/* * fs/logfs/logfs.h * * As should be obvious for Linux kernel code, license is GPLv2 * * Copyright (c) 2005-2008 Joern Engel * * Private header for logfs. */ #ifndef FS_LOGFS_LOGFS_H #define FS_LOGFS_LOGFS_H #undef __CHECK_ENDIAN__ #define __CHECK_ENDIAN__ #include #include #include #include #include #include #include #include "logfs_abi.h" #define LOGFS_DEBUG_SUPER (0x0001) #define LOGFS_DEBUG_SEGMENT (0x0002) #define LOGFS_DEBUG_JOURNAL (0x0004) #define LOGFS_DEBUG_DIR (0x0008) #define LOGFS_DEBUG_FILE (0x0010) #define LOGFS_DEBUG_INODE (0x0020) #define LOGFS_DEBUG_READWRITE (0x0040) #define LOGFS_DEBUG_GC (0x0080) #define LOGFS_DEBUG_GC_NOISY (0x0100) #define LOGFS_DEBUG_ALIASES (0x0200) #define LOGFS_DEBUG_BLOCKMOVE (0x0400) #define LOGFS_DEBUG_ALL (0xffffffff) #define LOGFS_DEBUG (0x01) /* * To enable specific log messages, simply define LOGFS_DEBUG to match any * or all of the above. */ #ifndef LOGFS_DEBUG #define LOGFS_DEBUG (0) #endif #define log_cond(cond, fmt, arg...) do { \ if (cond) \ printk(KERN_DEBUG fmt, ##arg); \ } while (0) #define log_super(fmt, arg...) \ log_cond(LOGFS_DEBUG & LOGFS_DEBUG_SUPER, fmt, ##arg) #define log_segment(fmt, arg...) \ log_cond(LOGFS_DEBUG & LOGFS_DEBUG_SEGMENT, fmt, ##arg) #define log_journal(fmt, arg...) \ log_cond(LOGFS_DEBUG & LOGFS_DEBUG_JOURNAL, fmt, ##arg) #define log_dir(fmt, arg...) \ log_cond(LOGFS_DEBUG & LOGFS_DEBUG_DIR, fmt, ##arg) #define log_file(fmt, arg...) \ log_cond(LOGFS_DEBUG & LOGFS_DEBUG_FILE, fmt, ##arg) #define log_inode(fmt, arg...) \ log_cond(LOGFS_DEBUG & LOGFS_DEBUG_INODE, fmt, ##arg) #define log_readwrite(fmt, arg...) \ log_cond(LOGFS_DEBUG & LOGFS_DEBUG_READWRITE, fmt, ##arg) #define log_gc(fmt, arg...) \ log_cond(LOGFS_DEBUG & LOGFS_DEBUG_GC, fmt, ##arg) #define log_gc_noisy(fmt, arg...) \ log_cond(LOGFS_DEBUG & LOGFS_DEBUG_GC_NOISY, fmt, ##arg) #define log_aliases(fmt, arg...) \ log_cond(LOGFS_DEBUG & LOGFS_DEBUG_ALIASES, fmt, ##arg) #define log_blockmove(fmt, arg...) \ log_cond(LOGFS_DEBUG & LOGFS_DEBUG_BLOCKMOVE, fmt, ##arg) #define PG_pre_locked PG_owner_priv_1 #define PagePreLocked(page) test_bit(PG_pre_locked, &(page)->flags) #define SetPagePreLocked(page) set_bit(PG_pre_locked, &(page)->flags) #define ClearPagePreLocked(page) clear_bit(PG_pre_locked, &(page)->flags) /* FIXME: This should really be somewhere in the 64bit area. */ #define LOGFS_LINK_MAX (1<<30) /* Read-only filesystem */ #define LOGFS_SB_FLAG_RO 0x0001 #define LOGFS_SB_FLAG_DIRTY 0x0002 #define LOGFS_SB_FLAG_OBJ_ALIAS 0x0004 #define LOGFS_SB_FLAG_SHUTDOWN 0x0008 /* Write Control Flags */ #define WF_LOCK 0x01 /* take write lock */ #define WF_WRITE 0x02 /* write block */ #define WF_DELETE 0x04 /* delete old block */ typedef u8 __bitwise level_t; typedef u8 __bitwise gc_level_t; #define LEVEL(level) ((__force level_t)(level)) #define GC_LEVEL(gc_level) ((__force gc_level_t)(gc_level)) #define SUBLEVEL(level) ( (void)((level) == LEVEL(1)), \ (__force level_t)((__force u8)(level) - 1) ) /** * struct logfs_area - area management information * * @a_sb: the superblock this area belongs to * @a_is_open: 1 if the area is currently open, else 0 * @a_segno: segment number of area * @a_written_bytes: number of bytes already written back * @a_used_bytes: number of used bytes * @a_ops: area operations (either journal or ostore) * @a_erase_count: erase count * @a_level: GC level */ struct logfs_area { /* a segment open for writing */ struct super_block *a_sb; int a_is_open; u32 a_segno; u32 a_written_bytes; u32 a_used_bytes; const struct logfs_area_ops *a_ops; u32 a_erase_count; gc_level_t a_level; }; /** * struct logfs_area_ops - area operations * * @get_free_segment: fill area->ofs with the offset of a free segment * @get_erase_count: fill area->erase_count (needs area->ofs) * @erase_segment: erase and setup segment */ struct logfs_area_ops { void (*get_free_segment)(struct logfs_area *area); void (*get_erase_count)(struct logfs_area *area); int (*erase_segment)(struct logfs_area *area); }; /** * struct logfs_device_ops - device access operations * * @readpage: read one page (mm page) * @writeseg: write one segment. may be a partial segment * @erase: erase one segment * @read: read from the device * @erase: erase part of the device * @can_write_buf: decide whether wbuf can be written to ofs */ struct logfs_device_ops { struct page *(*find_first_sb)(struct super_block *sb, u64 *ofs); struct page *(*find_last_sb)(struct super_block *sb, u64 *ofs); int (*write_sb)(struct super_block *sb, struct page *page); int (*readpage)(void *_sb, struct page *page); void (*writeseg)(struct super_block *sb, u64 ofs, size_t len); int (*erase)(struct super_block *sb, loff_t ofs, size_t len, int ensure_write); int (*can_write_buf)(struct super_block *sb, u64 ofs); void (*sync)(struct super_block *sb); void (*put_device)(struct super_block *sb); }; /** * struct candidate_list - list of similar candidates */ struct candidate_list { struct rb_root rb_tree; int count; int maxcount; int sort_by_ec; }; /** * struct gc_candidate - "candidate" segment to be garbage collected next * * @list: list (either free of low) * @segno: segment number * @valid: number of valid bytes * @erase_count: erase count of segment * @dist: distance from tree root * * Candidates can be on two lists. The free list contains electees rather * than candidates - segments that no longer contain any valid data. The * low list contains candidates to be picked for GC. It should be kept * short. It is not required to always pick a perfect candidate. In the * worst case GC will have to move more data than absolutely necessary. */ struct gc_candidate { struct rb_node rb_node; struct candidate_list *list; u32 segno; u32 valid; u32 erase_count; u8 dist; }; /** * struct logfs_journal_entry - temporary structure used during journal scan * * @used: * @version: normalized version * @len: length * @offset: offset */ struct logfs_journal_entry { int used; s16 version; u16 len; u16 datalen; u64 offset; }; enum transaction_state { CREATE_1 = 1, CREATE_2, UNLINK_1, UNLINK_2, CROSS_RENAME_1, CROSS_RENAME_2, TARGET_RENAME_1, TARGET_RENAME_2, TARGET_RENAME_3 }; /** * struct logfs_transaction - essential fields to support atomic dirops * * @ino: target inode * @dir: inode of directory containing dentry * @pos: pos of dentry in directory */ struct logfs_transaction { enum transaction_state state; u64 ino; u64 dir; u64 pos; }; /** * struct logfs_shadow - old block in the shadow of a not-yet-committed new one * @old_ofs: offset of old block on medium * @new_ofs: offset of new block on medium * @ino: inode number * @bix: block index * @old_len: size of old block, including header * @new_len: size of new block, including header * @level: block level */ struct logfs_shadow { u64 old_ofs; u64 new_ofs; u64 ino; u64 bix; int old_len; int new_len; gc_level_t gc_level; }; /** * struct shadow_tree * @new: shadows where old_ofs==0, indexed by new_ofs * @old: shadows where old_ofs!=0, indexed by old_ofs * @segment_map: bitfield of segments containing shadows * @no_shadowed_segment: number of segments containing shadows */ struct shadow_tree { struct btree_head64 new; struct btree_head64 old; struct btree_head32 segment_map; int no_shadowed_segments; }; struct object_alias_item { struct list_head list; __be64 val; int child_no; }; /** * struct logfs_block - contains any block state * @type: indirect block or inode * @full: number of fully populated children * @partial: number of partially populated children * * Most blocks are directly represented by page cache pages. But when a block * becomes dirty, is part of a transaction, contains aliases or is otherwise * special, a struct logfs_block is allocated to track the additional state. * Inodes are very similar to indirect blocks, so they can also get one of * these structures added when appropriate. */ #define BLOCK_INDIRECT 1 /* Indirect