/* * Driver for OMAP-UART controller. * Based on drivers/serial/8250.c * * Copyright (C) 2010 Texas Instruments. * * Authors: * Govindraj R * Thara Gopinath * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * Note: This driver is made separate from 8250 driver as we cannot * over load 8250 driver with omap platform specific configuration for * features like DMA, it makes easier to implement features like DMA and * hardware flow control and software flow control configuration with * this driver as required for the omap-platform. */ #if defined(CONFIG_SERIAL_OMAP_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) #define SUPPORT_SYSRQ #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define OMAP_MAX_HSUART_PORTS 6 #define UART_BUILD_REVISION(x, y) (((x) << 8) | (y)) #define OMAP_UART_REV_42 0x0402 #define OMAP_UART_REV_46 0x0406 #define OMAP_UART_REV_52 0x0502 #define OMAP_UART_REV_63 0x0603 #define OMAP_UART_TX_WAKEUP_EN BIT(7) /* Feature flags */ #define OMAP_UART_WER_HAS_TX_WAKEUP BIT(0) #define UART_ERRATA_i202_MDR1_ACCESS BIT(0) #define UART_ERRATA_i291_DMA_FORCEIDLE BIT(1) #define DEFAULT_CLK_SPEED 48000000 /* 48Mhz*/ /* SCR register bitmasks */ #define OMAP_UART_SCR_RX_TRIG_GRANU1_MASK (1 << 7) #define OMAP_UART_SCR_TX_TRIG_GRANU1_MASK (1 << 6) #define OMAP_UART_SCR_TX_EMPTY (1 << 3) /* FCR register bitmasks */ #define OMAP_UART_FCR_RX_FIFO_TRIG_MASK (0x3 << 6) #define OMAP_UART_FCR_TX_FIFO_TRIG_MASK (0x3 << 4) /* MVR register bitmasks */ #define OMAP_UART_MVR_SCHEME_SHIFT 30 #define OMAP_UART_LEGACY_MVR_MAJ_MASK 0xf0 #define OMAP_UART_LEGACY_MVR_MAJ_SHIFT 4 #define OMAP_UART_LEGACY_MVR_MIN_MASK 0x0f #define OMAP_UART_MVR_MAJ_MASK 0x700 #define OMAP_UART_MVR_MAJ_SHIFT 8 #define OMAP_UART_MVR_MIN_MASK 0x3f #define OMAP_UART_DMA_CH_FREE -1 #define MSR_SAVE_FLAGS UART_MSR_ANY_DELTA #define OMAP_MODE13X_SPEED 230400 /* WER = 0x7F * Enable module level wakeup in WER reg */ #define OMAP_UART_WER_MOD_WKUP 0X7F /* Enable XON/XOFF flow control on output */ #define OMAP_UART_SW_TX 0x08 /* Enable XON/XOFF flow control on input */ #define OMAP_UART_SW_RX 0x02 #define OMAP_UART_SW_CLR 0xF0 #define OMAP_UART_TCR_TRIG 0x0F struct uart_omap_dma { u8 uart_dma_tx; u8 uart_dma_rx; int rx_dma_channel; int tx_dma_channel; dma_addr_t rx_buf_dma_phys; dma_addr_t tx_buf_dma_phys; unsigned int uart_base; /* * Buffer for rx dma.It is not required for tx because the buffer * comes from port structure. */ unsigned char *rx_buf; unsigned int prev_rx_dma_pos; int tx_buf_size; int tx_dma_used; int rx_dma_used; spinlock_t tx_lock; spinlock_t rx_lock; /* timer to poll activity on rx dma */ struct timer_list rx_timer; unsigned int rx_buf_size; unsigned int rx_poll_rate; unsigned int rx_timeout; }; struct uart_omap_port { struct uart_port port; struct uart_omap_dma uart_dma; struct device *dev; int wakeirq; unsigned char ier; unsigned char lcr; unsigned char mcr; unsigned char fcr; unsigned char efr; unsigned char dll; unsigned char dlh; unsigned char mdr1; unsigned char scr; unsigned char wer; int use_dma; /* * Some bits in registers are cleared on a read, so they must * be saved whenever the register is read but the bits will not * be immediately processed. */ unsigned int lsr_break_flag; unsigned char msr_saved_flags; char name[20]; unsigned long port_activity; int context_loss_cnt; u32 errata; u8 wakeups_enabled; u32 features; int DTR_gpio; int DTR_inverted; int DTR_active; struct serial_rs485 rs485; int rts_gpio; struct