/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #ifndef __BTRFS_I__ #define __BTRFS_I__ #include "extent_map.h" #include "extent_io.h" #include "ordered-data.h" #include "delayed-inode.h" /* in memory btrfs inode */ struct btrfs_inode { /* which subvolume this inode belongs to */ struct btrfs_root *root; /* key used to find this inode on disk. This is used by the code * to read in roots of subvolumes */ struct btrfs_key location; /* Lock for counters */ spinlock_t lock; /* the extent_tree has caches of all the extent mappings to disk */ struct extent_map_tree extent_tree; /* the io_tree does range state (DIRTY, LOCKED etc) */ struct extent_io_tree io_tree; /* special utility tree used to record which mirrors have already been * tried when checksums fail for a given block */ struct extent_io_tree io_failure_tree; /* held while logging the inode in tree-log.c */ struct mutex log_mutex; /* held while doing delalloc reservations */ struct mutex delalloc_mutex; /* used to order data wrt metadata */ struct btrfs_ordered_inode_tree ordered_tree; /* for keeping track of orphaned inodes */ struct list_head i_orphan; /* list of all the delalloc inodes in the FS. There are times we need * to write all the delalloc pages to disk, and this list is used * to walk them all. */ struct list_head delalloc_inodes; /* * list for tracking inodes that must be sent to disk before a * rename or truncate commit */ struct list_head ordered_operations; /* node for the red-black tree that links inodes in subvolume root */ struct rb_node rb_node; /* the space_info for where this inode's data allocations are done */ struct btrfs_space_info *space_info; /* full 64 bit generation number, struct vfs_inode doesn't have a big * enough field for this. */ u64 generation; /* * transid of the trans_handle that last modified this inode */ u64 last_trans; /* * log transid when this inode was last modified */ u64 last_sub_trans; /* * transid that last logged this inode */ u64 logged_trans; /* total number of bytes pending delalloc, used by stat to calc the * real block usage of the file */ u64 delalloc_bytes; /* * the size of the file stored in the metadata on disk. data=ordered * means the in-memory i_size might be larger than the size on disk * because not all the blocks are written yet. */ u64 disk_i_size; /* * if this is a directory then index_cnt is the counter for the index * number for new files that are created */ u64 index_cnt; /* the fsync log has some corner cases that mean we have to check * directories to see if any unlinks have been done before * the directory was logged. See tree-log.c for all the * details */ u64 last_unlink_trans; /* * Number of bytes outstanding that are going to need csums. This is * used in ENOSPC accounting. */ u64 csum_bytes; /* flags field from the on disk inode */ u32 flags; /* * Counters to keep track of the number of extent item's we may use due * to delalloc and such. outstanding_extents is the number of extent * items we think we'll end up using, and reserved_extents is the number * of extent items we've reserved metadata for. */ unsigned outstanding_extents; unsigned reserved_extents; /* * ordered_data_close is set by truncate when a file that used * to have good data has been truncated to zero. When it is set * the btrfs file release call will add this inode to the * ordered operations list so that we make sure to flush out any * new data the application may have written before commit. */ unsigned ordered_data_close:1; unsigned orphan_meta_reserved:1; unsigned dummy_inode:1; unsigned in_defrag:1; unsigned delalloc_meta_reserved:1; /* * always compress this one file */ unsigned force_compress:4; struct btrfs_delayed_node *delayed_node; struct inode vfs_inode; }; extern unsigned char btrfs_filetype_table[]; static inline struct btrfs_inode *BTRFS_I(struct inode *inode) { return container_of(inode, struct btrfs_inode, vfs_inode); } static inline u64 btrfs_ino(struct inode *inode) { u64 ino = BTRFS_I(inode)->location.objectid; /* * !ino: btree_inode * type == BTRFS_ROOT_ITEM_KEY: subvol dir */ if (!ino || BTRFS_I(inode)->location.type == BTRFS_ROOT_ITEM_KEY) ino = inode->i_ino; return ino; } static inline void btrfs_i_size_write(struct inode *inode, u64 size) { i_size_write(inode, size); BTRFS_I(inode)->disk_i_size = size; } static inline bool btrfs_is_free_space_inode(struct btrfs_root *root, struct inode *inode) { if (root == root->fs_info->tree_root || BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) return true; return false; } #endif