#ifndef _ASM_IA64_PAL_H #define _ASM_IA64_PAL_H /* * Processor Abstraction Layer definitions. * * This is based on Intel IA-64 Architecture Software Developer's Manual rev 1.0 * chapter 11 IA-64 Processor Abstraction Layer * * Copyright (C) 1998-2001 Hewlett-Packard Co * David Mosberger-Tang * Stephane Eranian * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999 Walt Drummond * Copyright (C) 1999 Srinivasa Prasad Thirumalachar * * 99/10/01 davidm Make sure we pass zero for reserved parameters. * 00/03/07 davidm Updated pal_cache_flush() to be in sync with PAL v2.6. * 00/03/23 cfleck Modified processor min-state save area to match updated PAL & SAL info * 00/05/24 eranian Updated to latest PAL spec, fix structures bugs, added * 00/05/25 eranian Support for stack calls, and static physical calls * 00/06/18 eranian Support for stacked physical calls */ /* * Note that some of these calls use a static-register only calling * convention which has nothing to do with the regular calling * convention. */ #define PAL_CACHE_FLUSH 1 /* flush i/d cache */ #define PAL_CACHE_INFO 2 /* get detailed i/d cache info */ #define PAL_CACHE_INIT 3 /* initialize i/d cache */ #define PAL_CACHE_SUMMARY 4 /* get summary of cache heirarchy */ #define PAL_MEM_ATTRIB 5 /* list supported memory attributes */ #define PAL_PTCE_INFO 6 /* purge TLB info */ #define PAL_VM_INFO 7 /* return supported virtual memory features */ #define PAL_VM_SUMMARY 8 /* return summary on supported vm features */ #define PAL_BUS_GET_FEATURES 9 /* return processor bus interface features settings */ #define PAL_BUS_SET_FEATURES 10 /* set processor bus features */ #define PAL_DEBUG_INFO 11 /* get number of debug registers */ #define PAL_FIXED_ADDR 12 /* get fixed component of processors's directed address */ #define PAL_FREQ_BASE 13 /* base frequency of the platform */ #define PAL_FREQ_RATIOS 14 /* ratio of processor, bus and ITC frequency */ #define PAL_PERF_MON_INFO 15 /* return performance monitor info */ #define PAL_PLATFORM_ADDR 16 /* set processor interrupt block and IO port space addr */ #define PAL_PROC_GET_FEATURES 17 /* get configurable processor features & settings */ #define PAL_PROC_SET_FEATURES 18 /* enable/disable configurable processor features */ #define PAL_RSE_INFO 19 /* return rse information */ #define PAL_VERSION 20 /* return version of PAL code */ #define PAL_MC_CLEAR_LOG 21 /* clear all processor log info */ #define PAL_MC_DRAIN 22 /* drain operations which could result in an MCA */ #define PAL_MC_EXPECTED 23 /* set/reset expected MCA indicator */ #define PAL_MC_DYNAMIC_STATE 24 /* get processor dynamic state */ #define PAL_MC_ERROR_INFO 25 /* get processor MCA info and static state */ #define PAL_MC_RESUME 26 /* Return to interrupted process */ #define PAL_MC_REGISTER_MEM 27 /* Register memory for PAL to use during MCAs and inits */ #define PAL_HALT 28 /* enter the low power HALT state */ #define PAL_HALT_LIGHT 29 /* enter the low power light halt state*/ #define PAL_COPY_INFO 30 /* returns info needed to relocate PAL */ #define PAL_CACHE_LINE_INIT 31 /* init tags & data of cache line */ #define PAL_PMI_ENTRYPOINT 32 /* register PMI memory entry points with the processor */ #define PAL_ENTER_IA_32_ENV 33 /* enter IA-32 system environment */ #define PAL_VM_PAGE_SIZE 34 /* return vm TC and page walker page sizes */ #define PAL_MEM_FOR_TEST 37 /* get amount of memory needed for late processor test */ #define PAL_CACHE_PROT_INFO 38 /* get i/d cache protection info */ #define PAL_REGISTER_INFO 39 /* return AR and CR register information*/ #define PAL_SHUTDOWN 40 /* enter processor shutdown state */ #define PAL_PREFETCH_VISIBILITY 41 /* Make Processor Prefetches Visible */ #define PAL_LOGICAL_TO_PHYSICAL 42 /* returns information on logical to physical processor mapping */ #define PAL_CACHE_SHARED_INFO 43 /* returns information on caches shared by logical processor */ #define PAL_COPY_PAL 256 /* relocate PAL procedures and PAL PMI */ #define PAL_HALT_INFO 257 /* return the low power capabilities of processor */ #define PAL_TEST_PROC 258 /* perform late processor self-test */ #define PAL_CACHE_READ 259 /* read tag & data of cacheline for diagnostic testing */ #define PAL_CACHE_WRITE 260 /* write tag & data of cacheline for diagnostic testing */ #define PAL_VM_TR_READ 261 /* read contents of translation register */ #define PAL_GET_PSTATE 262 /* get the current P-state */ #define PAL_SET_PSTATE 263 /* set the P-state */ #define PAL_BRAND_INFO 274 /* Processor branding information */ #ifndef __ASSEMBLY__ #include #include /* * Data types needed to pass information into PAL procedures and * interpret information returned by them. */ /* Return status from the PAL procedure */ typedef s64 pal_status_t; #define PAL_STATUS_SUCCESS 0 /* No error */ #define PAL_STATUS_UNIMPLEMENTED (-1) /* Unimplemented procedure */ #define PAL_STATUS_EINVAL (-2) /* Invalid argument */ #define PAL_STATUS_ERROR (-3) /* Error */ #define PAL_STATUS_CACHE_INIT_FAIL (-4) /* Could not initialize the * specified level and type of * cache without sideeffects * and "restrict" was 1 */ /* Processor cache level in the heirarchy */ typedef u64 pal_cache_level_t; #define PAL_CACHE_LEVEL_L0 0 /* L0 */ #define PAL_CACHE_LEVEL_L1 1 /* L1 */ #define PAL_CACHE_LEVEL_L2 2 /* L2 */ /* Processor cache type at a particular level in the heirarchy */ typedef u64 pal_cache_type_t; #define PAL_CACHE_TYPE_INSTRUCTION 1 /* Instruction cache */ #define PAL_CACHE_TYPE_DATA 2 /* Data or unified cache */ #define PAL_CACHE_TYPE_INSTRUCTION_DATA 3 /* Both Data & Instruction */ #define PAL_CACHE_FLUSH_INVALIDATE 1 /* Invalidate clean lines */ #define PAL_CACHE_FLUSH_CHK_INTRS 2 /* check for interrupts/mc while flushing */ /* Processor cache line size in bytes */ typedef int pal_cache_line_size_t; /* Processor cache line state */ typedef u64 pal_cache_line_state_t; #define