/* * Copyright (c) 2007-2014 Nicira, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "datapath.h" #include "flow.h" #include "vport.h" static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, struct sw_flow_key *key, const struct nlattr *attr, int len); struct deferred_action { struct sk_buff *skb; const struct nlattr *actions; /* Store pkt_key clone when creating deferred action. */ struct sw_flow_key pkt_key; }; #define DEFERRED_ACTION_FIFO_SIZE 10 struct action_fifo { int head; int tail; /* Deferred action fifo queue storage. */ struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE]; }; static struct action_fifo __percpu *action_fifos; static DEFINE_PER_CPU(int, exec_actions_level); static void action_fifo_init(struct action_fifo *fifo) { fifo->head = 0; fifo->tail = 0; } static bool action_fifo_is_empty(const struct action_fifo *fifo) { return (fifo->head == fifo->tail); } static struct deferred_action *action_fifo_get(struct action_fifo *fifo) { if (action_fifo_is_empty(fifo)) return NULL; return &fifo->fifo[fifo->tail++]; } static struct deferred_action *action_fifo_put(struct action_fifo *fifo) { if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1) return NULL; return &fifo->fifo[fifo->head++]; } /* Return true if fifo is not full */ static struct deferred_action *add_deferred_actions(struct sk_buff *skb, const struct sw_flow_key *key, const struct nlattr *attr) { struct action_fifo *fifo; struct deferred_action *da; fifo = this_cpu_ptr(action_fifos); da = action_fifo_put(fifo); if (da) { da->skb = skb; da->actions = attr; da->pkt_key = *key; } return da; } static void invalidate_flow_key(struct sw_flow_key *key) { key->eth.type = htons(0); } static bool is_flow_key_valid(const struct sw_flow_key *key) { return !!key->eth.type; } static int make_writable(struct sk_buff *skb, int write_len) { if (!pskb_may_pull(skb, write_len)) return -ENOMEM; if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) return 0; return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); } static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key, const struct ovs_action_push_mpls *mpls) { __be32 *new_mpls_lse; struct ethhdr *hdr; /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */ if (skb->encapsulation) return -ENOTSUPP; if (skb_cow_head(skb, MPLS_HLEN) < 0) return -ENOMEM; skb_push(skb, MPLS_HLEN); memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), skb->mac_len); skb_reset_mac_header(skb); new_mpls_lse = (__be32 *)skb_mpls_header(skb); *new_mpls_lse = mpls->mpls_lse; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse, MPLS_HLEN, 0)); hdr = eth_hdr(skb); hdr->h_proto = mpls->mpls_ethertype; skb_set_inner_protocol(skb, skb->protocol); skb->protocol = mpls->mpls_ethertype; invalidate_flow_key(key); return 0; } static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key, const __be16 ethertype) { struct ethhdr *hdr; int err; err = make_writable(skb, skb->mac_len + MPLS_HLEN); if (unlikely(err)) return err; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_sub(skb->csum, csum_partial(skb_mpls_header(skb), MPLS_HLEN, 0)); memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), skb->mac_len); __skb_pull(skb, MPLS_HLEN); skb_reset_mac_header(skb); /* skb_mpls_header() is used to locate the ethertype * field correctly in the presence of VLAN tags. */ hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN); hdr->h_proto = ethertype; if (eth_p_mpls(skb->protocol)) skb->protocol = ethertype; invalidate_flow_key(key); return 0; } static int set_mpls(struct sk_buff *skb, struct sw_flow_key *key, const __be32 *mpls_lse) { __be32 *stack; int err; err = make_writable(skb, skb->mac_len + MPLS_HLEN); if (unlikely(err)) return err; stack = (__be32 *)skb_mpls_header(skb); if (skb->ip_summed == CHECKSUM_COMPLETE) { __be32 diff[] = { ~(*stack), *mpls_lse }; skb->csum = ~csum_partial((char *)diff, sizeof(diff), ~skb->csum); } *stack = *mpls_lse; key->mpls.top_lse = *mpls_lse; return 0; } /* remove VLAN header from packet and update csum accordingly. */ static int __pop_vlan_tci(struct sk_buff *skb, __be16 *current_tci) { struct vlan_hdr *vhdr; int err; err = make_writable(skb, VLAN_ETH_HLEN); if (unlikely(err)) return err; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_sub(skb->csum, csum_partial(skb->data + (2 * ETH_ALEN), VLAN_HLEN, 0)); vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); *current_tci = vhdr->h_vlan_TCI; memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); __skb_pull(skb, VLAN_HLEN); vlan_set_encap_proto(skb, vhdr); skb->mac_header += VLAN_HLEN; if (skb_network_offset(skb) < ETH_HLEN) skb_set_network_header(skb, ETH_HLEN); /* Update mac_len for subsequent MPLS actions */ skb_reset_mac_len(skb); return 0; } static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key) { __be16 tci; int err; if (likely(vlan_tx_tag_present(skb))) { skb->vlan_tci = 0; } else { if (unlikely(skb->protocol != htons(ETH_P_8021Q) || skb->len < VLAN_ETH_HLEN)) return 0; err = __pop_vlan_tci(skb, &tci); if (err) return err; } /* move next vlan tag to hw accel tag */ if (likely(skb->protocol != htons(ETH_P_8021Q) || skb->len < VLAN_ETH_HLEN)) { key->eth.tci = 0; return 0; } invalidate_flow_key(key); err = __pop_vlan_tci(skb, &tci); if (unlikely(err)) return err; __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(tci)); return 0; } static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key, const struct ovs_action_push_vlan *vlan) { if (unlikely(vlan_tx_tag_present(skb))) { u16 current_tag; /* push down current VLAN tag */ current_tag = vlan_tx_tag_get(skb); if (!__vlan_put_tag(skb, skb->vlan_proto, current_tag)) return -ENOMEM; /* Update mac_len for subsequent MPLS actions */ skb->mac_len += VLAN_HLEN; if (skb->ip_summed == CHECKSUM_COMPLETE) skb->csum = csum_add(skb->csum, csum_partial(skb->data + (2 * ETH_ALEN), VLAN_HLEN, 0)); invalidate_flow_key(key); } else { key->eth.tci = vlan->vlan_tci; } __vlan_hwaccel_put_tag(skb, vlan->vlan_tpid, ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT); return 0; } static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *key, const struct ovs_key_ethernet *eth_key) { int err; err = make_writable(skb, ETH_HLEN); if (unlikely(err)) return err; skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); ether_addr_copy(eth_hdr(skb)->h_source, eth_key->eth_src); ether_addr_copy(eth_hdr(skb)->h_dest, eth_key->eth_dst); ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2); ether_addr_copy(key->eth.src, eth_key->eth_src); ether_addr_copy(key->eth.dst, eth_key->eth_dst); return 0; } static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh, __be32 *addr, __be32 new_addr) { int transport_len = skb->len - skb_transport_offset(skb); if (nh->protocol == IPPROTO_TCP) { if (likely(transport_len >= sizeof(struct tcphdr))) inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb, *addr, new_addr, 1); } else if (nh->protocol == IPPROTO_UDP) { if (likely(transport_len >= sizeof(struct udphdr))) { struct udphdr *uh = udp_hdr(skb); if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { inet_proto_csum_replace4(&uh->check, skb, *addr, new_addr, 1); if (!uh->check) uh->check = CSUM_MANGLED_0; } } } csum_replace4(&nh->check, *addr, new_addr); skb_clear_hash(skb); *addr = new_addr; } static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto, __be32 addr[4], const __be32 new_addr[4]) { int transport_len = skb->len - skb_transport_offset(skb); if (l4_proto == IPPROTO_TCP) { if (likely(transport_len >= sizeof(struct tcphdr))) inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb, addr, new_addr, 1); } else if (l4_proto == IPPROTO_UDP) { if (likely(transport_len >= sizeof(struct udphdr))) { struct udphdr *uh = udp_hdr(skb); if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) { inet_proto_csum_replace16(&uh->check, skb, addr, new_addr, 1); if (!uh->check) uh->check = CSUM_MANGLED_0; } } } } static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto, __be32 addr[4], const __be32 new_addr[4], bool recalculate_csum) { if (recalculate_csum) update_ipv6_checksum(skb, l4_proto, addr, new_addr); skb_clear_hash(skb); memcpy(addr, new_addr, sizeof(__be32[4])); } static void set_ipv6_tc(struct ipv6hdr *nh, u8 tc) { nh->priority = tc >> 4; nh->flow_lbl[0] = (nh->flow_lbl[0] & 0x0F) | ((tc & 0x0F) << 4); } static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl) { nh->flow_lbl[0] = (nh->flow_lbl[0] & 0xF0) | (fl & 0x000F0000) >> 16; nh->flow_lbl[1] = (fl & 0x0000FF00) >> 8; nh->flow_lbl[2] = fl & 0x000000FF; } static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl) { csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8)); nh->ttl = new_ttl; } static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *key, const struct ovs_key_ipv4 *ipv4_key) { struct iphdr *nh; int err; err = make_writable(skb, skb_network_offset(skb) + sizeof(struct iphdr)); if (unlikely(err)) return err; nh = ip_hdr(skb); if (ipv4_key->ipv4_src != nh->saddr) { set_ip_addr(skb, nh, &nh->saddr, ipv4_key->ipv4_src); key->ipv4.addr.src = ipv4_key->ipv4_src; } if (ipv4_key->ipv4_dst != nh->daddr) { set_ip_addr(skb, nh, &nh->daddr, ipv4_key->ipv4_dst); key->ipv4.addr.dst = ipv4_key->ipv4_dst; } if (ipv4_key->ipv4_tos != nh->tos) { ipv4_change_dsfield(nh, 0, ipv4_key->ipv4_tos); key->ip.tos = nh->tos; } if (ipv4_key->ipv4_ttl != nh->ttl) { set_ip_ttl(skb, nh, ipv4_key->ipv4_ttl); key->ip.ttl = ipv4_key->ipv4_ttl; } return 0; } static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *key, const struct ovs_key_ipv6 *ipv6_key) { struct ipv6hdr *nh; int err; __be32 *saddr; __be32 *daddr; err = make_writable(skb, skb_network_offset(skb) + sizeof(struct ipv6hdr)); if (unlikely(err)) return err; nh = ipv6_hdr(skb); saddr = (__be32 *)&nh->saddr; daddr = (__be32 *)&nh->daddr; if (memcmp(ipv6_key->ipv6_src, saddr, sizeof(ipv6_key->ipv6_src))) { set_ipv6_addr(skb, ipv6_key->ipv6_proto, saddr, ipv6_key->ipv6_src, true); memcpy(&key->ipv6.addr.src, ipv6_key->ipv6_src, sizeof(ipv6_key->ipv6_src)); } if (memcmp(ipv6_key->ipv6_dst, daddr, sizeof(ipv6_key->ipv6_dst))) { unsigned int offset = 0; int flags = IP6_FH_F_SKIP_RH; bool recalc_csum = true; if (ipv6_ext_hdr(nh->nexthdr)) recalc_csum = ipv6_find_hdr(skb, &offset, NEXTHDR_ROUTING, NULL, &flags) != NEXTHDR_ROUTING; set_ipv6_addr(skb, ipv6_key->ipv6_proto, daddr, ipv6_key->ipv6_dst, recalc_csum); memcpy(&key->ipv6.addr.dst, ipv6_key->ipv6_dst, sizeof(ipv6_key->ipv6_dst)); } set_ipv6_tc(nh, ipv6_key->ipv6_tclass); key->ip.tos = ipv6_get_dsfield(nh); set_ipv6_fl(nh, ntohl(ipv6_key->ipv6_label)); key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); nh->hop_limit = ipv6_key->ipv6_hlimit; key->ip.ttl = ipv6_key->ipv6_hlimit; return 0; } /* Must follow make_writable() since that can move the skb data. */ static void set_tp_port(struct sk_buff *skb, __be16 *port, __be16 new_port, __sum16 *check) { inet_proto_csum_replace2(check, skb, *port, new_port, 0); *port = new_port; skb_clear_hash(skb); } static void set_udp_port(struct sk_buff *skb, __be16 *port, __be16 new_port) { struct udphdr *uh = udp_hdr(skb); if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) { set_tp_port(skb, port, new_port, &uh->check); if (!uh->check) uh->check = CSUM_MANGLED_0; } else { *port = new_port; skb_clear_hash(skb); } } static int set_udp(struct sk_buff *skb, struct sw_flow_key *key, const struct ovs_key_udp *udp_port_key) { struct udphdr *uh; int err; err = make_writable(skb, skb_transport_offset(skb) + sizeof(struct udphdr)); if (unlikely(err)) return err; uh = udp_hdr(skb); if (udp_port_key->udp_src != uh->source) { set_udp_port(skb, &uh->source, udp_port_key->udp_src); key->tp.src = udp_port_key->udp_src; } if (udp_port_key->udp_dst != uh->dest) { set_udp_port(skb, &uh->dest, udp_port_key->udp_dst); key->tp.dst = udp_port_key->udp_dst; } return 0; } static int set_tcp(struct sk_buff *skb, struct sw_flow_key *key, const struct ovs_key_tcp *tcp_port_key) { struct tcphdr *th; int err; err = make_writable(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)); if (unlikely(err)) return err; th = tcp_hdr(skb); if (tcp_port_key->tcp_src != th->source) { set_tp_port(skb, &th->source, tcp_port_key->tcp_src, &th->check); key->tp.src = tcp_port_key->tcp_src; } if (tcp_port_key->tcp_dst != th->dest) { set_tp_port(skb, &th->dest, tcp_port_key->tcp_dst, &th->check); key->tp.dst = tcp_port_key->tcp_dst; } return 0; } static int set_sctp(struct sk_buff *skb, struct sw_flow_key *key, const struct ovs_key_sctp *sctp_port_key) { struct sctphdr *sh; int err; unsigned int sctphoff = skb_transport_offset(skb); err = make_writable(skb, sctphoff + sizeof(struct sctphdr)); if (unlikely(err)) return err; sh = sctp_hdr(skb); if (sctp_port_key->sctp_src != sh->source || sctp_port_key->sctp_dst != sh->dest) { __le32 old_correct_csum, new_csum, old_csum; old_csum = sh->checksum; old_correct_csum = sctp_compute_cksum(skb, sctphoff); sh->source = sctp_port_key->sctp_src; sh->dest = sctp_port_key->sctp_dst; new_csum = sctp_compute_cksum(skb, sctphoff); /* Carry any checksum errors through. */ sh->checksum = old_csum ^ old_correct_csum ^ new_csum; skb_clear_hash(skb); key->tp.src = sctp_port_key->sctp_src; key->tp.dst = sctp_port_key->sctp_dst; } return 0; } static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port) { struct vport *vport = ovs_vport_rcu(dp, out_port); if (likely(vport)) ovs_vport_send(vport, skb); else kfree_skb(skb); } static int output_userspace(struct datapath *dp, struct sk_buff *skb, struct sw_flow_key *key, const struct nlattr *attr) { struct ovs_tunnel_info info; struct dp_upcall_info upcall; const struct nlattr *a; int rem; upcall.cmd = OVS_PACKET_CMD_ACTION; upcall.userdata = NULL; upcall.portid = 0; upcall.egress_tun_info = NULL; for (a = nla_data(attr), rem = nla_len(attr); rem > 0; a = nla_next(a, &rem)) { switch (nla_type(a)) { case OVS_USERSPACE_ATTR_USERDATA: upcall.userdata = a; break; case