pm_qos_request pm_qos_request; u32 latency; u32 calc_latency; struct work_struct qos_work; bool is_suspending; }; #define to_uart_omap_port(p) ((container_of((p), struct uart_omap_port, port))) static struct uart_omap_port *ui[OMAP_MAX_HSUART_PORTS]; /* Forward declaration of functions */ static void serial_omap_mdr1_errataset(struct uart_omap_port *up, u8 mdr1); static struct workqueue_struct *serial_omap_uart_wq; static inline unsigned int serial_in(struct uart_omap_port *up, int offset) { offset <<= up->port.regshift; return readw(up->port.membase + offset); } static inline void serial_out(struct uart_omap_port *up, int offset, int value) { offset <<= up->port.regshift; writew(value, up->port.membase + offset); } static inline void serial_omap_clear_fifos(struct uart_omap_port *up) { serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO); serial_out(up, UART_FCR, UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT); serial_out(up, UART_FCR, 0); } static int serial_omap_get_context_loss_count(struct uart_omap_port *up) { struct omap_uart_port_info *pdata = dev_get_platdata(up->dev); if (!pdata || !pdata->get_context_loss_count) return -EINVAL; return pdata->get_context_loss_count(up->dev); } static inline void serial_omap_enable_wakeirq(struct uart_omap_port *up, bool enable) { if (!up->wakeirq) return; if (enable) enable_irq(up->wakeirq); else disable_irq(up->wakeirq); } static void serial_omap_enable_wakeup(struct uart_omap_port *up, bool enable) { struct omap_uart_port_info *pdata = dev_get_platdata(up->dev); serial_omap_enable_wakeirq(up, enable); if (!pdata || !pdata->enable_wakeup) return; pdata->enable_wakeup(up->dev, enable); } /* * serial_omap_baud_is_mode16 - check if baud rate is MODE16X * @port: uart port info * @baud: baudrate for which mode needs to be determined * * Returns true if baud rate is MODE16X and false if MODE13X * Original table in OMAP TRM named "UART Mode Baud Rates, Divisor Values, * and Error Rates" determines modes not for all common baud rates. * E.g. for 1000000 baud rate mode must be 16x, but according to that * table it's determined as 13x. */ static bool serial_omap_baud_is_mode16(struct uart_port *port, unsigned int baud) { unsigned int n13 = port->uartclk / (13 * baud); unsigned int n16 = port->uartclk / (16 * baud); int baudAbsDiff13 = baud - (port->uartclk / (13 * n13)); int baudAbsDiff16 = baud - (port->uartclk / (16 * n16)); if (baudAbsDiff13 < 0) baudAbsDiff13 = -baudAbsDiff13; if (baudAbsDiff16 < 0) baudAbsDiff16 = -baudAbsDiff16; return (baudAbsDiff13 >= baudAbsDiff16); } /* * serial_omap_get_divisor - calculate divisor value * @port: uart port info * @baud: baudrate for which divisor needs to be calculated. */ static unsigned int serial_omap_get_divisor(struct uart_port *port, unsigned int baud) { unsigned int mode; if (!serial_omap_baud_is_mode16(port, baud)) mode = 13; else mode = 16; return port->uartclk/(mode * baud); } static void serial_omap_enable_ms(struct uart_port *port) { struct uart_omap_port *up = to_uart_omap_port(port); dev_dbg(up->port.dev, "serial_omap_enable_ms+%d\n", up->port.line); pm_runtime_get_sync(up->dev); up->ier |= UART_IER_MSI; serial_out(up, UART_IER, up->ier); pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); } static void serial_omap_stop_tx(struct uart_port *port) { struct uart_omap_port *up = to_uart_omap_port(port); int res; pm_runtime_get_sync(up->dev); /* Handle RS-485 */ if (up->rs485.flags & SER_RS485_ENABLED) { if (up->scr & OMAP_UART_SCR_TX_EMPTY) { /* THR interrupt is fired when both TX FIFO and TX * shift register are empty. This means there's nothing * left to transmit now, so make sure the THR interrupt * is fired when TX FIFO is below the trigger level, * disable THR interrupts and toggle the RS-485 GPIO * data direction pin if needed. */ up->scr &= ~OMAP_UART_SCR_TX_EMPTY; serial_out(up, UART_OMAP_SCR, up->scr); res = (up->rs485.flags & SER_RS485_RTS_AFTER_SEND) ? 