PAL_CACHE_LINE_STATE_INVALID 0 /* Invalid */ #define PAL_CACHE_LINE_STATE_SHARED 1 /* Shared */ #define PAL_CACHE_LINE_STATE_EXCLUSIVE 2 /* Exclusive */ #define PAL_CACHE_LINE_STATE_MODIFIED 3 /* Modified */ typedef struct pal_freq_ratio { u32 den, num; /* numerator & denominator */ } itc_ratio, proc_ratio; typedef union pal_cache_config_info_1_s { struct { u64 u : 1, /* 0 Unified cache ? */ at : 2, /* 2-1 Cache mem attr*/ reserved : 5, /* 7-3 Reserved */ associativity : 8, /* 16-8 Associativity*/ line_size : 8, /* 23-17 Line size */ stride : 8, /* 31-24 Stride */ store_latency : 8, /*39-32 Store latency*/ load_latency : 8, /* 47-40 Load latency*/ store_hints : 8, /* 55-48 Store hints*/ load_hints : 8; /* 63-56 Load hints */ } pcci1_bits; u64 pcci1_data; } pal_cache_config_info_1_t; typedef union pal_cache_config_info_2_s { struct { u32 cache_size; /*cache size in bytes*/ u32 alias_boundary : 8, /* 39-32 aliased addr * separation for max * performance. */ tag_ls_bit : 8, /* 47-40 LSb of addr*/ tag_ms_bit : 8, /* 55-48 MSb of addr*/ reserved : 8; /* 63-56 Reserved */ } pcci2_bits; u64 pcci2_data; } pal_cache_config_info_2_t; typedef struct pal_cache_config_info_s { pal_status_t pcci_status; pal_cache_config_info_1_t pcci_info_1; pal_cache_config_info_2_t pcci_info_2; u64 pcci_reserved; } pal_cache_config_info_t; #define pcci_ld_hints pcci_info_1.pcci1_bits.load_hints #define pcci_st_hints pcci_info_1.pcci1_bits.store_hints #define pcci_ld_latency pcci_info_1.pcci1_bits.load_latency #define pcci_st_latency pcci_info_1.pcci1_bits.store_latency #define pcci_stride pcci_info_1.pcci1_bits.stride #define pcci_line_size pcci_info_1.pcci1_bits.line_size #define pcci_assoc pcci_info_1.pcci1_bits.associativity #define pcci_cache_attr pcci_info_1.pcci1_bits.at #define pcci_unified pcci_info_1.pcci1_bits.u #define pcci_tag_msb pcci_info_2.pcci2_bits.tag_ms_bit #define pcci_tag_lsb pcci_info_2.pcci2_bits.tag_ls_bit #define pcci_alias_boundary pcci_info_2.pcci2_bits.alias_boundary #define pcci_cache_size pcci_info_2.pcci2_bits.cache_size /* Possible values for cache attributes */ #define PAL_CACHE_ATTR_WT 0 /* Write through cache */ #define PAL_CACHE_ATTR_WB 1 /* Write back cache */ #define PAL_CACHE_ATTR_WT_OR_WB 2 /* Either write thru or write * back depending on TLB * memory attributes */ /* Possible values for cache hints */ #define PAL_CACHE_HINT_TEMP_1 0 /* Temporal level 1 */ #define PAL_CACHE_HINT_NTEMP_1 1 /* Non-temporal level 1 */ #define PAL_CACHE_HINT_NTEMP_ALL 3 /* Non-temporal all levels */ /* Processor cache protection information */ typedef union pal_cache_protection_element_u { u32 pcpi_data; struct { u32 data_bits : 8, /* # data bits covered by * each unit of protection */ tagprot_lsb : 6, /* Least -do- */ tagprot_msb : 6, /* Most Sig. tag address * bit that this * protection covers. */ prot_bits : 6, /* # of protection bits */ method : 4, /* Protection method */ t_d : 2; /* Indicates which part * of the cache this * protection encoding * applies. */ } pcp_info; } pal_cache_protection_element_t; #define pcpi_cache_prot_part pcp_info.t_d #define pcpi_prot_method pcp_info.method #define pcpi_prot_bits pcp_info.prot_bits #define pcpi_tagprot_msb pcp_info.tagprot_msb #define pcpi_tagprot_lsb pcp_info.tagprot_lsb #define pcpi_data_bits pcp_info.data_bits /* Processor cache part encodings */ #define PAL_CACHE_PROT_PART_DATA 0 /* Data protection */ #define PAL_CACHE_PROT_PART_TAG 1 /* Tag protection */ #define PAL_CACHE_PROT_PART_TAG_DATA 2 /* Tag+data protection (tag is * more significant ) */ #define PAL_CACHE_PROT_PART_DATA_TAG 3 /* Data+tag protection (data is * more significant ) */ #define PAL_CACHE_PROT_PART_MAX 6 typedef struct pal_cache_protection_info_s { pal_status_t pcpi_status; pal_cache_protection_element_t pcp_info[PAL_CACHE_PROT_PART_MAX]; } pal_cache_protection_info_t; /* Processor cache protection method encodings */ #define PAL_CACHE_PROT_METHOD_NONE 0 /* No protection */ #define PAL_CACHE_PROT_METHOD_ODD_PARITY 1 /* Odd parity */ #define PAL_CACHE_PROT_METHOD_EVEN_PARITY 2 /* Even parity */ #define PAL_CACHE_PROT_METHOD_ECC 3 /* ECC protection */ /* Processor cache line identification in the heirarchy */ typedef union pal_cache_line_id_u { u64 pclid_data; struct { u64 cache_type : 8, /* 7-0 cache type */ level : 8, /* 15-8 level of the * cache in the * heirarchy. */ way : 8, /* 23-16 way in the set */ part : 8, /* 31-24 part of the * cache */ reserved : 32; /* 63-32 is reserved*/ } pclid_info_read; struct { u64 cache_type : 8, /* 7-0 cache type */ level : 8, /* 15-8 level of the * cache in the * heirarchy. */ way : 8, /* 23-16 way in the set */ part : 8, /* 31-24 part of the * cache */ mesi : 8, /* 39-32 cache line * state */ start : 8, /* 47-40 lsb of data to * invert */ length : 8, /* 55-48 #bits to * invert */ trigger : 8; /* 63-56 Trigger error * by doing a load * after the write */ } pclid_info_write; } pal_cache_line_id_u_t; #define pclid_read_part pclid_info_read.part #define pclid_read_way pclid_info_read.way #define pclid_read_level pclid_info_read.level #define pclid_read_cache_type pclid_info_read.cache_type #define pclid_write_trigger pclid_info_write.trigger #define pclid_write_length pclid_info_write.length #define pclid_write_start pclid_info_write.start #define pclid_write_mesi pclid_info_write.mesi #define pclid_write_part pclid_info_write.part #define pclid_write_way pclid_info_write.way #define pclid_write_level pclid_info_write.level #define pclid_write_cache_type pclid_info_write.cache_type /* Processor cache line part encodings */ #define PAL_CACHE_LINE_ID_PART_DATA 0 /* Data */ #define PAL_CACHE_LINE_ID_PART_TAG 1 /* Tag */ #define PAL_CACHE_LINE_ID_PART_DATA_PROT 2 /* Data protection */ #define PAL_CACHE_LINE_ID_PART_TAG_PROT 3 /* Tag protection */ #define PAL_CACHE_LINE_ID_PART_DATA_TAG_PROT 4 /* Data+tag * protection */ typedef struct pal_cache_line_info_s { pal_status_t pcli_status; /* Return status of the read cache line * info call. */ u64 pcli_data; /* 64-bit data, tag, protection bits .. */ u64 pcli_data_len; /* data length in bits */ pal_cache_line_state_t pcli_cache_line_state; /* mesi state */ } pal_cache_line_info_t; /* Machine Check related crap */ /* Pending event status bits */ typedef u64 pal_mc_pending_events_t; #define PAL_MC_PENDING_MCA (1 << 0) #define PAL_MC_PENDING_INIT (1 << 1) /* Error information type */ typedef u64 pal_mc_info_index_t; #define PAL_MC_INFO_PROCESSOR 0 /* Processor */ #define PAL_MC_INFO_CACHE_CHECK 1 /* Cache check */ #define PAL_MC_INFO_TLB_CHECK 2 /* Tlb check */ #define PAL_MC_INFO_BUS_CHECK 3 /* Bus check */ #define PAL_MC_INFO_REQ_ADDR 4 /* Requestor address */ #define PAL_MC_INFO_RESP_ADDR 5 /* Responder address */ #define PAL_MC_INFO_TARGET_ADDR 6 /* Target address */ #define PAL_MC_INFO_IMPL_DEP 7 /* Implementation * dependent */ typedef struct pal_process_state_info_s { u64 reserved1 : 2, rz : 1, /* PAL_CHECK processor * rendezvous * successful. */ ra : 1, /* PAL_CHECK attempted * a rendezvous. */ me : 1, /* Distinct multiple * errors occurred */ mn : 1, /* Min. state save * area has been * registered with PAL */ sy : 1, /* Storage integrity * synched */ co : 1, /* Continuable */ ci : 1, /* MC isolated */ us : 1, /* Uncontained storage * damage. */ hd : 1, /* Non-essential hw * lost (no loss of * functionality) * causing the * processor to run in * degraded mode. */ tl : 1, /* 1 => MC occurred * after an instr was * executed but before * the trap that * resulted from instr * execution was * generated. * (Trap Lost ) */ mi : 1, /* More information available * call PAL_MC_ERROR_INFO */ pi : 1, /* Precise instruction pointer */ pm : 1, /* Precise min-state save area */ dy : 1, /* Processor dynamic * state valid */ in : 1, /* 0 = MC, 1 = INIT */ rs : 1, /* RSE valid */ cm : 1, /* MC corrected */ ex : 1, /* MC is expected */ cr : 1, /* Control regs valid*/ pc : 1, /* Perf cntrs valid */ dr : 1, /* Debug regs valid */ tr : 1, /* Translation regs * valid */ rr : 1, /* Region regs valid */ ar : 1, /* App regs valid */ br : 1, /* Branch regs valid */ pr : 1, /* Predicate registers * valid */ fp : 1, /* fp registers valid*/ b1 : 1, /* Preserved bank one * general registers * are valid */ b0 : 1, /* Preserved bank zero * general registers * are valid */ gr : 1, /* General registers * are valid * (excl. banked regs) */ dsize : 16, /* size of dynamic * state returned * by the processor */ reserved2 : 11, cc : 1, /* Cache check */ tc : 1, /* TLB check */ bc : 1, /* Bus check */ rc : 1, /* Register file check */ uc : 1; /* Uarch check */ } pal_processor_state_info_t; typedef struct pal_cache_check_info_s { u64 op : 4, /* Type of cache * operation that * caused the machine * check. */ level : 2, /* Cache level */ reserved1 : 2, dl : 1, /* Failure in data part * of cache line */ tl : 1, /* Failure in tag part * of cache line */ dc : 1, /* Failure in dcache */ ic : 1, /* Failure in icache */ mesi : 3, /* Cache line state */ mv : 1, /* mesi valid */ way : 5, /* Way in which the * error occurred */ wiv : 1, /* Way field valid */ reserved2 : 1, dp : 1, /* Data poisoned on MBE */ reserved3 : 8, index : 20, /* Cache line index */ reserved4 : 2, is : 1, /* instruction set (1 == ia32) */ iv : 1, /* instruction set field valid */ pl : 2, /* privilege level */ pv : 1, /* privilege level field valid */ mcc : 1, /* Machine check corrected */ tv : 1, /* Target address * structure is valid */ rq : 1, /* Requester identifier * structure is valid */ rp : 1, /* Responder identifier * structure is valid */ pi : 1; /* Precise instruction pointer * structure is valid */ } pal_cache_check_info_t; typedef struct pal_tlb_check_info_s { u64 tr_slot : 8, /* Slot# of TR where * error occurred */ trv : 1, /* tr_slot field is valid */ reserved1 : 1, level : 2, /* TLB level where failure occurred */ reserved2 : 4, dtr : 1, /* Fail in data TR */ itr : 1, /* Fail in inst TR */ dtc : 1, /* Fail in data TC */ itc : 1, /* Fail in inst. TC */ op : 4, /* Cache operation */ reserved3 : 30, is : 1, /* instruction set (1 == ia32) */ iv : 1, /* instruction set field valid */ pl : 2, /* privilege level */ pv : 1, /* privilege level field valid */ mcc : 1, /* Machine check corrected */ tv : 1, /* Target address * structure is valid */ rq : 1, /* Requester identifier * structure is valid */ rp : 1, /* Responder identifier * structure is valid */ pi : 1; /* Precise instruction pointer * structure is valid */ } pal_tlb_check_info_t; typedef struct pal_bus_check_info_s { u64 size : 5, /* Xaction size */ ib : 1, /* Internal bus error */ eb : 1, /* External bus error */ cc : 1, /* Error occurred * during cache-cache * transfer. */ type : 8, /* Bus xaction type*/ sev : 5, /* Bus error severity*/ hier : 2, /* Bus hierarchy level */ dp : 1, /* Data poisoned on MBE */ bsi : 8, /* Bus error status * info */ reserved2 : 22, is : 1, /* instruction set (1 == ia32) */ iv : 1, /* instruction set field valid */ pl : 2, /* privilege level */ pv : 1, /* privilege level field valid */ mcc : 1, /* Machine check corrected */ tv : 1, /* Target address * structure is valid */ rq : 1, /* Requester identifier * structure is valid */ rp : 1, /* Responder identifier * structure is valid */ pi : 1; /* Precise instruction pointer * structure is valid */ } pal_bus_check_info_t; typedef struct pal_reg_file_check_info_s { u64 id : 4, /* Register file identifier */ op : 4, /* Type of register * operation that * caused the machine * check. */ reg_num : 7, /* Register number */ rnv : 1, /* reg_num valid */ reserved2 : 38, is : 1, /* instruction set (1 == ia32) */ iv : 1, /* instruction set field valid */ pl : 2, /* privilege level */ pv : 1, /* privilege level field valid */ mcc : 1, /* Machine check corrected */ reserved3 : 3, pi : 1; /* Precise instruction pointer * structure is valid */ } pal_reg_file_check_info_t; typedef struct pal_uarch_check_info_s { u64 sid : 5, /* Structure identification */ level : 3, /* Level of failure */ array_id : 4, /* Array identification */ op : 4, /* Type of * operation that * caused the machine * check. */ way : 6, /* Way of structure */ wv : 1, /* way valid */ xv : 1, /* index valid */ reserved1 : 8, index : 8, /* Index or set of the uarch * structure that failed. */ reserved2 : 24, is : 1, /* instruction set (1 == ia32) */ iv : 1, /* instruction set field valid */ pl : 2, /* privilege level */ pv : 1, /* privilege level field valid */ mcc : 1, /* Machine check corrected */ tv : 1, /* Target address * structure is valid */ rq : 1, /* Requester identifier * structure is valid */ rp : 1, /* Responder identifier * structure is valid */ pi : 1; /* Precise instruction pointer * structure is valid */ } pal_uarch_check_info_t; typedef union pal_mc_error_info_u { u64 pmei_data; pal_processor_state_info_t pme_processor; pal_cache_check_info_t pme_cache; pal_tlb_check_info_t pme_tlb; pal_bus_check_info_t pme_bus; pal_reg_file_check_info_t pme_reg_file; pal_uarch_check_info_t pme_uarch; } pal_mc_error_info_t; #define pmci_proc_unknown_check pme_processor.uc #define pmci_proc_bus_check pme_processor.bc #define pmci_proc_tlb_check pme_processor.tc #define pmci_proc_cache_check pme_processor.cc #define pmci_proc_dynamic_state_size pme_processor.dsize #define pmci_proc_gpr_valid pme_processor.gr #define pmci_proc_preserved_bank0_gpr_valid pme_processor.b0 #define pmci_proc_preserved_bank1_gpr_valid pme_processor.b1 #define pmci_proc_fp_valid pme_processor.fp #define pmci_proc_predicate_regs_valid pme_processor.pr #define pmci_proc_branch_regs_valid pme_processor.br #define pmci_proc_app_regs_valid pme_processor.ar #define pmci_proc_region_regs_valid pme_processor.rr #define pmci_proc_translation_regs_valid pme_processor.tr #define pmci_proc_debug_regs_valid pme_processor.dr #define pmci_proc_perf_counters_valid pme_processor.pc #define pmci_proc_control_regs_valid pme_processor.cr #define pmci_proc_machine_check_expected pme_processor.ex #define pmci_proc_machine_check_corrected pme_processor.cm #define pmci_proc_rse_valid pme_processor.rs #define pmci_proc_machine_check_or_init pme_processor.in #define pmci_proc_dynamic_state_valid pme_processor.dy #define pmci_proc_operation pme_processor.op #define pmci_proc_trap_lost pme_processor.tl #define pmci_proc_hardware_damage pme_processor.hd #define pmci_proc_uncontained_storage_damage pme_processor.us #define pmci_proc_machine_check_isolated pme_processor.ci #define pmci_proc_continuable pme_processor.co #define pmci_proc_storage_intergrity_synced pme_processor.sy #define pmci_proc_min_state_save_area_regd pme_processor.mn #define pmci_proc_distinct_multiple_errors pme_processor.me #define pmci_proc_pal_attempted_rendezvous pme_processor.ra #define pmci_proc_pal_rendezvous_complete pme_processor.rz #define pmci_cache_level pme_cache.level #define pmci_cache_line_state pme_cache.mesi #define pmci_cache_line_state_valid pme_cache.mv #define pmci_cache_line_index pme_cache.index #define pmci_cache_instr_cache_fail pme_cache.ic #define pmci_cache_data_cache_fail pme_cache.dc #define pmci_cache_line_tag_fail pme_cache.tl #define pmci_cache_line_data_fail pme_cache.dl #define pmci_cache_operation pme_cache.op #define pmci_cache_way_valid pme_cache.wv #define pmci_cache_target_address_valid pme_cache.tv #define pmci_cache_way pme_cache.way #define pmci_cache_mc pme_cache.mc #define pmci_tlb_instr_translation_cache_fail pme_tlb.itc #define pmci_tlb_data_translation_cache_fail pme_tlb.dtc #define pmci_tlb_instr_translation_reg_fail pme_tlb.itr #define pmci_tlb_data_translation_reg_fail pme_tlb.dtr #define pmci_tlb_translation_reg_slot pme_tlb.tr_slot #define pmci_tlb_mc pme_tlb.mc #define pmci_bus_status_info pme_bus.bsi #define pmci_bus_req_address_valid pme_bus.rq #define pmci_bus_resp_address_valid pme_bus.rp #define pmci_bus_target_address_valid pme_bus.tv #define pmci_bus_error_severity pme_bus.sev #define pmci_bus_transaction_type pme_bus.type #define pmci_bus_cache_cache_transfer pme_bus.cc #define pmci_bus_transaction_size pme_bus.size #define pmci_bus_internal_error pme_bus.ib #define pmci_bus_external_error pme_bus.eb #define pmci_bus_mc pme_bus.mc /* * NOTE: this min_state_save area struct only includes the 1KB * architectural state save area. The other 3 KB is scratch space * for PAL. */ typedef struct pal_min_state_area_s { u64 pmsa_nat_bits; /* nat bits for saved GRs */ u64 pmsa_gr[15]; /* GR1 - GR15 */ u64 pmsa_bank0_gr[16]; /* GR16 - GR31 */ u64 pmsa_bank1_gr[16]; /* GR16 - GR31 */ u64 pmsa_pr; /* predicate registers */ u64 pmsa_br0; /* branch register 0 */ u64 pmsa_rsc; /* ar.rsc */ u64 pmsa_iip; /* cr.iip */ u64 pmsa_ipsr; /* cr.ipsr */ u64 pmsa_ifs; /* cr.ifs */ u64 pmsa_xip; /* previous iip */ u64 pmsa_xpsr; /* previous psr */ u64 pmsa_xfs; /* previous ifs */ u64 pmsa_br1; /* branch register 1 */ u64 pmsa_reserved[70]; /* pal_min_state_area should total to 1KB */ } pal_min_state_area_t; struct ia64_pal_retval { /* * A zero status value indicates call completed without error. * A negative status value indicates reason of call failure. * A positive status value indicates success but an * informational value should be printed (e.g., "reboot for * change to take effect"). */ s64 status; u64 v0; u64 v1; u64 v2; }; /* * Note: Currently unused PAL arguments are generally labeled * "reserved" so the value specified in the PAL documentation * (generally 0) MUST be passed. Reserved parameters are not optional * parameters. */ extern struct ia64_pal_retval ia64_pal_call_static (u64, u64, u64, u64); extern struct ia64_pal_retval ia64_pal_call_stacked (u64, u64, u64, u64); extern struct ia64_pal_retval ia64_pal_call_phys_static (u64, u64, u64, u64); extern struct ia64_pal_retval ia64_pal_call_phys_stacked (u64, u64, u64, u64); extern void ia64_save_scratch_fpregs (struct ia64_fpreg *); extern void ia64_load_scratch_fpregs (struct ia64_fpreg *); #define PAL_CALL(iprv,a0,a1,a2,a3) do { \ struct ia64_fpreg fr[6]; \ ia64_save_scratch_fpregs(fr); \ iprv = ia64_pal_call_static(a0, a1, a2, a3); \ ia64_load_scratch_fpregs(fr); \ } while (0) #define PAL_CALL_STK(iprv,a0,a1,a2,a3) do { \ struct ia64_fpreg fr[6]; \ ia64_save_scratch_fpregs(fr); \ iprv = ia64_pal_call_stacked(a0, a1, a2, a3); \ ia64_load_scratch_fpregs(fr); \ } while (0) #define PAL_CALL_PHYS(iprv,a0,a1,a2,a3) do { \ struct ia64_fpreg fr[6]; \ ia64_save_scratch_fpregs(fr); \ iprv = ia64_pal_call_phys_static(a0, a1, a2, a3); \ ia64_load_scratch_fpregs(fr); \ } while (0) #define PAL_CALL_PHYS_STK(iprv,a0,a1,a2,a3) do { \ struct ia64_fpreg fr[6]; \ ia64_save_scratch_fpregs(fr); \ iprv = ia64_pal_call_phys_stacked(a0, a1, a2, a3); \ ia64_load_scratch_fpregs(fr); \ } while (0) typedef int (*ia64_pal_handler) (u64, ...); extern ia64_pal_handler ia64_pal; extern void ia64_pal_handler_init (void *); extern ia64_pal_handler ia64_pal; extern pal_cache_config_info_t l0d_cache_config_info; extern pal_cache_config_info_t l0i_cache_config_info; extern pal_cache_config_info_t l1_cache_config_info; extern pal_cache_config_info_t l2_cache_config_info; extern pal_cache_protection_info_t l0d_cache_protection_info; extern pal_cache_protection_info_t l0i_cache_protection_info; extern pal_cache_protection_info_t l1_cache_protection_info; extern pal_cache_protection_info_t l2_cache_protection_info; extern pal_cache_config_info_t pal_cache_config_info_get(pal_cache_level_t, pal_cache_type_t); extern pal_cache_protection_info_t pal_cache_protection_info_get(pal_cache_level_t, pal_cache_type_t); extern void pal_error(int); /* Useful wrappers for the current list of pal procedures */ typedef union pal_bus_features_u { u64 pal_bus_features_val; struct { u64 pbf_reserved1 : 29; u64 pbf_req_bus_parking : 1; u64 pbf_bus_lock_mask : 1; u64 pbf_enable_half_xfer_rate : 1; u64 pbf_reserved2 : 22; u64 pbf_disable_xaction_queueing : 1; u64 pbf_disable_resp_err_check : 1; u64 pbf_disable_berr_check : 1; u64 pbf_disable_bus_req_internal_err_signal : 1; u64 pbf_disable_bus_req_berr_signal : 1; u64 pbf_disable_bus_init_event_check : 1; u64 pbf_disable_bus_init_event_signal : 1; u64 pbf_disable_bus_addr_err_check : 1; u64 pbf_disable_bus_addr_err_signal : 1; u64 pbf_disable_bus_data_err_check : 1; } pal_bus_features_s; } pal_bus_features_u_t; extern void pal_bus_features_print (u64); /* Provide information about configurable processor bus features */ static inline s64 ia64_pal_bus_get_features (pal_bus_features_u_t *features_avail, pal_bus_features_u_t *features_status, pal_bus_features_u_t *features_control) { struct ia64_pal_retval iprv; PAL_CALL_PHYS(iprv, PAL_BUS_GET_FEATURES, 0, 0, 0); if (features_avail) features_avail->pal_bus_features_val = iprv.v0; if (features_status) features_status->pal_bus_features_val = iprv.v1; if (features_control) features_control->pal_bus_features_val = iprv.v2; return iprv.status; } /* Enables/disables specific processor bus features */ static inline s64 ia64_pal_bus_set_features (pal_bus_features_u_t feature_select) { struct ia64_pal_retval iprv; PAL_CALL_PHYS(iprv, PAL_BUS_SET_FEATURES, feature_select.pal_bus_features_val, 0, 0); return iprv.status; } /* Get detailed cache information */ static inline s64 ia64_pal_cache_config_info (u64 cache_level, u64 cache_type, pal_cache_config_info_t *conf) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_CACHE_INFO, cache_level, cache_type, 0); if (iprv.status == 0) { conf->pcci_status = iprv.status; conf->pcci_info_1.pcci1_data = iprv.v0; conf->pcci_info_2.pcci2_data = iprv.v1; conf->pcci_reserved = iprv.v2; } return iprv.status; } /* Get detailed cche protection information */ static inline s64 ia64_pal_cache_prot_info (u64 cache_level, u64 cache_type, pal_cache_protection_info_t *prot) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_CACHE_PROT_INFO, cache_level, cache_type, 0); if (iprv.status == 0) { prot->pcpi_status = iprv.status; prot->pcp_info[0].pcpi_data = iprv.v0 & 0xffffffff; prot->pcp_info[1].pcpi_data = iprv.v0 >> 32; prot->pcp_info[2].pcpi_data = iprv.v1 & 0xffffffff; prot->pcp_info[3].pcpi_data = iprv.v1 >> 32; prot->pcp_info[4].pcpi_data = iprv.v2 & 0xffffffff; prot->pcp_info[5].pcpi_data = iprv.v2 >> 32; } return iprv.status; } /* * Flush the processor instruction or data caches. *PROGRESS must be * initialized to zero before calling this for the first time.. */ static inline s64 ia64_pal_cache_flush (u64 cache_type, u64 invalidate, u64 *progress, u64 *vector) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_CACHE_FLUSH, cache_type, invalidate, *progress); if (vector) *vector = iprv.v0; *progress = iprv.v1; return iprv.status; } /* Initialize the processor controlled caches */ static inline s64 ia64_pal_cache_init (u64 level, u64 cache_type, u64 rest) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_CACHE_INIT, level, cache_type, rest); return iprv.status; } /* Initialize the tags and data of a data or unified cache line of * processor controlled cache to known values without the availability * of backing memory. */ static inline s64 ia64_pal_cache_line_init (u64 physical_addr, u64 data_value) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_CACHE_LINE_INIT, physical_addr, data_value, 0); return iprv.status; } /* Read the data and tag of a processor controlled cache line for diags */ static inline s64 ia64_pal_cache_read (pal_cache_line_id_u_t line_id, u64 physical_addr) { struct ia64_pal_retval iprv; PAL_CALL_PHYS_STK(iprv, PAL_CACHE_READ, line_id.pclid_data, physical_addr, 0); return iprv.status; } /* Return summary information about the heirarchy of caches controlled by the processor */ static inline s64 ia64_pal_cache_summary (u64 *cache_levels, u64 *unique_caches) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_CACHE_SUMMARY, 0, 0, 0); if (cache_levels) *cache_levels = iprv.v0; if (unique_caches) *unique_caches = iprv.v1; return iprv.status; } /* Write the data and tag of a processor-controlled cache line for diags */ static inline s64 ia64_pal_cache_write (pal_cache_line_id_u_t line_id, u64 physical_addr, u64 data) { struct ia64_pal_retval iprv; PAL_CALL_PHYS_STK(iprv, PAL_CACHE_WRITE, line_id.pclid_data, physical_addr, data); return iprv.status; } /* Return the parameters needed to copy relocatable PAL procedures from ROM to memory */ static inline s64 ia64_pal_copy_info (u64 copy_type, u64 num_procs, u64 num_iopics, u64 *buffer_size, u64 *buffer_align) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_COPY_INFO, copy_type, num_procs, num_iopics); if (buffer_size) *buffer_size = iprv.v0; if (buffer_align) *buffer_align = iprv.v1; return iprv.status; } /* Copy relocatable PAL procedures from ROM to memory */ static inline s64 ia64_pal_copy_pal (u64 target_addr, u64 alloc_size, u64 processor, u64 *pal_proc_offset) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_COPY_PAL, target_addr, alloc_size, processor); if (pal_proc_offset) *pal_proc_offset = iprv.v0; return iprv.status; } /* Return the number of instruction and data debug register pairs */ static inline s64 ia64_pal_debug_info (u64 *inst_regs, u64 *data_regs) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_DEBUG_INFO, 0, 0, 0); if (inst_regs) *inst_regs = iprv.v0; if (data_regs) *data_regs = iprv.v1; return iprv.status; } #ifdef TBD /* Switch from IA64-system environment to IA-32 system environment */ static inline s64 ia64_pal_enter_ia32_env (ia32_env1, ia32_env2, ia32_env3) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_ENTER_IA_32_ENV, ia32_env1, ia32_env2, ia32_env3); return iprv.status; } #endif /* Get unique geographical address of this processor on its bus */ static inline s64 ia64_pal_fixed_addr (u64 *global_unique_addr) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_FIXED_ADDR, 0, 0, 0); if (global_unique_addr) *global_unique_addr = iprv.v0; return iprv.status; } /* Get base frequency of the platform if generated by the processor */ static inline s64 ia64_pal_freq_base (u64 *platform_base_freq) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_FREQ_BASE, 0, 0, 0); if (platform_base_freq) *platform_base_freq = iprv.v0; return iprv.status; } /* * Get the ratios for processor frequency, bus frequency and interval timer to * to base frequency of the platform */ static inline s64 ia64_pal_freq_ratios (struct pal_freq_ratio *proc_ratio, struct pal_freq_ratio *bus_ratio, struct pal_freq_ratio *itc_ratio) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_FREQ_RATIOS, 0, 0, 0); if (proc_ratio) *(u64 *)proc_ratio = iprv.v0; if (bus_ratio) *(u64 *)bus_ratio = iprv.v1; if (itc_ratio) *(u64 *)itc_ratio = iprv.v2; return iprv.status; } /* Make the processor enter HALT or one of the implementation dependent low * power states where prefetching and execution are suspended and cache and * TLB coherency is not maintained. */ static inline s64 ia64_pal_halt (u64 halt_state) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_HALT, halt_state, 0, 0); return iprv.status; } typedef union pal_power_mgmt_info_u { u64 ppmi_data; struct { u64 exit_latency : 16, entry_latency : 16, power_consumption : 28, im : 1, co : 1, reserved : 2; } pal_power_mgmt_info_s; } pal_power_mgmt_info_u_t; /* Return information about processor's optional power management capabilities. */ static inline s64 ia64_pal_halt_info (pal_power_mgmt_info_u_t *power_buf) { struct ia64_pal_retval iprv; PAL_CALL_STK(iprv, PAL_HALT_INFO, (unsigned long) power_buf, 0, 0); return iprv.status; } /* Get the current P-state information */ static inline s64 ia64_pal_get_pstate (u64 *pstate_index) { struct ia64_pal_retval iprv; PAL_CALL_STK(iprv, PAL_GET_PSTATE, 0, 0, 0); *pstate_index = iprv.v0; return iprv.status; } /* Set the P-state */ static inline s64 ia64_pal_set_pstate (u64 pstate_index) { struct ia64_pal_retval iprv; PAL_CALL_STK(iprv, PAL_SET_PSTATE, pstate_index, 0, 0); return iprv.status; } /* Processor branding information*/ static inline s64 ia64_pal_get_brand_info (char *brand_info) { struct ia64_pal_retval iprv; PAL_CALL_STK(iprv, PAL_BRAND_INFO, 0, (u64)brand_info, 0); return iprv.status; } /* Cause the processor to enter LIGHT HALT state, where prefetching and execution are * suspended, but cache and TLB coherency is maintained. */ static inline s64 ia64_pal_halt_light (void) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_HALT_LIGHT, 0, 0, 0); return iprv.status; } /* Clear all the processor error logging registers and reset the indicator that allows * the error logging registers to be written. This procedure also checks the pending * machine check bit and pending INIT bit and reports their states. */ static inline s64 ia64_pal_mc_clear_log (u64 *pending_vector) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_MC_CLEAR_LOG, 0, 0, 0); if (pending_vector) *pending_vector = iprv.v0; return iprv.status; } /* Ensure that all outstanding transactions in a processor are completed or that any * MCA due to thes outstanding transaction is taken. */ static inline s64 ia64_pal_mc_drain (void) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_MC_DRAIN, 0, 0, 0); return iprv.status; } /* Return the machine check dynamic processor state */ static inline s64 ia64_pal_mc_dynamic_state (u64 offset, u64 *size, u64 *pds) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_MC_DYNAMIC_STATE, offset, 0, 0); if (size) *size = iprv.v0; if (pds) *pds = iprv.v1; return iprv.status; } /* Return processor machine check information */ static inline s64 ia64_pal_mc_error_info (u64 info_index, u64 type_index, u64 *size, u64 *error_info) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_MC_ERROR_INFO, info_index, type_index, 