec->preset && codec->preset->name) snprintf(name, namelen, "%s %s", vendor, codec->preset->name); else snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff); } /* * look for an AFG and MFG nodes */ static void setup_fg_nodes(struct hda_codec *codec) { int i, total_nodes; hda_nid_t nid; total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid); for (i = 0; i < total_nodes; i++, nid++) { switch((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff)) { case AC_GRP_AUDIO_FUNCTION: codec->afg = nid; break; case AC_GRP_MODEM_FUNCTION: codec->mfg = nid; break; default: break; } } } /* * read widget caps for each widget and store in cache */ static int read_widget_caps(struct hda_codec *codec, hda_nid_t fg_node) { int i; hda_nid_t nid; codec->num_nodes = snd_hda_get_sub_nodes(codec, fg_node, &codec->start_nid); codec->wcaps = kmalloc(codec->num_nodes * 4, GFP_KERNEL); if (! codec->wcaps) return -ENOMEM; nid = codec->start_nid; for (i = 0; i < codec->num_nodes; i++, nid++) codec->wcaps[i] = snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP); return 0; } /* * codec destructor */ static void snd_hda_codec_free(struct hda_codec *codec) { if (! codec) return; list_del(&codec->list); codec->bus->caddr_tbl[codec->addr] = NULL; if (codec->patch_ops.free) codec->patch_ops.free(codec); kfree(codec->amp_info); kfree(codec->wcaps); kfree(codec); } static void init_amp_hash(struct hda_codec *codec); /** * snd_hda_codec_new - create a HDA codec * @bus: the bus to assign * @codec_addr: the codec address * @codecp: the pointer to store the generated codec * * Returns 0 if successful, or a negative error code. */ int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr, struct hda_codec **codecp) { struct hda_codec *codec; char component[13]; int err; snd_assert(bus, return -EINVAL); snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL); if (bus->caddr_tbl[codec_addr]) { snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr); return -EBUSY; } codec = kzalloc(sizeof(*codec), GFP_KERNEL); if (codec == NULL) { snd_printk(KERN_ERR "can't allocate struct hda_codec\n"); return -ENOMEM; } codec->bus = bus; codec->addr = codec_addr; mutex_init(&codec->spdif_mutex); init_amp_hash(codec); list_add_tail(&codec->list, &bus->codec_list); bus->caddr_tbl[codec_addr] = codec; codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID); if (codec->vendor_id == -1) /* read again, hopefully the access method was corrected * in the last read... */ codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID); codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID); codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID); setup_fg_nodes(codec); if (! codec->afg && ! codec->mfg) { snd_printdd("hda_codec: no AFG or MFG node found\n"); snd_hda_codec_free(codec); return -ENODEV; } if (read_widget_caps(codec, codec->afg ? codec->afg : codec->mfg) < 0) { snd_printk(KERN_ERR "hda_codec: cannot malloc\n"); snd_hda_codec_free(codec); return -ENOMEM; } if (! codec->subsystem_id) { hda_nid_t nid = codec->afg ? codec->afg : codec->mfg; codec->subsystem_id = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_SUBSYSTEM_ID, 0); } codec->preset = find_codec_preset(codec); if (! *bus->card->mixername) snd_hda_get_codec_name(codec, bus->card->mixername, sizeof(bus->card->mixername)); if (codec->preset && codec->preset->patch) err = codec->preset->patch(codec); else err = snd_hda_parse_generic_codec(codec); if (err < 0) { snd_hda_codec_free(codec); return err; } if (codec->patch_ops.unsol_event) init_unsol_queue(bus); snd_hda_codec_proc_new(codec); sprintf(component, "HDA:%08x", codec->vendor_id); snd_component_add(codec->bus->card, component); if (codecp) *codecp = codec; return 0; } EXPORT_SYMBOL(snd_hda_codec_new); /** * snd_hda_codec_setup_stream - set up the codec for streaming * @codec: the CODEC to set up * @nid: the NID to set up * @stream_tag: stream tag to pass, it's between 0x1 and 0xf. * @channel_id: channel id to pass, zero based. * @format: stream format. */ void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag, int channel_id, int format) { if (! nid) return; snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n", nid, stream_tag, channel_id, format); snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID, (stream_tag << 4) | channel_id); msleep(1); snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format); } EXPORT_SYMBOL(snd_hda_codec_setup_stream); /* * amp access functions */ /* FIXME: more better hash key? */ #define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + ((idx) << 16) + ((dir) << 24)) #define INFO_AMP_CAPS (1<<0) #define INFO_AMP_VOL(ch) (1 << (1 + (ch))) /* initialize the hash table */ static void init_amp_hash(struct hda_codec *codec) { memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash)); codec->num_amp_entries = 0; codec->amp_info_size = 0; codec->amp_info = NULL; } /* query the hash. allocate an entry if not found. */ static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key) { u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash); u16 cur = codec->amp_hash[idx]; struct hda_amp_info *info; while (cur != 0xffff) { info = &codec->amp_info[cur]; if (info->key == key) return info; cur = info->next; } /* add a new hash entry */ if (codec->num_amp_entries >= codec->amp_info_size) { /* reallocate the array */ int new_size = codec->amp_info_size + 64; struct hda_amp_info *new_info = kcalloc(new_size, sizeof(struct hda_amp_info), GFP_KERNEL); if (! new_info) { snd_printk(KERN_ERR "hda_codec: can't malloc amp_info\n"); return NULL; } if (codec->amp_info) { memcpy(new_info, codec->amp_info, codec->amp_info_size * sizeof(struct hda_amp_info)); kfree(codec->amp_info); } codec->amp_info_size = new_size; codec->amp_info = new_info; } cur = codec->num_amp_entries++; info = &codec->amp_info[cur]; info->key = key; info->status = 0; /* not initialized yet */ info->next = codec->amp_hash[idx]; codec->amp_hash[idx] = cur; return info; } /* * query AMP capabilities for the given widget and direction */ static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction) { struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0)); if (! info) return 0; if (! (info->status & INFO_AMP_CAPS)) { if (! (get_wcaps(codec, nid) & AC_WCAP_AMP_OVRD)) nid = codec->afg; info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ? AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP); info->status |= INFO_AMP_CAPS; } return info->amp_caps; } /* * read the current volume to info * if the cache exists, read the cache value. */ static unsigned int get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info, hda_nid_t nid, int ch, int direction, int index) { u32 val, parm; if (info->status & INFO_AMP_VOL(ch)) return info->vol[ch]; parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT; parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT; parm |= index; val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm); info->vol[ch] = val & 0xff; info->status |= INFO_AMP_VOL(ch); return info->vol[ch]; } /* * write the current volume in info to the h/w and update the cache */ static void put_vol_mute(struct hda_codec *codec, struct hda_amp_info *info, hda_nid_t nid, int ch, int direction, int index, int val) { u32 parm; parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT; parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT; parm |= index << AC_AMP_SET_INDEX_SHIFT; parm |= val; snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm); info->vol[ch] = val; } /* * read AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit. */ int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int index) { struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index)); if (! info) return 0; return get_vol_mute(codec, info, nid, ch, direction, index); } /* * update the AMP value, mask = bit mask to set, val = the value */ int snd_hda_codec_amp_update(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int idx, int mask, int val) { struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx)); if (! info) return 0; val &= mask; val |= get_vol_mute(codec, info, nid, ch, direction, idx) & ~mask; if (info->vol[ch] == val && ! codec->in_resume) return 0; put_vol_mute(codec, info, nid, ch, direction, idx, val); return 1; } /* * AMP control callbacks */ /* retrieve parameters from private_value */ #define get_amp_nid(kc) ((kc)->private_value & 0xffff) #define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3) #define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1) #define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf) /* volume */ int snd_hda_mixer_amp_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); u16 nid = get_amp_nid(kcontrol); u8 chs = get_amp_channels(kcontrol); int dir = get_amp_direction(kcontrol); u32 caps; caps = query_amp_caps(codec, nid, dir); caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */ if (! caps) { printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid); return -EINVAL; } uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = chs == 3 ? 2 : 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = caps; return 0; } int snd_hda_mixer_amp_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); hda_nid_t nid = get_amp_nid(kcontrol); int chs = get_amp_channels(kcontrol); int dir = get_amp_direction(kcontrol); int idx = get_amp_index(kcontrol); long *valp = ucontrol->value.integer.value; if (chs & 1) *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f; if (chs & 2) *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f; return 0; } int snd_hda_mixer_amp_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); hda_nid_t nid = get_amp_nid(kcontrol); int chs = get_amp_channels(kcontrol); int dir = get_amp_direction(kcontrol); int idx = get_amp_index(kcontrol); long *valp = ucontrol->value.integer.value; int change = 0; if (chs & 1) { change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx, 0x7f, *valp); valp++; } if (chs & 2) change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx, 0x7f, *valp); return change; } int snd_hda_mixer_amp_tlv(struct snd_kcontrol *kcontrol, int op_flag, unsigned int size, unsigned int __user *_tlv) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); hda_nid_t nid = get_amp_nid(kcontrol); int dir = get_amp_direction(kcontrol); u32 caps, val1, val2; if (size < 4 * sizeof(unsigned int)) return -ENOMEM; caps = query_amp_caps(codec, nid, dir); val2 = (((caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT) + 1) * 25; val1 = -((caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT); val1 = ((int)val1) * ((int)val2); if (put_user(SNDRV_CTL_TLVT_DB_SCALE, _tlv)) return -EFAULT; if (put_user(2 * sizeof(unsigned int), _tlv + 1)) return -EFAULT; if (put_user(val1, _tlv + 2)) return -EFAULT; if (put_user(val2, _tlv + 3)) return -EFAULT; return 0; } /* switch */ int snd_hda_mixer_amp_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { int chs = get_amp_channels(kcontrol); uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; uinfo->count = chs == 3 ? 2 : 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 1; return 0; } int snd_hda_mixer_amp_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); hda_nid_t nid = get_amp_nid(kcontrol); int chs = get_amp_channels(kcontrol); int dir = get_amp_direction(kcontrol); int idx = get_amp_index(kcontrol); long *valp = ucontrol->value.integer.value; if (chs & 1) *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1; if (chs & 2) *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1; return 0; } int snd_hda_mixer_amp_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); hda_nid_t nid = get_amp_nid(kcontrol); int chs = get_amp_channels(kcontrol); int dir = get_amp_direction(kcontrol); int idx = get_amp_index(kcontrol); long *valp = ucontrol->value.integer.value; int change = 0; if (chs & 1) { change = snd_hda_codec_amp_update(codec, nid, 0, dir, idx, 0x80, *valp ? 