1 : 0; if (gpio_get_value(up->rts_gpio) != res) { if (up->rs485.delay_rts_after_send > 0) mdelay(up->rs485.delay_rts_after_send); gpio_set_value(up->rts_gpio, res); } } else { /* We're asked to stop, but there's still stuff in the * UART FIFO, so make sure the THR interrupt is fired * when both TX FIFO and TX shift register are empty. * The next THR interrupt (if no transmission is started * in the meantime) will indicate the end of a * transmission. Therefore we _don't_ disable THR * interrupts in this situation. */ up->scr |= OMAP_UART_SCR_TX_EMPTY; serial_out(up, UART_OMAP_SCR, up->scr); return; } } if (up->ier & UART_IER_THRI) { up->ier &= ~UART_IER_THRI; serial_out(up, UART_IER, up->ier); } if ((up->rs485.flags & SER_RS485_ENABLED) && !(up->rs485.flags & SER_RS485_RX_DURING_TX)) { /* * Empty the RX FIFO, we are not interested in anything * received during the half-duplex transmission. */ serial_out(up, UART_FCR, up->fcr | UART_FCR_CLEAR_RCVR); /* Re-enable RX interrupts */ up->ier |= UART_IER_RLSI | UART_IER_RDI; up->port.read_status_mask |= UART_LSR_DR; serial_out(up, UART_IER, up->ier); } pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); } static void serial_omap_stop_rx(struct uart_port *port) { struct uart_omap_port *up = to_uart_omap_port(port); pm_runtime_get_sync(up->dev); up->ier &= ~(UART_IER_RLSI | UART_IER_RDI); up->port.read_status_mask &= ~UART_LSR_DR; serial_out(up, UART_IER, up->ier); pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); } static void transmit_chars(struct uart_omap_port *up, unsigned int lsr) { struct circ_buf *xmit = &up->port.state->xmit; int count; if (up->port.x_char) { serial_out(up, UART_TX, up->port.x_char); up->port.icount.tx++; up->port.x_char = 0; return; } if (uart_circ_empty(xmit) || uart_tx_stopped(&up->port)) { serial_omap_stop_tx(&up->port); return; } count = up->port.fifosize / 4; do { serial_out(up, UART_TX, xmit->buf[xmit->tail]); xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); up->port.icount.tx++; if (uart_circ_empty(xmit)) break; } while (--count > 0); if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) { spin_unlock(&up->port.lock); uart_write_wakeup(&up->port); spin_lock(&up->port.lock); } if (uart_circ_empty(xmit)) serial_omap_stop_tx(&up->port); } static inline void serial_omap_enable_ier_thri(struct uart_omap_port *up) { if (!(up->ier & UART_IER_THRI)) { up->ier |= UART_IER_THRI; serial_out(up, UART_IER, up->ier); } } static void serial_omap_start_tx(struct uart_port *port) { struct uart_omap_port *up = to_uart_omap_port(port); int res; pm_runtime_get_sync(up->dev); /* Handle RS-485 */ if (up->rs485.flags & SER_RS485_ENABLED) { /* Fire THR interrupts when FIFO is below trigger level */ up->scr &= ~OMAP_UART_SCR_TX_EMPTY; serial_out(up, UART_OMAP_SCR, up->scr); /* if rts not already enabled */ res = (up->rs485.flags & SER_RS485_RTS_ON_SEND) ? 1 : 0; if (gpio_get_value(up->rts_gpio) != res) { gpio_set_value(up->rts_gpio, res); if (up->rs485.delay_rts_before_send > 0) mdelay(up->rs485.delay_rts_before_send); } } if ((up->rs485.flags & SER_RS485_ENABLED) && !