block */ #define BLOCK_INODE 2 /* Inode */ struct logfs_block_ops; struct logfs_block { struct list_head alias_list; struct list_head item_list; struct super_block *sb; u64 ino; u64 bix; level_t level; struct page *page; struct inode *inode; struct logfs_transaction *ta; unsigned long alias_map[LOGFS_BLOCK_FACTOR / BITS_PER_LONG]; struct logfs_block_ops *ops; int full; int partial; int reserved_bytes; }; typedef int write_alias_t(struct super_block *sb, u64 ino, u64 bix, level_t level, int child_no, __be64 val); struct logfs_block_ops { void (*write_block)(struct logfs_block *block); void (*free_block)(struct super_block *sb, struct logfs_block*block); int (*write_alias)(struct super_block *sb, struct logfs_block *block, write_alias_t *write_one_alias); }; #define MAX_JOURNAL_ENTRIES 256 struct logfs_super { struct mtd_info *s_mtd; /* underlying device */ struct block_device *s_bdev; /* underlying device */ const struct logfs_device_ops *s_devops;/* device access */ struct inode *s_master_inode; /* inode file */ struct inode *s_segfile_inode; /* segment file */ struct inode *s_mapping_inode; /* device mapping */ atomic_t s_pending_writes; /* outstanting bios */ long s_flags; mempool_t *s_btree_pool; /* for btree nodes */ mempool_t *s_alias_pool; /* aliases in segment.c */ u64 s_feature_incompat; u64 s_feature_ro_compat; u64 s_feature_compat; u64 s_feature_flags; u64 s_sb_ofs[2]; struct page *s_erase_page; /* for dev_bdev.c */ /* alias.c fields */ struct btree_head32 s_segment_alias; /* remapped segments */ int s_no_object_aliases; struct list_head s_object_alias; /* remapped objects */ struct btree_head128 s_object_alias_tree; /* remapped objects */ struct mutex s_object_alias_mutex; /* dir.c fields */ struct mutex s_dirop_mutex; /* for creat/unlink/rename */ u64 s_victim_ino; /* used for atomic dir-ops */ u64 s_rename_dir; /* source directory ino */ u64 s_rename_pos; /* position of source dd */ /* gc.c fields */ long s_segsize; /* size of a segment */ int s_segshift; /* log2 of segment size */ long s_segmask; /* 1 << s_segshift - 1 */ long s_no_segs; /* segments on device */ long s_no_journal_segs; /* segments used for journal */ long s_no_blocks; /* blocks per segment */ long s_writesize; /* minimum write size */ int s_writeshift; /* log2 of write size */ u64 s_size; /* filesystem size */ struct logfs_area *s_area[LOGFS_NO_AREAS]; /* open segment array */ u64 s_gec; /* global erase count */ u64 s_wl_gec_ostore; /* time of last wl event */ u64 s_wl_gec_journal; /* time of last wl event */ u64 s_sweeper; /* current sweeper pos */ u8 s_ifile_levels; /* max level of ifile */ u8 s_iblock_levels; /* max level of regular files */ u8 s_data_levels; /* # of segments to leaf block*/ u8 s_total_levels; /* sum of above three */ struct btree_head32 s_cand_tree; /* all candidates */ struct candidate_list s_free_list; /* 100% free segments */ struct candidate_list s_reserve_list; /* Bad segment reserve */ struct candidate_list s_low_list[LOGFS_NO_AREAS];/* good candidates */ struct candidate_list s_ec_list; /* wear level candidates */ struct btree_head32 s_reserved_segments;/* sb, journal, bad, etc. */ /* inode.c fields */ u64 s_last_ino; /* highest ino used */ long s_inos_till_wrap; u32 s_generation; /* i_generation for new files */ struct list_head s_freeing_list; /* inodes being freed */ /* journal.c fields */ struct mutex s_journal_mutex; void *s_je; /* journal entry to compress */ void *s_compressed_je; /* block to write to journal */ u32 s_journal_seg[LOGFS_JOURNAL_SEGS]; /* journal segments */ u32 s_journal_ec[LOGFS_JOURNAL_SEGS]; /* journal erasecounts */ u64 s_last_version; struct logfs_area *s_journal_area; /* open journal segment */ __be64 s_je_array[MAX_JOURNAL_ENTRIES]; int s_no_je; int s_sum_index; /* for the 12 summaries */ struct shadow_tree s_shadow_tree; int s_je_fill; /* index of current je */ /* readwrite.c fields */ struct mutex s_write_mutex; int