0 : 0x80); valp++; } if (chs & 2) change |= snd_hda_codec_amp_update(codec, nid, 1, dir, idx, 0x80, *valp ? 0 : 0x80); return change; } /* * bound volume controls * * bind multiple volumes (# indices, from 0) */ #define AMP_VAL_IDX_SHIFT 19 #define AMP_VAL_IDX_MASK (0x0f<<19) int snd_hda_mixer_bind_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); unsigned long pval; int err; mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */ pval = kcontrol->private_value; kcontrol->private_value = pval & ~AMP_VAL_IDX_MASK; /* index 0 */ err = snd_hda_mixer_amp_switch_get(kcontrol, ucontrol); kcontrol->private_value = pval; mutex_unlock(&codec->spdif_mutex); return err; } int snd_hda_mixer_bind_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); unsigned long pval; int i, indices, err = 0, change = 0; mutex_lock(&codec->spdif_mutex); /* reuse spdif_mutex */ pval = kcontrol->private_value; indices = (pval & AMP_VAL_IDX_MASK) >> AMP_VAL_IDX_SHIFT; for (i = 0; i < indices; i++) { kcontrol->private_value = (pval & ~AMP_VAL_IDX_MASK) | (i << AMP_VAL_IDX_SHIFT); err = snd_hda_mixer_amp_switch_put(kcontrol, ucontrol); if (err < 0) break; change |= err; } kcontrol->private_value = pval; mutex_unlock(&codec->spdif_mutex); return err < 0 ? err : change; } /* * SPDIF out controls */ static int snd_hda_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_hda_spdif_cmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL | IEC958_AES0_NONAUDIO | IEC958_AES0_CON_EMPHASIS_5015 | IEC958_AES0_CON_NOT_COPYRIGHT; ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL; return 0; } static int snd_hda_spdif_pmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL | IEC958_AES0_NONAUDIO | IEC958_AES0_PRO_EMPHASIS_5015; return 0; } static int snd_hda_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff; ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff; ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff; ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff; return 0; } /* convert from SPDIF status bits to HDA SPDIF bits * bit 0 (DigEn) is always set zero (to be filled later) */ static unsigned short convert_from_spdif_status(unsigned int sbits) { unsigned short val = 0; if (sbits & IEC958_AES0_PROFESSIONAL) val |= 1 << 6; if (sbits & IEC958_AES0_NONAUDIO) val |= 1 << 5; if (sbits & IEC958_AES0_PROFESSIONAL) { if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015) val |= 1 << 3; } else { if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015) val |= 1 << 3; if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT)) val |= 1 << 4; if (sbits & (IEC958_AES1_CON_ORIGINAL << 8)) val |= 1 << 7; val |= sbits & (IEC958_AES1_CON_CATEGORY << 8); } return val; } /* convert to SPDIF status bits from HDA SPDIF bits */ static unsigned int convert_to_spdif_status(unsigned short val) { unsigned int sbits = 0; if (val & (1 << 5)) sbits |= IEC958_AES0_NONAUDIO; if (val & (1 << 6)) sbits |= IEC958_AES0_PROFESSIONAL; if (sbits & IEC958_AES0_PROFESSIONAL) { if (sbits & (1 << 3)) sbits |= IEC958_AES0_PRO_EMPHASIS_5015; } else { if (val & (1 << 3)) sbits |= IEC958_AES0_CON_EMPHASIS_5015; if (! (val & (1 << 4))) sbits |= IEC958_AES0_CON_NOT_COPYRIGHT; if (val & (1 << 7)) sbits |= (IEC958_AES1_CON_ORIGINAL << 8); sbits |= val & (0x7f << 8); } return sbits; } static int snd_hda_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); hda_nid_t nid = kcontrol->private_value; unsigned short val; int change; mutex_lock(&codec->spdif_mutex); codec->spdif_status = ucontrol->value.iec958.status[0] | ((unsigned int)ucontrol->value.iec958.status[1] << 8) | ((unsigned int)ucontrol->value.iec958.status[2] << 16) | ((unsigned int)ucontrol->value.iec958.status[3] << 24); val = convert_from_spdif_status(codec->spdif_status); val |= codec->spdif_ctls & 1; change = codec->spdif_ctls != val; codec->spdif_ctls = val; if (change || codec->in_resume) { snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff); snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8); } mutex_unlock(&codec->spdif_mutex); return change; } static int snd_hda_spdif_out_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 1; return 0; } static int snd_hda_spdif_out_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = codec->spdif_ctls & 1; return 0; } static int snd_hda_spdif_out_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); hda_nid_t nid = kcontrol->private_value; unsigned short val; int change; mutex_lock(&codec->spdif_mutex); val = codec->spdif_ctls & ~1; if (ucontrol->value.integer.value[0]) val |= 1; change = codec->spdif_ctls != val; if (change || codec->in_resume) { codec->spdif_ctls = val; snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff); snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT | AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80)); } mutex_unlock(&codec->spdif_mutex); return change; } static struct snd_kcontrol_new dig_mixes[] = { { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), .info = snd_hda_spdif_mask_info, .get = snd_hda_spdif_cmask_get, }, { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK), .info = snd_hda_spdif_mask_info, .get = snd_hda_spdif_pmask_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), .info = snd_hda_spdif_mask_info, .get = snd_hda_spdif_default_get, .put = snd_hda_spdif_default_put, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), .info = snd_hda_spdif_out_switch_info, .get = snd_hda_spdif_out_switch_get, .put = snd_hda_spdif_out_switch_put, }, { } /* end */ }; /** * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls * @codec: the HDA codec * @nid: audio out widget NID * * Creates controls related with the SPDIF output. * Called from each patch supporting the SPDIF out. * * Returns 0 if successful, or a negative error code. */ int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid) { int err; struct snd_kcontrol *kctl; struct snd_kcontrol_new *dig_mix; for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) { kctl = snd_ctl_new1(dig_mix, codec); kctl->private_value = nid; if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0) return err; } codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0); codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls); return 0; } /* * SPDIF input */ #define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info static int snd_hda_spdif_in_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = codec->spdif_in_enable; return 0; } static int snd_hda_spdif_in_switch_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); hda_nid_t nid = kcontrol->private_value; unsigned int val = !!ucontrol->value.integer.value[0]; int change; mutex_lock(&codec->spdif_mutex); change = codec->spdif_in_enable != val; if (change || codec->in_resume) { codec->spdif_in_enable = val; snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val); } mutex_unlock(&codec->spdif_mutex); return change; } static int snd_hda_spdif_in_status_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct hda_codec *codec = snd_kcontrol_chip(kcontrol); hda_nid_t nid = kcontrol->private_value; unsigned short val; unsigned int sbits; val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0); sbits = convert_to_spdif_status(val); ucontrol->value.iec958.status[0] = sbits; ucontrol->value.iec958.status[1] = sbits >> 8; ucontrol->value.iec958.status[2] = sbits >> 16; ucontrol->value.iec958.status[3] = sbits >> 24; return 0; } static struct snd_kcontrol_new dig_in_ctls[] = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), .info = snd_hda_spdif_in_switch_info, .get = snd_hda_spdif_in_switch_get, .put = snd_hda_spdif_in_switch_put, }, { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT), .info = snd_hda_spdif_mask_info, .get = snd_hda_spdif_in_status_get, }, { } /* end */ }; /** * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls * @codec: the HDA codec * @nid: audio in widget NID * * Creates controls related with the SPDIF input. * Called from each patch supporting the SPDIF in. * * Returns 0 if successful, or a negative error code. */ int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid) { int err; struct snd_kcontrol *kctl; struct snd_kcontrol_new *dig_mix; for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) { kctl = snd_ctl_new1(dig_mix, codec); kctl->private_value = nid; if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0) return err; } codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1; return 0; } /* * set power state of the codec */ static void hda_set_power_state(struct hda_codec *codec, hda_nid_t fg, unsigned int power_state) { hda_nid_t nid, nid_start; int nodes; snd_hda_codec_write(codec, fg, 0, AC_VERB_SET_POWER_STATE, power_state); nodes = snd_hda_get_sub_nodes(codec, fg, &nid_start); for (nid = nid_start; nid < nodes + nid_start; nid++) { if (get_wcaps(codec, nid) & AC_WCAP_POWER) snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_POWER_STATE, power_state); } if (power_state == AC_PWRST_D0) msleep(10); } /** * snd_hda_build_controls - build mixer controls * @bus: the BUS * * Creates mixer controls for each codec included in the bus. * * Returns 0 if successful, otherwise a negative error code. */ int snd_hda_build_controls(struct hda_bus *bus) { struct list_head *p; /* build controls */ list_for_each(p, &bus->codec_list) { struct hda_codec *codec = list_entry(p, struct hda_codec, list); int err; if (! codec->patch_ops.build_controls) continue; err = codec->patch_ops.build_controls(codec); if (err < 0) return err; } /* initialize */ list_for_each(p, &bus->codec_list) { struct hda_codec *codec = list_entry(p, struct hda_codec, list); int err; hda_set_power_state(codec, codec->afg ? codec->afg : codec->mfg, AC_PWRST_D0); if (! codec->patch_ops.init) continue; err = codec->patch_ops.init(codec); if (err < 0) return err; } return 0; } EXPORT_SYMBOL(snd_hda_build_controls); /* * stream formats */ struct hda_rate_tbl { unsigned int hz; unsigned int alsa_bits; unsigned int hda_fmt; }; static struct hda_rate_tbl rate_bits[] = { /* rate in Hz, ALSA rate bitmask, HDA format value */ /* autodetected value used in snd_hda_query_supported_pcm */ { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */ { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */ { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */ { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */ { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */ { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */ { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */ { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */ { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */ { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */ { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */ /* not autodetected value */ { 9600, SNDRV_PCM_RATE_KNOT, 0x0400 }, /* 1/5 x 48 */ { 0 } /* terminator */ }; /** * snd_hda_calc_stream_format - calculate format bitset * @rate: the sample rate * @channels: the number of channels * @format: the PCM format (SNDRV_PCM_FORMAT_XXX) * @maxbps: the max. bps * * Calculate the format bitset from the given