(up->rs485.flags & SER_RS485_RX_DURING_TX)) serial_omap_stop_rx(port); serial_omap_enable_ier_thri(up); pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); } static void serial_omap_throttle(struct uart_port *port) { struct uart_omap_port *up = to_uart_omap_port(port); unsigned long flags; pm_runtime_get_sync(up->dev); spin_lock_irqsave(&up->port.lock, flags); up->ier &= ~(UART_IER_RLSI | UART_IER_RDI); serial_out(up, UART_IER, up->ier); spin_unlock_irqrestore(&up->port.lock, flags); pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); } static void serial_omap_unthrottle(struct uart_port *port) { struct uart_omap_port *up = to_uart_omap_port(port); unsigned long flags; pm_runtime_get_sync(up->dev); spin_lock_irqsave(&up->port.lock, flags); up->ier |= UART_IER_RLSI | UART_IER_RDI; serial_out(up, UART_IER, up->ier); spin_unlock_irqrestore(&up->port.lock, flags); pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); } static unsigned int check_modem_status(struct uart_omap_port *up) { unsigned int status; status = serial_in(up, UART_MSR); status |= up->msr_saved_flags; up->msr_saved_flags = 0; if ((status & UART_MSR_ANY_DELTA) == 0) return status; if (status & UART_MSR_ANY_DELTA && up->ier & UART_IER_MSI && up->port.state != NULL) { if (status & UART_MSR_TERI) up->port.icount.rng++; if (status & UART_MSR_DDSR) up->port.icount.dsr++; if (status & UART_MSR_DDCD) uart_handle_dcd_change (&up->port, status & UART_MSR_DCD); if (status & UART_MSR_DCTS) uart_handle_cts_change (&up->port, status & UART_MSR_CTS); wake_up_interruptible(&up->port.state->port.delta_msr_wait); } return status; } static void serial_omap_rlsi(struct uart_omap_port *up, unsigned int lsr) { unsigned int flag; unsigned char ch = 0; if (likely(lsr & UART_LSR_DR)) ch = serial_in(up, UART_RX); up->port.icount.rx++; flag = TTY_NORMAL; if (lsr & UART_LSR_BI) { flag = TTY_BREAK; lsr &= ~(UART_LSR_FE | UART_LSR_PE); up->port.icount.brk++; /* * We do the SysRQ and SAK checking * here because otherwise the break * may get masked by ignore_status_mask * or read_status_mask. */ if (uart_handle_break(&up->port)) return; } if (lsr & UART_LSR_PE) { flag = TTY_PARITY; up->port.icount.parity++; } if (lsr & UART_LSR_FE) { flag = TTY_FRAME; up->port.icount.frame++; } if (lsr & UART_LSR_OE) up->port.icount.overrun++; #ifdef CONFIG_SERIAL_OMAP_CONSOLE if (up->port.line == up->port.cons->index) { /* Recover the break flag from console xmit */ lsr |= up->lsr_break_flag; } #endif uart_insert_char(&up->port, lsr, UART_LSR_OE, 0, flag); } static void serial_omap_rdi(struct uart_omap_port *up, unsigned int lsr) { unsigned char ch = 0; unsigned int flag; if (!(lsr & UART_LSR_DR)) return; ch = serial_in(up, UART_RX); flag = TTY_NORMAL; up->port.icount.rx++; if (uart_handle_sysrq_char(&up->port, ch)) return; uart_insert_char(&up->port, lsr, UART_LSR_OE, ch, flag); } /** * serial_omap_irq() - This handles the interrupt from one port * @irq: uart port irq number * @dev_id: uart port info */ static irqreturn_t serial_omap_irq(int irq, void *dev_id) { struct uart_omap_port *up = dev_id; unsigned int iir, lsr; unsigned int type; irqreturn_t ret = IRQ_NONE; int max_count = 256; spin_lock(&up->port.lock); pm_runtime_get_sync(up->dev); do { iir = serial_in(up, UART_IIR); if (iir & UART_IIR_NO_INT) break; ret = IRQ_HANDLED; lsr = serial_in(up, UART_LSR); /* extract IRQ type from IIR register */ type = iir & 0x3e; switch (type) { case UART_IIR_MSI: check_modem_status(up); break; case UART_IIR_THRI: transmit_chars(up, lsr); break; case UART_IIR_RX_TIMEOUT: /* FALLTHROUGH */ case UART_IIR_RDI: serial_omap_rdi(up, lsr); break; case UART_IIR_RLSI: serial_omap_rlsi(up, lsr); break; case UART_IIR_CTS_RTS_DSR: /* simply try again */ break; case UART_IIR_XOFF: /* FALLTHROUGH */ default: break; } } while (!