s_lock_count; mempool_t *s_block_pool; /* struct logfs_block pool */ mempool_t *s_shadow_pool; /* struct logfs_shadow pool */ struct list_head s_writeback_list; /* writeback pages */ /* * Space accounting: * - s_used_bytes specifies space used to store valid data objects. * - s_dirty_used_bytes is space used to store non-committed data * objects. Those objects have already been written themselves, * but they don't become valid until all indirect blocks up to the * journal have been written as well. * - s_dirty_free_bytes is space used to store the old copy of a * replaced object, as long as the replacement is non-committed. * In other words, it is the amount of space freed when all dirty * blocks are written back. * - s_free_bytes is the amount of free space available for any * purpose. * - s_root_reserve is the amount of free space available only to * the root user. Non-privileged users can no longer write once * this watermark has been reached. * - s_speed_reserve is space which remains unused to speed up * garbage collection performance. * - s_dirty_pages is the space reserved for currently dirty pages. * It is a pessimistic estimate, so some/most will get freed on * page writeback. * * s_used_bytes + s_free_bytes + s_speed_reserve = total usable size */ u64 s_free_bytes; u64 s_used_bytes; u64 s_dirty_free_bytes; u64 s_dirty_used_bytes; u64 s_root_reserve; u64 s_speed_reserve; u64 s_dirty_pages; /* Bad block handling: * - s_bad_seg_reserve is a number of segments usually kept * free. When encountering bad blocks, the affected segment's data * is _temporarily_ moved to a reserved segment. * - s_bad_segments is the number of known bad segments. */ u32 s_bad_seg_reserve; u32 s_bad_segments; }; /** * struct logfs_inode - in-memory inode * * @vfs_inode: struct inode * @li_data: data pointers * @li_used_bytes: number of used bytes * @li_freeing_list: used to track inodes currently being freed * @li_flags: inode flags * @li_refcount: number of internal (GC-induced) references */ struct logfs_inode { struct inode vfs_inode; u64 li_data[LOGFS_EMBEDDED_FIELDS]; u64 li_used_bytes; struct list_head li_freeing_list; struct logfs_block *li_block; u32 li_flags; u8 li_height; int li_refcount; }; #define journal_for_each(__i) for (__i = 0; __i < LOGFS_JOURNAL_SEGS; __i++) #define for_each_area(__i) for (__i = 0; __i < LOGFS_NO_AREAS; __i++) #define for_each_area_down(__i) for (__i = LOGFS_NO_AREAS - 1; __i >= 0; __i--) /* compr.c */ int logfs_compress(void *in, void *out, size_t inlen, size_t outlen); int logfs_uncompress(void *in, void *out, size_t inlen, size_t outlen); int __init logfs_compr_init(void); void logfs_compr_exit(void); /* dev_bdev.c */ #ifdef CONFIG_BLOCK int logfs_get_sb_bdev(struct logfs_super *s, struct file_system_type *type, int flags, const char *devname, struct vfsmount *mnt); #else static inline int logfs_get_sb_bdev(struct logfs_super *s, struct file_system_type *type, int flags, const char *devname, struct vfsmount *mnt) { kfree(s); return -ENODEV; } #endif /* dev_mtd.c */ #ifdef CONFIG_MTD int logfs_get_sb_mtd(struct logfs_super *s, struct file_system_type *type, int flags, int mtdnr, struct vfsmount *mnt); #else static inline int logfs_get_sb_mtd(struct logfs_super *s, struct file_system_type *type, int flags, int mtdnr, struct vfsmount *mnt) { kfree(s); return -ENODEV; } #endif /* dir.c */ extern const struct inode_operations logfs_symlink_iops; extern const struct inode_operations logfs_dir_iops; extern const struct file_operations logfs_dir_fops; int logfs_replay_journal(struct super_block *sb); /* file.c */ extern const struct inode_operations logfs_reg_iops; extern const struct file_operations logfs_reg_fops; extern const struct address_space_operations logfs_reg_aops; int logfs_readpage(struct file *file, struct page *page); long logfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); int logfs_fsync(struct file *file, int datasync); /* gc.c */ u32 