0); if (size) *size = iprv.v0; if (error_info) *error_info = iprv.v1; return iprv.status; } /* Inform PALE_CHECK whether a machine check is expected so that PALE_CHECK willnot * attempt to correct any expected machine checks. */ static inline s64 ia64_pal_mc_expected (u64 expected, u64 *previous) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_MC_EXPECTED, expected, 0, 0); if (previous) *previous = iprv.v0; return iprv.status; } /* Register a platform dependent location with PAL to which it can save * minimal processor state in the event of a machine check or initialization * event. */ static inline s64 ia64_pal_mc_register_mem (u64 physical_addr) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_MC_REGISTER_MEM, physical_addr, 0, 0); return iprv.status; } /* Restore minimal architectural processor state, set CMC interrupt if necessary * and resume execution */ static inline s64 ia64_pal_mc_resume (u64 set_cmci, u64 save_ptr) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_MC_RESUME, set_cmci, save_ptr, 0); return iprv.status; } /* Return the memory attributes implemented by the processor */ static inline s64 ia64_pal_mem_attrib (u64 *mem_attrib) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_MEM_ATTRIB, 0, 0, 0); if (mem_attrib) *mem_attrib = iprv.v0 & 0xff; return iprv.status; } /* Return the amount of memory needed for second phase of processor * self-test and the required alignment of memory. */ static inline s64 ia64_pal_mem_for_test (u64 *bytes_needed, u64 *alignment) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_MEM_FOR_TEST, 0, 0, 0); if (bytes_needed) *bytes_needed = iprv.v0; if (alignment) *alignment = iprv.v1; return iprv.status; } typedef union pal_perf_mon_info_u { u64 ppmi_data; struct { u64 generic : 8, width : 8, cycles : 8, retired : 8, reserved : 32; } pal_perf_mon_info_s; } pal_perf_mon_info_u_t; /* Return the performance monitor information about what can be counted * and how to configure the monitors to count the desired events. */ static inline s64 ia64_pal_perf_mon_info (u64 *pm_buffer, pal_perf_mon_info_u_t *pm_info) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_PERF_MON_INFO, (unsigned long) pm_buffer, 0, 0); if (pm_info) pm_info->ppmi_data = iprv.v0; return iprv.status; } /* Specifies the physical address of the processor interrupt block * and I/O port space. */ static inline s64 ia64_pal_platform_addr (u64 type, u64 physical_addr) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_PLATFORM_ADDR, type, physical_addr, 0); return iprv.status; } /* Set the SAL PMI entrypoint in memory */ static inline s64 ia64_pal_pmi_entrypoint (u64 sal_pmi_entry_addr) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_PMI_ENTRYPOINT, sal_pmi_entry_addr, 0, 0); return iprv.status; } struct pal_features_s; /* Provide information about configurable processor features */ static inline s64 ia64_pal_proc_get_features (u64 *features_avail, u64 *features_status, u64 *features_control) { struct ia64_pal_retval iprv; PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, 0, 0); if (iprv.status == 0) { *features_avail = iprv.v0; *features_status = iprv.v1; *features_control = iprv.v2; } return iprv.status; } /* Enable/disable processor dependent features */ static inline s64 ia64_pal_proc_set_features (u64 feature_select) { struct ia64_pal_retval iprv; PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES, feature_select, 0, 0); return iprv.status; } /* * Put everything in a struct so we avoid the global offset table whenever * possible. */ typedef struct ia64_ptce_info_s { u64 base; u32 count[2]; u32 stride[2]; } ia64_ptce_info_t; /* Return the information required for the architected loop used to purge * (initialize) the entire TC */ static inline s64 ia64_get_ptce (ia64_ptce_info_t *ptce) { struct ia64_pal_retval iprv; if (!ptce) return -1; PAL_CALL(iprv, PAL_PTCE_INFO, 0, 0, 0); if (iprv.status == 0) { ptce->base = iprv.v0; ptce->count[0] = iprv.v1 >> 32; ptce->count[1] = iprv.v1 & 0xffffffff; ptce->stride[0] = iprv.v2 >> 32; ptce->stride[1] = iprv.v2 & 0xffffffff; } return iprv.status; } /* Return info about implemented application and control registers. */ static inline s64 ia64_pal_register_info (u64 info_request, u64 *reg_info_1, u64 *reg_info_2) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_REGISTER_INFO, info_request, 0, 0); if (reg_info_1) *reg_info_1 = iprv.v0; if (reg_info_2) *reg_info_2 = iprv.v1; return iprv.status; } typedef union pal_hints_u { u64 ph_data; struct { u64 si : 1, li : 1, reserved : 62; } pal_hints_s; } pal_hints_u_t; /* Return information about the register stack and RSE for this processor * implementation. */ static inline s64 ia64_pal_rse_info (u64 *num_phys_stacked, pal_hints_u_t *hints) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_RSE_INFO, 0, 0, 0); if (num_phys_stacked) *num_phys_stacked = iprv.v0; if (hints) hints->ph_data = iprv.v1; return iprv.status; } /* Cause the processor to enter SHUTDOWN state, where prefetching and execution are * suspended, but cause cache and TLB coherency to be maintained. * This is usually called in IA-32 mode. */ static inline s64 ia64_pal_shutdown (void) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_SHUTDOWN, 0, 0, 0); return iprv.status; } /* Perform the second phase of processor self-test. */ static inline s64 ia64_pal_test_proc (u64 test_addr, u64 test_size, u64 attributes, u64 *self_test_state) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_TEST_PROC, test_addr, test_size, attributes); if (self_test_state) *self_test_state = iprv.v0; return iprv.status; } typedef union pal_version_u { u64 pal_version_val; struct { u64 pv_pal_b_rev : 8; u64 pv_pal_b_model : 8; u64 pv_reserved1 : 8; u64 pv_pal_vendor : 8; u64 pv_pal_a_rev : 8; u64 pv_pal_a_model : 8; u64 pv_reserved2 : 16; } pal_version_s; } pal_version_u_t; /* * Return PAL version information. While