rate, channels and th PCM format. * * Return zero if invalid. */ unsigned int snd_hda_calc_stream_format(unsigned int rate, unsigned int channels, unsigned int format, unsigned int maxbps) { int i; unsigned int val = 0; for (i = 0; rate_bits[i].hz; i++) if (rate_bits[i].hz == rate) { val = rate_bits[i].hda_fmt; break; } if (! rate_bits[i].hz) { snd_printdd("invalid rate %d\n", rate); return 0; } if (channels == 0 || channels > 8) { snd_printdd("invalid channels %d\n", channels); return 0; } val |= channels - 1; switch (snd_pcm_format_width(format)) { case 8: val |= 0x00; break; case 16: val |= 0x10; break; case 20: case 24: case 32: if (maxbps >= 32) val |= 0x40; else if (maxbps >= 24) val |= 0x30; else val |= 0x20; break; default: snd_printdd("invalid format width %d\n", snd_pcm_format_width(format)); return 0; } return val; } EXPORT_SYMBOL(snd_hda_calc_stream_format); /** * snd_hda_query_supported_pcm - query the supported PCM rates and formats * @codec: the HDA codec * @nid: NID to query * @ratesp: the pointer to store the detected rate bitflags * @formatsp: the pointer to store the detected formats * @bpsp: the pointer to store the detected format widths * * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp * or @bsps argument is ignored. * * Returns 0 if successful, otherwise a negative error code. */ int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid, u32 *ratesp, u64 *formatsp, unsigned int *bpsp) { int i; unsigned int val, streams; val = 0; if (nid != codec->afg && (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) { val = snd_hda_param_read(codec, nid, AC_PAR_PCM); if (val == -1) return -EIO; } if (! val) val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM); if (ratesp) { u32 rates = 0; for (i = 0; rate_bits[i].hz; i++) { if (val & (1 << i)) rates |= rate_bits[i].alsa_bits; } *ratesp = rates; } if (formatsp || bpsp) { u64 formats = 0; unsigned int bps; unsigned int wcaps; wcaps = get_wcaps(codec, nid); streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM); if (streams == -1) return -EIO; if (! streams) { streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM); if (streams == -1) return -EIO; } bps = 0; if (streams & AC_SUPFMT_PCM) { if (val & AC_SUPPCM_BITS_8) { formats |= SNDRV_PCM_FMTBIT_U8; bps = 8; } if (val & AC_SUPPCM_BITS_16) { formats |= SNDRV_PCM_FMTBIT_S16_LE; bps = 16; } if (wcaps & AC_WCAP_DIGITAL) { if (val & AC_SUPPCM_BITS_32) formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE; if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24)) formats |= SNDRV_PCM_FMTBIT_S32_LE; if (val & AC_SUPPCM_BITS_24) bps = 24; else if (val & AC_SUPPCM_BITS_20) bps = 20; } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) { formats |= SNDRV_PCM_FMTBIT_S32_LE; if (val & AC_SUPPCM_BITS_32) bps = 32; else if (val & AC_SUPPCM_BITS_20) bps = 20; else if (val & AC_SUPPCM_BITS_24) bps = 24; } } else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */ formats |= SNDRV_PCM_FMTBIT_FLOAT_LE; bps = 32; } else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */ /* temporary hack: we have still no proper support * for the direct AC3 stream... */ formats |= SNDRV_PCM_FMTBIT_U8; bps = 8; } if (formatsp) *formatsp = formats; if (bpsp) *bpsp = bps; } return 0; } /** * snd_hda_is_supported_format - check whether the given node supports the format val * * Returns 1 if supported, 0 if not. */ int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid, unsigned int format) { int i; unsigned int val = 0, rate, stream; if (nid != codec->afg && (get_wcaps(codec, nid) & AC_WCAP_FORMAT_OVRD)) { val = snd_hda_param_read(codec, nid, AC_PAR_PCM); if (val == -1) return 0; } if (! val) { val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM); if (val == -1) return 0; } rate = format & 0xff00; for (i = 0; rate_bits[i].hz; i++) if (rate_bits[i].hda_fmt == rate) { if (val & (1 << i)) break; return 0; } if (! rate_bits[i].hz) return 0; stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM); if (stream == -1) return 0; if (! stream && nid != codec->afg) stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM); if (! stream || stream == -1) return 0; if (stream & AC_SUPFMT_PCM) { switch (format & 0xf0) { case 0x00: if (! (val & AC_SUPPCM_BITS_8)) return 0; break; case 0x10: if (! (val & AC_SUPPCM_BITS_16)) return 0; break; case 0x20: if (! (val & AC_SUPPCM_BITS_20)) return 0; break; case 0x30: if (! (val & AC_SUPPCM_BITS_24)) return 0; break; case 0x40: if (! (val & AC_SUPPCM_BITS_32)) return 0; break; default: return 0; } } else { /* FIXME: check for float32 and AC3? */ } return 1; } /* * PCM stuff */ static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo, struct hda_codec *codec, struct snd_pcm_substream *substream) { return 0; } static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo, struct hda_codec *codec, unsigned int stream_tag, unsigned int format, struct snd_pcm_substream *substream) { snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format); return 0; } static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo, struct hda_codec *codec, struct snd_pcm_substream *substream) { snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0); return 0; } static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info) { if (info->nid) { /* query support PCM information from the given NID */ if (! info->rates || ! info->formats) snd_hda_query_supported_pcm(codec, info->nid, info->rates ? NULL : &info->rates, info->formats ? NULL : &info->formats, info->maxbps ? NULL : &info->maxbps); } if (info->ops.open == NULL) info->ops.open = hda_pcm_default_open_close; if (info->ops.close == NULL) info->ops.close = hda_pcm_default_open_close; if (info->ops.prepare == NULL) { snd_assert(info->nid, return -EINVAL); info->ops.prepare = hda_pcm_default_prepare; } if (info->ops.cleanup == NULL) { snd_assert(info->nid, return -EINVAL); info->ops.cleanup = hda_pcm_default_cleanup; } return 0; } /** * snd_hda_build_pcms - build PCM information * @bus: the BUS * * Create PCM information for each codec included in the bus. * * The build_pcms codec patch is requested to set up codec->num_pcms and * codec->pcm_info properly. The array is referred by the top-level driver * to create its PCM instances. * The allocated codec->pcm_info should be released in codec->patch_ops.free * callback. * * At least, substreams, channels_min and channels_max must be filled for * each stream. substreams = 0 indicates that the stream doesn't exist. * When rates and/or formats are zero, the supported values are queried * from the given nid. The nid is used also by the default ops.prepare * and ops.cleanup callbacks. * * The driver needs to call ops.open in its open callback. Similarly, * ops.close is supposed to be called in the close callback. * ops.prepare should be called in the prepare or hw_params callback * with the proper parameters for set up. * ops.cleanup should be called in hw_free for clean up of streams. * * This function returns 0 if successfull, or a negative error code. */ int snd_hda_build_pcms(struct hda_bus *bus) { struct list_head *p; list_for_each(p, &bus->codec_list) { struct hda_codec *codec = list_entry(p, struct hda_codec, list); unsigned int pcm, s; int err; if (! codec->patch_ops.build_pcms) continue; err = codec->patch_ops.build_pcms(codec); if (err < 0) return err; for (pcm = 0; pcm < codec->num_pcms; pcm++) { for (s = 0; s < 2; s++) { struct hda_pcm_stream *info; info = &codec->pcm_info[pcm].stream[s]; if (! info->substreams) continue; err = set_pcm_default_values(codec, info); if (err < 0) return err; } } } return 0; } EXPORT_SYMBOL(snd_hda_build_pcms); /** * snd_hda_check_board_config - compare the current codec with the config table * @codec: the HDA codec * @tbl: configuration table, terminated by null entries * * Compares the modelname or PCI subsystem id of the current codec with the * given configuration table. If a matching entry is found, returns its * config value (supposed to be 0 or positive). * * If no entries are matching, the function returns a negative value. */ int snd_hda_check_board_config(struct hda_codec *codec, const struct hda_board_config *tbl) { const struct hda_board_config *c; if (codec->bus->modelname) { for (c = tbl; c->modelname || c->pci_subvendor; c++) { if (c->modelname && ! strcmp(codec->bus->modelname, c->modelname)) { snd_printd(KERN_INFO "hda_codec: model '%s' is selected\n", c->modelname); return c->config; } } } if (codec->bus->pci) { u16 subsystem_vendor, subsystem_device; pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_VENDOR_ID, &subsystem_vendor); pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_ID, &subsystem_device); for (c = tbl; c->modelname || c->pci_subvendor; c++) { if (c->pci_subvendor == subsystem_vendor && (! c->pci_subdevice /* all match */|| (c->pci_subdevice == subsystem_device))) { snd_printdd(KERN_INFO "hda_codec: PCI %x:%x, codec config %d is selected\n", subsystem_vendor, subsystem_device, c->config); return c->config; } } } return -1; } /** * snd_hda_add_new_ctls - create controls from the array * @codec: the HDA codec * @knew: the array of struct snd_kcontrol_new * * This helper function creates and add new controls in the given array. * The array must be terminated with an empty entry as terminator. * * Returns 0 if successful, or a negative error code. */ int snd_hda_add_new_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew) { int err; for (; knew->name; knew++) { struct snd_kcontrol *kctl; kctl = snd_ctl_new1(knew, codec); if (! kctl) return -ENOMEM; err = snd_ctl_add(codec->bus->card, kctl); if (err < 0) { if (! codec->addr) return err; kctl = snd_ctl_new1(knew, codec); if (! kctl) return -ENOMEM; kctl->id.device = codec->addr; if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0) return err; } } return 0; } /* * Channel mode helper */ int snd_hda_ch_mode_info(struct hda_codec *codec, struct snd_ctl_elem_info *uinfo, const struct hda_channel_mode *chmode, int num_chmodes) { uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = num_chmodes; if (uinfo->value.enumerated.item >= num_chmodes) uinfo->value.enumerated.item = num_chmodes - 1; sprintf(uinfo->value.enumerated.name, "%dch", chmode[uinfo->value.enumerated.item].channels); return 0; } int snd_hda_ch_mode_get(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol, const struct hda_channel_mode *chmode, int num_chmodes, int max_channels) { int i; for (i = 0; i < num_chmodes; i++) { if (max_channels == chmode[i].channels) { ucontrol->value.enumerated.item[0] = i; break; } } return 0; } int snd_hda_ch_mode_put(struct hda_codec *codec, struct snd_ctl_elem_value *ucontrol, const struct hda_channel_mode *chmode, int num_chmodes, int *max_channelsp) { unsigned int mode; mode = ucontrol->value.enumerated.item[0]; snd_assert(mode < num_chmodes, return -EINVAL); if (*max_channelsp == chmode[mode].channels && ! codec->in_resume) return 0; /* change the current channel setting */ *max_channelsp = chmode[mode].channels; if (chmode[mode].sequence) snd_hda_sequence_write(codec, chmode[mode].sequence); return 1; } /* * input MUX helper */ int snd_hda_input_mux_info(const struct hda_input_mux *imux, struct snd_ctl_elem_info *uinfo) { unsigned int index; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = imux->num_items; index = uinfo->value.enumerated.item; if (index >= imux->num_items) index = imux->num_items - 1; strcpy(uinfo->value.enumerated.name, imux->items[index].label); return 0; } int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux, struct