(iir & UART_IIR_NO_INT) && max_count--); spin_unlock(&up->port.lock); tty_flip_buffer_push(&up->port.state->port); pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); up->port_activity = jiffies; return ret; } static unsigned int serial_omap_tx_empty(struct uart_port *port) { struct uart_omap_port *up = to_uart_omap_port(port); unsigned long flags = 0; unsigned int ret = 0; pm_runtime_get_sync(up->dev); dev_dbg(up->port.dev, "serial_omap_tx_empty+%d\n", up->port.line); spin_lock_irqsave(&up->port.lock, flags); ret = serial_in(up, UART_LSR) & UART_LSR_TEMT ? TIOCSER_TEMT : 0; spin_unlock_irqrestore(&up->port.lock, flags); pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); return ret; } static unsigned int serial_omap_get_mctrl(struct uart_port *port) { struct uart_omap_port *up = to_uart_omap_port(port); unsigned int status; unsigned int ret = 0; pm_runtime_get_sync(up->dev); status = check_modem_status(up); pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); dev_dbg(up->port.dev, "serial_omap_get_mctrl+%d\n", up->port.line); if (status & UART_MSR_DCD) ret |= TIOCM_CAR; if (status & UART_MSR_RI) ret |= TIOCM_RNG; if (status & UART_MSR_DSR) ret |= TIOCM_DSR; if (status & UART_MSR_CTS) ret |= TIOCM_CTS; return ret; } static void serial_omap_set_mctrl(struct uart_port *port, unsigned int mctrl) { struct uart_omap_port *up = to_uart_omap_port(port); unsigned char mcr = 0, old_mcr; dev_dbg(up->port.dev, "serial_omap_set_mctrl+%d\n", up->port.line); if (mctrl & TIOCM_RTS) mcr |= UART_MCR_RTS; if (mctrl & TIOCM_DTR) mcr |= UART_MCR_DTR; if (mctrl & TIOCM_OUT1) mcr |= UART_MCR_OUT1; if (mctrl & TIOCM_OUT2) mcr |= UART_MCR_OUT2; if (mctrl & TIOCM_LOOP) mcr |= UART_MCR_LOOP; pm_runtime_get_sync(up->dev); old_mcr = serial_in(up, UART_MCR); old_mcr &= ~(UART_MCR_LOOP | UART_MCR_OUT2 | UART_MCR_OUT1 | UART_MCR_DTR | UART_MCR_RTS); up->mcr = old_mcr | mcr; serial_out(up, UART_MCR, up->mcr); pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); if (gpio_is_valid(up->DTR_gpio) && !!(mctrl & TIOCM_DTR) != up->DTR_active) { up->DTR_active = !up->DTR_active; if (gpio_cansleep(up->DTR_gpio)) schedule_work(&up->qos_work); else gpio_set_value(up->DTR_gpio, up->DTR_active != up->DTR_inverted); } } static void serial_omap_break_ctl(struct uart_port *port, int break_state) { struct uart_omap_port *up = to_uart_omap_port(port); unsigned long flags = 0; dev_dbg(up->port.dev, "serial_omap_break_ctl+%d\n", up->port.line); pm_runtime_get_sync(up->dev); spin_lock_irqsave(&up->port.lock, flags); if (break_state == -1) up->lcr |= UART_LCR_SBC; else up->lcr &= ~UART_LCR_SBC; serial_out(up, UART_LCR, up->lcr); spin_unlock_irqrestore(&up->port.lock, flags); pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); } static int serial_omap_startup(struct uart_port *port) { struct uart_omap_port *up = to_uart_omap_port(port); unsigned long flags = 0; int retval; /* * Allocate the IRQ */ retval = request_irq(up->port.irq, serial_omap_irq, up->port.irqflags, up->name, up); if (retval) return retval; /* Optional