OVS_USERSPACE_ATTR_PID: upcall.portid = nla_get_u32(a); break; case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: { /* Get out tunnel info. */ struct vport *vport; vport = ovs_vport_rcu(dp, nla_get_u32(a)); if (vport) { int err; err = ovs_vport_get_egress_tun_info(vport, skb, &info); if (!err) upcall.egress_tun_info = &info; } break; } } /* End of switch. */ } return ovs_dp_upcall(dp, skb, key, &upcall); } static int sample(struct datapath *dp, struct sk_buff *skb, struct sw_flow_key *key, const struct nlattr *attr) { const struct nlattr *acts_list = NULL; const struct nlattr *a; int rem; for (a = nla_data(attr), rem = nla_len(attr); rem > 0; a = nla_next(a, &rem)) { switch (nla_type(a)) { case OVS_SAMPLE_ATTR_PROBABILITY: if (prandom_u32() >= nla_get_u32(a)) return 0; break; case OVS_SAMPLE_ATTR_ACTIONS: acts_list = a; break; } } rem = nla_len(acts_list); a = nla_data(acts_list); /* Actions list is empty, do nothing */ if (unlikely(!rem)) return 0; /* The only known usage of sample action is having a single user-space * action. Treat this usage as a special case. * The output_userspace() should clone the skb to be sent to the * user space. This skb will be consumed by its caller. */ if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE && nla_is_last(a, rem))) return output_userspace(dp, skb, key, a); skb = skb_clone(skb, GFP_ATOMIC); if (!skb) /* Skip the sample action when out of memory. */ return 0; if (!add_deferred_actions(skb, key, a)) { if (net_ratelimit()) pr_warn("%s: deferred actions limit reached, dropping sample action\n", ovs_dp_name(dp)); kfree_skb(skb); } return 0; } static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key, const struct nlattr *attr) { struct ovs_action_hash *hash_act = nla_data(attr); u32 hash = 0; /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */ hash = skb_get_hash(skb); hash = jhash_1word(hash, hash_act->hash_basis); if (!hash) hash = 0x1; key->ovs_flow_hash = hash; } static int execute_set_action(struct sk_buff *skb, struct sw_flow_key *key, const struct nlattr *nested_attr) { int err = 0; switch (nla_type(nested_attr)) { case OVS_KEY_ATTR_PRIORITY: skb->priority = nla_get_u32(nested_attr); key->phy.priority = skb->priority; break; case OVS_KEY_ATTR_SKB_MARK: skb->mark = nla_get_u32(nested_attr); key->phy.skb_mark = skb->mark; break; case OVS_KEY_ATTR_TUNNEL_INFO: OVS_CB(skb)->egress_tun_info = nla_data(nested_attr); break; case OVS_KEY_ATTR_ETHERNET: err = set_eth_addr(skb, key, nla_data(nested_attr)); break; case OVS_KEY_ATTR_IPV4: err = set_ipv4(skb, key, nla_data(nested_attr)); break; case OVS_KEY_ATTR_IPV6: err = set_ipv6(skb, key, nla_data(nested_attr)); break; case OVS_KEY_ATTR_TCP: err = set_tcp(skb, key, nla_data(nested_attr)); break; case OVS_KEY_ATTR_UDP: err = set_udp(skb, key, nla_data(nested_attr)); break; case OVS_KEY_ATTR_SCTP: err = set_sctp(skb, key, nla_data(nested_attr)); break; case OVS_KEY_ATTR_MPLS: err = set_mpls(skb, key, nla_data(nested_attr)); break; } return err; } static int execute_recirc(struct datapath *dp, struct sk_buff *skb, struct sw_flow_key *key, const struct nlattr *a, int rem) { struct deferred_action *da; if (!is_flow_key_valid(key)) { int err; err = ovs_flow_key_update(skb, key); if (err) return err; } BUG_ON(!is_flow_key_valid(key)); if (!nla_is_last(a, rem)) { /* Recirc action is the not the last action * of the action list, need to clone the skb. */ skb = skb_clone(skb, GFP_ATOMIC); /* Skip the recirc action when out of