the documentation states that * PAL_VERSION can be called in either physical or virtual mode, some * implementations only allow physical calls. We don't call it very often, * so the overhead isn't worth eliminating. */ static inline s64 ia64_pal_version (pal_version_u_t *pal_min_version, pal_version_u_t *pal_cur_version) { struct ia64_pal_retval iprv; PAL_CALL_PHYS(iprv, PAL_VERSION, 0, 0, 0); if (pal_min_version) pal_min_version->pal_version_val = iprv.v0; if (pal_cur_version) pal_cur_version->pal_version_val = iprv.v1; return iprv.status; } typedef union pal_tc_info_u { u64 pti_val; struct { u64 num_sets : 8, associativity : 8, num_entries : 16, pf : 1, unified : 1, reduce_tr : 1, reserved : 29; } pal_tc_info_s; } pal_tc_info_u_t; #define tc_reduce_tr pal_tc_info_s.reduce_tr #define tc_unified pal_tc_info_s.unified #define tc_pf pal_tc_info_s.pf #define tc_num_entries pal_tc_info_s.num_entries #define tc_associativity pal_tc_info_s.associativity #define tc_num_sets pal_tc_info_s.num_sets /* Return information about the virtual memory characteristics of the processor * implementation. */ static inline s64 ia64_pal_vm_info (u64 tc_level, u64 tc_type, pal_tc_info_u_t *tc_info, u64 *tc_pages) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_VM_INFO, tc_level, tc_type, 0); if (tc_info) tc_info->pti_val = iprv.v0; if (tc_pages) *tc_pages = iprv.v1; return iprv.status; } /* Get page size information about the virtual memory characteristics of the processor * implementation. */ static inline s64 ia64_pal_vm_page_size (u64 *tr_pages, u64 *vw_pages) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_VM_PAGE_SIZE, 0, 0, 0); if (tr_pages) *tr_pages = iprv.v0; if (vw_pages) *vw_pages = iprv.v1; return iprv.status; } typedef union pal_vm_info_1_u { u64 pvi1_val; struct { u64 vw : 1, phys_add_size : 7, key_size : 8, max_pkr : 8, hash_tag_id : 8, max_dtr_entry : 8, max_itr_entry : 8, max_unique_tcs : 8, num_tc_levels : 8; } pal_vm_info_1_s; } pal_vm_info_1_u_t; typedef union pal_vm_info_2_u { u64 pvi2_val; struct { u64 impl_va_msb : 8, rid_size : 8, reserved : 48; } pal_vm_info_2_s; } pal_vm_info_2_u_t; /* Get summary information about the virtual memory characteristics of the processor * implementation. */ static inline s64 ia64_pal_vm_summary (pal_vm_info_1_u_t *vm_info_1, pal_vm_info_2_u_t *vm_info_2) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_VM_SUMMARY, 0, 0, 0); if (vm_info_1) vm_info_1->pvi1_val = iprv.v0; if (vm_info_2) vm_info_2->pvi2_val = iprv.v1; return iprv.status; } typedef union pal_itr_valid_u { u64 piv_val; struct { u64 access_rights_valid : 1, priv_level_valid : 1, dirty_bit_valid : 1, mem_attr_valid : 1, reserved : 60; } pal_tr_valid_s; } pal_tr_valid_u_t; /* Read a translation register */ static inline s64 ia64_pal_tr_read (u64 reg_num, u64 tr_type, u64 *tr_buffer, pal_tr_valid_u_t *tr_valid) { struct ia64_pal_retval iprv; PAL_CALL_PHYS_STK(iprv, PAL_VM_TR_READ, reg_num, tr_type,(u64)ia64_tpa(tr_buffer)); if (tr_valid) tr_valid->piv_val = iprv.v0; return iprv.status; } /* * PAL_PREFETCH_VISIBILITY transaction types */ #define PAL_VISIBILITY_VIRTUAL 0 #define PAL_VISIBILITY_PHYSICAL 1 /* * PAL_PREFETCH_VISIBILITY return codes */ #define PAL_VISIBILITY_OK 1 #define PAL_VISIBILITY_OK_REMOTE_NEEDED 0 #define PAL_VISIBILITY_INVAL_ARG -2 #define PAL_VISIBILITY_ERROR -3 static inline s64 ia64_pal_prefetch_visibility (s64 trans_type) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_PREFETCH_VISIBILITY, trans_type, 0, 0); return iprv.status; } /* data structure for getting information on logical to physical mappings */ typedef union pal_log_overview_u { struct { u64 num_log :16, /* Total number of logical * processors on this die */ tpc :8, /* Threads per core */ reserved3 :8, /* Reserved */ cpp :8, /* Cores per processor */ reserved2 :8, /* Reserved */ ppid :8, /* Physical processor ID */ reserved1 :8; /* Reserved */ } overview_bits; u64 overview_data; } pal_log_overview_t; typedef union pal_proc_n_log_info1_u{ struct { u64 tid :16, /* Thread id */ reserved2 :16, /* Reserved */ cid :16, /* Core id */ reserved1 :16; /* Reserved */ } ppli1_bits; u64 ppli1_data; } pal_proc_n_log_info1_t; typedef union pal_proc_n_log_info2_u { struct { u64 la :16, /* Logical address */ reserved :48; /* Reserved */ } ppli2_bits; u64 ppli2_data; } pal_proc_n_log_info2_t; typedef struct pal_logical_to_physical_s { pal_log_overview_t overview; pal_proc_n_log_info1_t ppli1; pal_proc_n_log_info2_t ppli2; } pal_logical_to_physical_t; #define overview_num_log overview.overview_bits.num_log #define overview_tpc overview.overview_bits.tpc #define overview_cpp overview.overview_bits.cpp #define overview_ppid overview.overview_bits.ppid #define log1_tid ppli1.ppli1_bits.tid #define log1_cid ppli1.ppli1_bits.cid #define log2_la ppli2.ppli2_bits.la /* Get information on logical to physical processor mappings. */ static inline s64 ia64_pal_logical_to_phys(u64 proc_number, pal_logical_to_physical_t *mapping) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_LOGICAL_TO_PHYSICAL, proc_number, 0, 0); if (iprv.status == PAL_STATUS_SUCCESS) { mapping->overview.overview_data = iprv.v0; mapping->ppli1.ppli1_data = iprv.v1; mapping->ppli2.ppli2_data = iprv.v2; } return iprv.status; } typedef struct pal_cache_shared_info_s { u64 num_shared; pal_proc_n_log_info1_t ppli1; pal_proc_n_log_info2_t ppli2; } pal_cache_shared_info_t; /* Get information on logical to physical processor mappings. */ static inline s64 ia64_pal_cache_shared_info(u64 level, u64 type, u64 proc_number, pal_cache_shared_info_t *info) { struct ia64_pal_retval iprv; PAL_CALL(iprv, PAL_CACHE_SHARED_INFO, level, type, proc_number); if (iprv.status == PAL_STATUS_SUCCESS) { info->num_shared = iprv.v0; info->ppli1.ppli1_data = iprv.v1; info->ppli2.ppli2_data = iprv.v2; } return iprv.status; } #endif /* __ASSEMBLY__ */ #endif /* _ASM_IA64_PAL_H */