wake-up IRQ */ if (up->wakeirq) { retval = request_irq(up->wakeirq, serial_omap_irq, up->port.irqflags, up->name, up); if (retval) { free_irq(up->port.irq, up); return retval; } disable_irq(up->wakeirq); } dev_dbg(up->port.dev, "serial_omap_startup+%d\n", up->port.line); pm_runtime_get_sync(up->dev); /* * Clear the FIFO buffers and disable them. * (they will be reenabled in set_termios()) */ serial_omap_clear_fifos(up); /* For Hardware flow control */ serial_out(up, UART_MCR, UART_MCR_RTS); /* * Clear the interrupt registers. */ (void) serial_in(up, UART_LSR); if (serial_in(up, UART_LSR) & UART_LSR_DR) (void) serial_in(up, UART_RX); (void) serial_in(up, UART_IIR); (void) serial_in(up, UART_MSR); /* * Now, initialize the UART */ serial_out(up, UART_LCR, UART_LCR_WLEN8); spin_lock_irqsave(&up->port.lock, flags); /* * Most PC uarts need OUT2 raised to enable interrupts. */ up->port.mctrl |= TIOCM_OUT2; serial_omap_set_mctrl(&up->port, up->port.mctrl); spin_unlock_irqrestore(&up->port.lock, flags); up->msr_saved_flags = 0; /* * Finally, enable interrupts. Note: Modem status interrupts * are set via set_termios(), which will be occurring imminently * anyway, so we don't enable them here. */ up->ier = UART_IER_RLSI | UART_IER_RDI; serial_out(up, UART_IER, up->ier); /* Enable module level wake up */ up->wer = OMAP_UART_WER_MOD_WKUP; if (up->features & OMAP_UART_WER_HAS_TX_WAKEUP) up->wer |= OMAP_UART_TX_WAKEUP_EN; serial_out(up, UART_OMAP_WER, up->wer); pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); up->port_activity = jiffies; return 0; } static void serial_omap_shutdown(struct uart_port *port) { struct uart_omap_port *up = to_uart_omap_port(port); unsigned long flags = 0; dev_dbg(up->port.dev, "serial_omap_shutdown+%d\n", up->port.line); pm_runtime_get_sync(up->dev); /* * Disable interrupts from this port */ up->ier = 0; serial_out(up, UART_IER, 0); spin_lock_irqsave(&up->port.lock, flags); up->port.mctrl &= ~TIOCM_OUT2; serial_omap_set_mctrl(&up->port, up->port.mctrl); spin_unlock_irqrestore(&up->port.lock, flags); /* * Disable break condition and FIFOs */ serial_out(up, UART_LCR, serial_in(up, UART_LCR) & ~UART_LCR_SBC); serial_omap_clear_fifos(up); /* * Read data port to reset things, and then free the irq */ if (serial_in(up, UART_LSR) & UART_LSR_DR) (void) serial_in(up, UART_RX); pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); free_irq(up->port.irq, up); if (up->wakeirq) free_irq(up->wakeirq, up); } static void serial_omap_uart_qos_work(struct work_struct *work) { struct uart_omap_port *up = container_of(work, struct uart_omap_port, qos_work); pm_qos_update_request(&up->pm_qos_request, up->latency); if (gpio_is_valid(up->DTR_gpio)) gpio_set_value_cansleep(up->DTR_gpio, up->DTR_active != up->DTR_inverted); } static void serial_omap_set_termios(struct uart_port *port, struct ktermios *termios, struct ktermios *old) { struct uart_omap_port *up = to_uart_omap_port(port); unsigned char cval = 0; unsigned long flags = 0; unsigned int baud, quot; switch (termios->c_cflag & CSIZE) { case CS5: cval = UART_LCR_WLEN5; break; case CS6: cval = UART_LCR_WLEN6; break; case CS7: cval = UART_LCR_WLEN7; break; default: case CS8: cval = UART_LCR_WLEN8; break; } if (termios->c_cflag & CSTOPB) cval |= UART_LCR_STOP; if (termios->c_cflag & PARENB) cval |= UART_LCR_PARITY; if (!