memory, but * continue on with the rest of the action list. */ if (!skb) return 0; } da = add_deferred_actions(skb, key, NULL); if (da) { da->pkt_key.recirc_id = nla_get_u32(a); } else { kfree_skb(skb); if (net_ratelimit()) pr_warn("%s: deferred action limit reached, drop recirc action\n", ovs_dp_name(dp)); } return 0; } /* Execute a list of actions against 'skb'. */ static int do_execute_actions(struct datapath *dp, struct sk_buff *skb, struct sw_flow_key *key, const struct nlattr *attr, int len) { /* Every output action needs a separate clone of 'skb', but the common * case is just a single output action, so that doing a clone and * then freeing the original skbuff is wasteful. So the following code * is slightly obscure just to avoid that. */ int prev_port = -1; const struct nlattr *a; int rem; for (a = attr, rem = len; rem > 0; a = nla_next(a, &rem)) { int err = 0; if (unlikely(prev_port != -1)) { struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC); if (out_skb) do_output(dp, out_skb, prev_port); prev_port = -1; } switch (nla_type(a)) { case OVS_ACTION_ATTR_OUTPUT: prev_port = nla_get_u32(a); break; case OVS_ACTION_ATTR_USERSPACE: output_userspace(dp, skb, key, a); break; case OVS_ACTION_ATTR_HASH: execute_hash(skb, key, a); break; case OVS_ACTION_ATTR_PUSH_MPLS: err = push_mpls(skb, key, nla_data(a)); break; case OVS_ACTION_ATTR_POP_MPLS: err = pop_mpls(skb, key, nla_get_be16(a)); break; case OVS_ACTION_ATTR_PUSH_VLAN: err = push_vlan(skb, key, nla_data(a)); if (unlikely(err)) /* skb already freed. */ return err; break; case OVS_ACTION_ATTR_POP_VLAN: err = pop_vlan(skb, key); break; case OVS_ACTION_ATTR_RECIRC: err = execute_recirc(dp, skb, key, a, rem); if (nla_is_last(a, rem)) { /* If this is the last action, the skb has * been consumed or freed. * Return immediately. */ return err; } break; case OVS_ACTION_ATTR_SET: err = execute_set_action(skb, key, nla_data(a)); break; case OVS_ACTION_ATTR_SAMPLE: err = sample(dp, skb, key, a); if (unlikely(err)) /* skb already freed. */ return err; break; } if (unlikely(err)) { kfree_skb(skb); return err; } } if (prev_port != -1) do_output(dp, skb, prev_port); else consume_skb(skb); return 0; } static void process_deferred_actions(struct datapath *dp) { struct action_fifo *fifo = this_cpu_ptr(action_fifos); /* Do not touch the FIFO in case there is no deferred actions. */ if (action_fifo_is_empty(fifo)) return; /* Finishing executing all deferred actions. */ do { struct deferred_action *da = action_fifo_get(fifo); struct sk_buff *skb = da->skb; struct sw_flow_key *key = &da->pkt_key; const struct nlattr *actions = da->actions; if (actions) do_execute_actions(dp, skb, key, actions, nla_len(actions)); else ovs_dp_process_packet(skb, key); } while (!action_fifo_is_empty(fifo)); /* Reset FIFO for the next packet. */ action_fifo_init(fifo); } /* Execute a list of actions against 'skb'. */ int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb, const struct sw_flow_actions *acts, struct sw_flow_key *key) { int level = this_cpu_read(exec_actions_level); int err; this_cpu_inc(exec_actions_level); OVS_CB(skb)->egress_tun_info = NULL; err = do_execute_actions(dp, skb, key, acts->actions, acts->actions_len); if (!level) process_deferred_actions(dp); this_cpu_dec(exec_actions_level); return err; } int action_fifos_init(void) { action_fifos = alloc_percpu(struct action_fifo); if (!action_fifos) return -ENOMEM; return 0; } void action_fifos_exit(void) { free_percpu(action_fifos); }