get_best_cand(struct super_block *sb, struct candidate_list *list, u32 *ec); void logfs_gc_pass(struct super_block *sb); int logfs_check_areas(struct super_block *sb); int logfs_init_gc(struct super_block *sb); void logfs_cleanup_gc(struct super_block *sb); /* inode.c */ extern const struct super_operations logfs_super_operations; struct inode *logfs_iget(struct super_block *sb, ino_t ino); struct inode *logfs_safe_iget(struct super_block *sb, ino_t ino, int *cookie); void logfs_safe_iput(struct inode *inode, int cookie); struct inode *logfs_new_inode(struct inode *dir, int mode); struct inode *logfs_new_meta_inode(struct super_block *sb, u64 ino); struct inode *logfs_read_meta_inode(struct super_block *sb, u64 ino); int logfs_init_inode_cache(void); void logfs_destroy_inode_cache(void); void logfs_set_blocks(struct inode *inode, u64 no); /* these logically belong into inode.c but actually reside in readwrite.c */ int logfs_read_inode(struct inode *inode); int __logfs_write_inode(struct inode *inode, long flags); void logfs_evict_inode(struct inode *inode); /* journal.c */ void logfs_write_anchor(struct super_block *sb); int logfs_init_journal(struct super_block *sb); void logfs_cleanup_journal(struct super_block *sb); int write_alias_journal(struct super_block *sb, u64 ino, u64 bix, level_t level, int child_no, __be64 val); void do_logfs_journal_wl_pass(struct super_block *sb); /* readwrite.c */ pgoff_t logfs_pack_index(u64 bix, level_t level); void logfs_unpack_index(pgoff_t index, u64 *bix, level_t *level); int logfs_inode_write(struct inode *inode, const void *buf, size_t count, loff_t bix, long flags, struct shadow_tree *shadow_tree); int logfs_readpage_nolock(struct page *page); int logfs_write_buf(struct inode *inode, struct page *page, long flags); int logfs_delete(struct inode *inode, pgoff_t index, struct shadow_tree *shadow_tree); int logfs_rewrite_block(struct inode *inode, u64 bix, u64 ofs, gc_level_t gc_level, long flags); int logfs_is_valid_block(struct super_block *sb, u64 ofs, u64 ino, u64 bix, gc_level_t gc_level); int logfs_truncate(struct inode *inode, u64 size); u64 logfs_seek_hole(struct inode *inode, u64 bix); u64 logfs_seek_data(struct inode *inode, u64 bix); int logfs_open_segfile(struct super_block *sb); int logfs_init_rw(struct super_block *sb); void logfs_cleanup_rw(struct super_block *sb); void logfs_add_transaction(struct inode *inode, struct logfs_transaction *ta); void logfs_del_transaction(struct inode *inode, struct logfs_transaction *ta); void logfs_write_block(struct logfs_block *block, long flags); int logfs_write_obj_aliases_pagecache(struct super_block *sb); void logfs_get_segment_entry(struct super_block *sb, u32 segno, struct logfs_segment_entry *se); void logfs_set_segment_used(struct super_block *sb, u64 ofs, int increment); void logfs_set_segment_erased(struct super_block *sb, u32 segno, u32 ec, gc_level_t gc_level); void logfs_set_segment_reserved(struct super_block *sb, u32 segno); void logfs_set_segment_unreserved(struct super_block *sb, u32 segno, u32 ec); struct logfs_block *__alloc_block(struct super_block *sb, u64 ino, u64 bix, level_t level); void __free_block(struct super_block *sb, struct logfs_block *block); void btree_write_block(struct logfs_block *block); void initialize_block_counters(struct page *page, struct logfs_block *block, __be64 *array, int page_is_empty); int logfs_exist_block(struct inode *inode, u64 bix); int get_page_reserve(struct inode *inode, struct page *page); extern struct logfs_block_ops indirect_block_ops; /* segment.c */ int logfs_erase_segment(struct super_block *sb, u32 ofs, int ensure_erase); int wbuf_read(struct super_block *sb, u64 ofs, size_t len, void *buf); int logfs_segment_read(struct inode *inode, struct page *page, u64 ofs, u64 bix, level_t level); int logfs_segment_write(struct inode *inode, struct page *page, struct logfs_shadow *shadow); int logfs_segment_delete(struct inode *inode, struct logfs_shadow *shadow); int logfs_load_object_aliases(struct super_block *sb, struct logfs_obj_alias *oa, int count); void move_page_to_btree(struct page *page); int logfs_init_mapping(struct super_block *sb); void logfs_sync_area(struct logfs_area *area); void logfs_sync_segments(struct super_block *sb); void freeseg(struct super_block *sb, u32 segno); /* area handling */ int logfs_init_areas(struct super_block *sb); void logfs_cleanup_areas(struct super_block *sb); int logfs_open_area(struct logfs_area *area, size_t bytes); int __logfs_buf_write(struct logfs_area *area, u64 ofs, void *buf, size_t len, int use_filler); static inline int logfs_buf_write(struct logfs_area *area, u64 ofs, void *buf, size_t len) { return __logfs_buf_write(area, ofs, buf, len, 0); } static inline int logfs_buf_recover(struct logfs_area *area, u64 ofs, void *buf, size_t len) { return __logfs_buf_write(area, ofs, buf, len, 1); } /* super.c */ struct page *emergency_read_begin(struct address_space *mapping, pgoff_t index); void emergency_read_end(struct page *page); void logfs_crash_dump(struct super_block *sb); void *memchr_inv(const void *s, int c, size_t n); int logfs_statfs(struct dentry *dentry, struct kstatfs *stats); int logfs_get_sb_device(struct logfs_super *s, struct file_system_type *type, int flags, struct mtd_info *mtd, struct block_device *bdev, const struct logfs_device_ops *devops, struct vfsmount *mnt); int logfs_check_ds(struct logfs_disk_super *ds); int logfs_write_sb(struct super_block *sb); static inline struct logfs_super *logfs_super(struct super_block *sb) { return sb->s_fs_info; } static inline struct logfs_inode *logfs_inode(struct inode *inode) { return container_of(inode, struct logfs_inode, vfs_inode); } static inline void logfs_set_ro(struct super_block *sb) { logfs_super(sb)->s_flags |= LOGFS_SB_FLAG_RO; } #define LOGFS_BUG(sb) do { \ struct super_block *__sb = sb; \ logfs_crash_dump(__sb); \ logfs_super(__sb)->s_flags |= LOGFS_SB_FLAG_RO; \ BUG(); \ } while (0) #define LOGFS_BUG_ON(condition, sb) \ do { if (unlikely(condition)) LOGFS_BUG((sb)); } while (0) static inline __be32 logfs_crc32(void *data, size_t len, size_t skip) { return cpu_to_be32(crc32(~0, data+skip, len-skip)); } static inline u8 logfs_type(struct inode *inode) { return (inode->i_mode >> 12) & 15; } static inline pgoff_t logfs_index(struct super_block *sb, u64 pos) { return pos >> sb->s_blocksize_bits; } static inline u64 dev_ofs(struct super_block *sb, u32 segno, u32 ofs) { return ((u64)segno << logfs_super(sb)->s_segshift) + ofs; } static inline u32 seg_no(struct super_block *sb, u64 ofs) { return ofs >> logfs_super(sb)->s_segshift; } static inline u32 seg_ofs(struct super_block *sb, u64 ofs) { return ofs & logfs_super(sb)->s_segmask; } static inline u64 seg_align(struct super_block *sb, u64 ofs) { return ofs & ~logfs_super(sb)->s_segmask; } static inline struct logfs_block *logfs_block(struct page *page) { return (void *)page->private; } static inline level_t shrink_level(gc_level_t __level) { u8 level = (__force u8)__level; if (level >= LOGFS_MAX_LEVELS) level -= LOGFS_MAX_LEVELS; return (__force level_t)level; } static inline gc_level_t expand_level(u64 ino, level_t __level) { u8 level = (__force u8)__level; if (ino == LOGFS_INO_MASTER) { /* ifile has separate areas */ level += LOGFS_MAX_LEVELS; } return (__force gc_level_t)level; } static inline int logfs_block_shift(struct super_block *sb, level_t level) { level = shrink_level((__force gc_level_t)level); return (__force int)level * (sb->s_blocksize_bits - 3); } static inline u64 logfs_block_mask(struct super_block *sb, level_t level) { return ~0ull << logfs_block_shift(sb, level); } static inline struct logfs_area *get_area(struct super_block *sb, gc_level_t gc_level) { return logfs_super(sb)->s_area[(__force u8)gc_level]; } static inline void logfs_mempool_destroy(mempool_t *pool) { if (pool) mempool_destroy(pool); } #endif