(termios->c_cflag & PARODD)) cval |= UART_LCR_EPAR; if (termios->c_cflag & CMSPAR) cval |= UART_LCR_SPAR; /* * Ask the core to calculate the divisor for us. */ baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk/13); quot = serial_omap_get_divisor(port, baud); /* calculate wakeup latency constraint */ up->calc_latency = (USEC_PER_SEC * up->port.fifosize) / (baud / 8); up->latency = up->calc_latency; schedule_work(&up->qos_work); up->dll = quot & 0xff; up->dlh = quot >> 8; up->mdr1 = UART_OMAP_MDR1_DISABLE; up->fcr = UART_FCR_R_TRIG_01 | UART_FCR_T_TRIG_01 | UART_FCR_ENABLE_FIFO; /* * Ok, we're now changing the port state. Do it with * interrupts disabled. */ pm_runtime_get_sync(up->dev); spin_lock_irqsave(&up->port.lock, flags); /* * Update the per-port timeout. */ uart_update_timeout(port, termios->c_cflag, baud); up->port.read_status_mask = UART_LSR_OE | UART_LSR_THRE | UART_LSR_DR; if (termios->c_iflag & INPCK) up->port.read_status_mask |= UART_LSR_FE | UART_LSR_PE; if (termios->c_iflag & (BRKINT | PARMRK)) up->port.read_status_mask |= UART_LSR_BI; /* * Characters to ignore */ up->port.ignore_status_mask = 0; if (termios->c_iflag & IGNPAR) up->port.ignore_status_mask |= UART_LSR_PE | UART_LSR_FE; if (termios->c_iflag & IGNBRK) { up->port.ignore_status_mask |= UART_LSR_BI; /* * If we're ignoring parity and break indicators, * ignore overruns too (for real raw support). */ if (termios->c_iflag & IGNPAR) up->port.ignore_status_mask |= UART_LSR_OE; } /* * ignore all characters if CREAD is not set */ if ((termios->c_cflag & CREAD) == 0) up->port.ignore_status_mask |= UART_LSR_DR; /* * Modem status interrupts */ up->ier &= ~UART_IER_MSI; if (UART_ENABLE_MS(&up->port, termios->c_cflag)) up->ier |= UART_IER_MSI; serial_out(up, UART_IER, up->ier); serial_out(up, UART_LCR, cval); /* reset DLAB */ up->lcr = cval; up->scr = 0; /* FIFOs and DMA Settings */ /* FCR can be changed only when the * baud clock is not running * DLL_REG and DLH_REG set to 0. */ serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A); serial_out(up, UART_DLL, 0); serial_out(up, UART_DLM, 0); serial_out(up, UART_LCR, 0); serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B); up->efr = serial_in(up, UART_EFR) & ~UART_EFR_ECB; up->efr &= ~UART_EFR_SCD; serial_out(up, UART_EFR, up->efr | UART_EFR_ECB); serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A); up->mcr = serial_in(up, UART_MCR) & ~UART_MCR_TCRTLR; serial_out(up, UART_MCR, up->mcr | UART_MCR_TCRTLR); /* FIFO ENABLE, DMA MODE */ up->scr |= OMAP_UART_SCR_RX_TRIG_GRANU1_MASK; /* * NOTE: Setting OMAP_UART_SCR_RX_TRIG_GRANU1_MASK * sets Enables the granularity of 1 for TRIGGER RX * level. Along with setting RX FIFO trigger level * to 1 (as noted below, 16 characters) and TLR[3:0] * to zero this will result RX FIFO threshold level * to 1 character, instead of 16 as noted in comment * below. */ /* Set receive FIFO threshold to 16 characters and * transmit FIFO threshold to 32 spaces */ up->fcr &= ~OMAP_UART_FCR_RX_FIFO_TRIG_MASK; up->fcr &= ~OMAP_UART_FCR_TX_FIFO_TRIG_MASK; up->fcr |= UART_FCR6_R_TRIGGER_16 | UART_FCR6_T_TRIGGER_24 | UART_FCR_ENABLE_FIFO; serial_out(up, UART_FCR, up->fcr); serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B); serial_out(up, UART_OMAP_SCR, up->scr); /* Reset UART_MCR_TCRTLR: this must be done with the EFR_ECB bit set */ serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A); serial_out(up, UART_MCR, up->mcr); serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B); serial_out(up, UART_EFR, up->efr); serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A); /* Protocol, Baud