snd_ctl_elem_value *ucontrol, hda_nid_t nid, unsigned int *cur_val) { unsigned int idx; idx = ucontrol->value.enumerated.item[0]; if (idx >= imux->num_items) idx = imux->num_items - 1; if (*cur_val == idx && ! codec->in_resume) return 0; snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL, imux->items[idx].index); *cur_val = idx; return 1; } /* * Multi-channel / digital-out PCM helper functions */ /* * open the digital out in the exclusive mode */ int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout) { mutex_lock(&codec->spdif_mutex); if (mout->dig_out_used) { mutex_unlock(&codec->spdif_mutex); return -EBUSY; /* already being used */ } mout->dig_out_used = HDA_DIG_EXCLUSIVE; mutex_unlock(&codec->spdif_mutex); return 0; } /* * release the digital out */ int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout) { mutex_lock(&codec->spdif_mutex); mout->dig_out_used = 0; mutex_unlock(&codec->spdif_mutex); return 0; } /* * set up more restrictions for analog out */ int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout, struct snd_pcm_substream *substream) { substream->runtime->hw.channels_max = mout->max_channels; return snd_pcm_hw_constraint_step(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 2); } /* * set up the i/o for analog out * when the digital out is available, copy the front out to digital out, too. */ int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout, unsigned int stream_tag, unsigned int format, struct snd_pcm_substream *substream) { hda_nid_t *nids = mout->dac_nids; int chs = substream->runtime->channels; int i; mutex_lock(&codec->spdif_mutex); if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) { if (chs == 2 && snd_hda_is_supported_format(codec, mout->dig_out_nid, format) && ! (codec->spdif_status & IEC958_AES0_NONAUDIO)) { mout->dig_out_used = HDA_DIG_ANALOG_DUP; /* setup digital receiver */ snd_hda_codec_setup_stream(codec, mout->dig_out_nid, stream_tag, 0, format); } else { mout->dig_out_used = 0; snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0); } } mutex_unlock(&codec->spdif_mutex); /* front */ snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format); if (mout->hp_nid && mout->hp_nid != nids[HDA_FRONT]) /* headphone out will just decode front left/right (stereo) */ snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format); /* extra outputs copied from front */ for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++) if (mout->extra_out_nid[i]) snd_hda_codec_setup_stream(codec, mout->extra_out_nid[i], stream_tag, 0, format); /* surrounds */ for (i = 1; i < mout->num_dacs; i++) { if (chs >= (i + 1) * 2) /* independent out */ snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2, format); else /* copy front */ snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0, format); } return 0; } /* * clean up the setting for analog out */ int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout) { hda_nid_t *nids = mout->dac_nids; int i; for (i = 0; i < mout->num_dacs; i++) snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0); if (mout->hp_nid) snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0); for (i = 0; i < ARRAY_SIZE(mout->extra_out_nid); i++) if (mout->extra_out_nid[i]) snd_hda_codec_setup_stream(codec, mout->extra_out_nid[i], 0, 0, 0); mutex_lock(&codec->spdif_mutex); if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) { snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0); mout->dig_out_used = 0; } mutex_unlock(&codec->spdif_mutex); return 0; } /* * Helper for automatic ping configuration */ static int is_in_nid_list(hda_nid_t nid, hda_nid_t *list) { for (; *list; list++) if (*list == nid) return 1; return 0; } /* * Parse all pin widgets and store the useful pin nids to cfg * * The number of line-outs or any primary output is stored in line_outs, * and the corresponding output pins are assigned to line_out_pins[], * in the order of front, rear, CLFE, side, ... * * If more extra outputs (speaker and headphone) are found, the pins are * assisnged to hp_pin and speaker_pins[], respectively. If no line-out jack * is detected, one of speaker of HP pins is assigned as the primary * output, i.e. to line_out_pins[0]. So, line_outs is always positive * if any analog output exists. * * The analog input pins are assigned to input_pins array. * The digital input/output pins are assigned to dig_in_pin and dig_out_pin, * respectively. */ int snd_hda_parse_pin_def_config(struct hda_codec *codec, struct auto_pin_cfg *cfg, hda_nid_t *ignore_nids) { hda_nid_t nid, nid_start; int i, j, nodes; short seq, assoc_line_out, sequences[ARRAY_SIZE(cfg->line_out_pins)]; memset(cfg, 0, sizeof(*cfg)); memset(sequences, 0, sizeof(sequences)); assoc_line_out = 0; nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid_start); for (nid = nid_start; nid < nodes + nid_start; nid++) { unsigned int wid_caps = get_wcaps(codec, nid); unsigned int wid_type = (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT; unsigned int def_conf; short assoc, loc; /* read all default configuration for pin complex */ if (wid_type != AC_WID_PIN) continue; /* ignore the given nids (e.g. pc-beep returns error) */ if (ignore_nids && is_in_nid_list(nid, ignore_nids)) continue; def_conf = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0); if (get_defcfg_connect(def_conf) == AC_JACK_PORT_NONE) continue; loc = get_defcfg_location(def_conf); switch (get_defcfg_device(def_conf)) { case AC_JACK_LINE_OUT: seq = get_defcfg_sequence(def_conf); assoc = get_defcfg_association(def_conf); if (! assoc) continue; if (! assoc_line_out) assoc_line_out = assoc; else if (assoc_line_out != assoc) continue; if (cfg->line_outs >= ARRAY_SIZE(cfg->line_out_pins)) continue; cfg->line_out_pins[cfg->line_outs] = nid; sequences[cfg->line_outs] = seq; cfg->line_outs++; break; case AC_JACK_SPEAKER: if (cfg->speaker_outs >= ARRAY_SIZE(cfg->speaker_pins)) continue; cfg->speaker_pins[cfg->speaker_outs] = nid; cfg->speaker_outs++; break; case AC_JACK_HP_OUT: cfg->hp_pin = nid; break; case AC_JACK_MIC_IN: if (loc == AC_JACK_LOC_FRONT) cfg->input_pins[AUTO_PIN_FRONT_MIC] = nid; else cfg->input_pins[AUTO_PIN_MIC] = nid; break; case AC_JACK_LINE_IN: if (loc == AC_JACK_LOC_FRONT) cfg->input_pins[AUTO_PIN_FRONT_LINE] = nid; else cfg->input_pins[AUTO_PIN_LINE] = nid; break; case AC_JACK_CD: cfg->input_pins[AUTO_PIN_CD] = nid; break; case AC_JACK_AUX: cfg->input_pins[AUTO_PIN_AUX] = nid; break; case AC_JACK_SPDIF_OUT: cfg->dig_out_pin = nid; break; case AC_JACK_SPDIF_IN: cfg->dig_in_pin = nid; break; } } /* sort by sequence */ for (i = 0; i < cfg->line_outs; i++) for (j = i + 1; j < cfg->line_outs; j++) if (sequences[i] > sequences[j]) { seq = sequences[i]; sequences[i] = sequences[j]; sequences[j] = seq; nid = cfg->line_out_pins[i]; cfg->line_out_pins[i] = cfg->line_out_pins[j]; cfg->line_out_pins[j] = nid; } /* Reorder the surround channels * ALSA sequence is front/surr/clfe/side * HDA sequence is: * 4-ch: front/surr => OK as it is * 6-ch: front/clfe/surr * 8-ch: front/clfe/side/surr */ switch (cfg->line_outs) { case 3: nid = cfg->line_out_pins[1]; cfg->line_out_pins[1] = cfg->line_out_pins[2]; cfg->line_out_pins[2] = nid; break; case 4: nid = cfg->line_out_pins[1]; cfg->line_out_pins[1] = cfg->line_out_pins[3]; cfg->line_out_pins[3] = cfg->line_out_pins[2]; cfg->line_out_pins[2] = nid; break; } /* * debug prints of the parsed results */ snd_printd("autoconfig: line_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n", cfg->line_outs, cfg->line_out_pins[0], cfg->line_out_pins[1], cfg->line_out_pins[2], cfg->line_out_pins[3], cfg->line_out_pins[4]); snd_printd(" speaker_outs=%d (0x%x/0x%x/0x%x/0x%x/0x%x)\n", cfg->speaker_outs, cfg->speaker_pins[0], cfg->speaker_pins[1], cfg->speaker_pins[2], cfg->speaker_pins[3], cfg->speaker_pins[4]); snd_printd(" hp=0x%x, dig_out=0x%x, din_in=0x%x\n", cfg->hp_pin, cfg->dig_out_pin, cfg->dig_in_pin); snd_printd(" inputs: mic=0x%x, fmic=0x%x, line=0x%x, fline=0x%x," " cd=0x%x, aux=0x%x\n", cfg->input_pins[AUTO_PIN_MIC], cfg->input_pins[AUTO_PIN_FRONT_MIC], cfg->input_pins[AUTO_PIN_LINE], cfg->input_pins[AUTO_PIN_FRONT_LINE], cfg->input_pins[AUTO_PIN_CD], cfg->input_pins[AUTO_PIN_AUX]); /* * FIX-UP: if no line-outs are detected, try to use speaker or HP pin * as a primary output */ if (! cfg->line_outs) { if (cfg->speaker_outs) { cfg->line_outs = cfg->speaker_outs; memcpy(cfg->line_out_pins, cfg->speaker_pins, sizeof(cfg->speaker_pins)); cfg->speaker_outs = 0; memset(cfg->speaker_pins, 0, sizeof(cfg->speaker_pins)); } else if (cfg->hp_pin) { cfg->line_outs = 1; cfg->line_out_pins[0] = cfg->hp_pin; cfg->hp_pin = 0; } } return 0; } /* labels for input pins */ const char *auto_pin_cfg_labels[AUTO_PIN_LAST] = { "Mic", "Front Mic", "Line", "Front Line", "CD", "Aux" }; #ifdef CONFIG_PM /* * power management */ /** * snd_hda_suspend - suspend the codecs * @bus: the HDA bus * @state: suspsend state * * Returns 0 if successful. */ int snd_hda_suspend(struct hda_bus *bus, pm_message_t state) { struct list_head *p; /* FIXME: should handle power widget capabilities */ list_for_each(p, &bus->codec_list) { struct hda_codec *codec = list_entry(p, struct hda_codec, list); if (codec->patch_ops.suspend) codec->patch_ops.suspend(codec, state); hda_set_power_state(codec, codec->afg ? codec->afg : codec->mfg, AC_PWRST_D3); } return 0; } EXPORT_SYMBOL(snd_hda_suspend); /** * snd_hda_resume - resume the codecs * @bus: the HDA bus * @state: resume state * * Returns 0 if successful. */ int snd_hda_resume(struct hda_bus *bus) { struct list_head *p; list_for_each(p, &bus->codec_list) { struct hda_codec *codec = list_entry(p, struct hda_codec, list); hda_set_power_state(codec, codec->afg ? codec->afg : codec->mfg, AC_PWRST_D0); if (codec->patch_ops.resume) codec->patch_ops.resume(codec); } return 0; } EXPORT_SYMBOL(snd_hda_resume); /** * snd_hda_resume_ctls - resume controls in the new control list * @codec: the HDA codec * @knew: the array of struct snd_kcontrol_new * * This function resumes the mixer controls in the struct snd_kcontrol_new array, * originally for snd_hda_add_new_ctls(). * The array must be terminated with an empty entry as terminator. */ int snd_hda_resume_ctls(struct hda_codec *codec, struct snd_kcontrol_new *knew) { struct snd_ctl_elem_value *val; val = kmalloc(sizeof(*val), GFP_KERNEL); if (! val) return -ENOMEM; codec->in_resume = 1; for (; knew->name; knew++) { int i, count; count = knew->count ? knew->count : 1; for (i = 0; i < count; i++) { memset(val, 0, sizeof(*val)); val->id.iface = knew->iface; val->id.device = knew->device; val->id.subdevice = knew->subdevice; strcpy(val->id.name, knew->name); val->id.index = knew->index ? knew->index : i; /* Assume that get callback reads only from cache, * not accessing to the real hardware */ if (snd_ctl_elem_read(codec->bus->card, val) < 0) continue; snd_ctl_elem_write(codec->bus->card, NULL, val); } } codec->in_resume = 0; kfree(val); return 0; } /** * snd_hda_resume_spdif_out - resume the digital out * @codec: the HDA codec */ int snd_hda_resume_spdif_out(struct hda_codec *codec) { return snd_hda_resume_ctls(codec, dig_mixes); } /** * snd_hda_resume_spdif_in - resume the digital in * @codec: the HDA codec */ int snd_hda_resume_spdif_in(struct hda_codec *codec) { return snd_hda_resume_ctls(codec, dig_in_ctls); } #endif /* * INIT part */ static int __init alsa_hda_init(void) { return 0; } static void __exit alsa_hda_exit(void) { } module_init(alsa_hda_init) module_exit(alsa_hda_exit)