Rate, and Interrupt Settings */ if (up->errata & UART_ERRATA_i202_MDR1_ACCESS) serial_omap_mdr1_errataset(up, up->mdr1); else serial_out(up, UART_OMAP_MDR1, up->mdr1); serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B); serial_out(up, UART_EFR, up->efr | UART_EFR_ECB); serial_out(up, UART_LCR, 0); serial_out(up, UART_IER, 0); serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B); serial_out(up, UART_DLL, up->dll); /* LS of divisor */ serial_out(up, UART_DLM, up->dlh); /* MS of divisor */ serial_out(up, UART_LCR, 0); serial_out(up, UART_IER, up->ier); serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B); serial_out(up, UART_EFR, up->efr); serial_out(up, UART_LCR, cval); if (!serial_omap_baud_is_mode16(port, baud)) up->mdr1 = UART_OMAP_MDR1_13X_MODE; else up->mdr1 = UART_OMAP_MDR1_16X_MODE; if (up->errata & UART_ERRATA_i202_MDR1_ACCESS) serial_omap_mdr1_errataset(up, up->mdr1); else serial_out(up, UART_OMAP_MDR1, up->mdr1); /* Configure flow control */ serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B); /* XON1/XOFF1 accessible mode B, TCRTLR=0, ECB=0 */ serial_out(up, UART_XON1, termios->c_cc[VSTART]); serial_out(up, UART_XOFF1, termios->c_cc[VSTOP]); /* Enable access to TCR/TLR */ serial_out(up, UART_EFR, up->efr | UART_EFR_ECB); serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A); serial_out(up, UART_MCR, up->mcr | UART_MCR_TCRTLR); serial_out(up, UART_TI752_TCR, OMAP_UART_TCR_TRIG); if (termios->c_cflag & CRTSCTS && up->port.flags & UPF_HARD_FLOW) { /* Enable AUTORTS and AUTOCTS */ up->efr |= UART_EFR_CTS | UART_EFR_RTS; /* Ensure MCR RTS is asserted */ up->mcr |= UART_MCR_RTS; } else { /* Disable AUTORTS and AUTOCTS */ up->efr &= ~(UART_EFR_CTS | UART_EFR_RTS); } if (up->port.flags & UPF_SOFT_FLOW) { /* clear SW control mode bits */ up->efr &= OMAP_UART_SW_CLR; /* * IXON Flag: * Enable XON/XOFF flow control on input. * Receiver compares XON1, XOFF1. */ if (termios->c_iflag & IXON) up->efr |= OMAP_UART_SW_RX; /* * IXOFF Flag: * Enable XON/XOFF flow control on output. * Transmit XON1, XOFF1 */ if (termios->c_iflag & IXOFF) up->efr |= OMAP_UART_SW_TX; /* * IXANY Flag: * Enable any character to restart output. * Operation resumes after receiving any * character after recognition of the XOFF character */ if (termios->c_iflag & IXANY) up->mcr |= UART_MCR_XONANY; else up->mcr &= ~UART_MCR_XONANY; } serial_out(up, UART_MCR, up->mcr); serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B); serial_out(up, UART_EFR, up->efr); serial_out(up, UART_LCR, up->lcr); serial_omap_set_mctrl(&up->port, up->port.mctrl); spin_unlock_irqrestore(&up->port.lock, flags); pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); dev_dbg(up->port.dev, "serial_omap_set_termios+%d\n", up->port.line); } static void serial_omap_pm(struct uart_port *port, unsigned int state, unsigned int oldstate) { struct uart_omap_port *up = to_uart_omap_port(port); unsigned char efr; dev_dbg(up->port.dev, "serial_omap_pm+%d\n", up->port.line); pm_runtime_get_sync(up->dev); serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B); efr = serial_in(up, UART_EFR); serial_out(up, UART_EFR, efr | UART_EFR_ECB); serial_out(up, UART_LCR, 0); serial_out(up, UART_IER, (state != 0) ? UART_IERX_SLEEP : 0); serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B); serial_out(up, UART_EFR, efr); serial_out(up, UART_LCR, 0); if (!device_may_wakeup(up->dev)) { if (!state) pm_runtime_forbid(up->dev); else pm_runtime_allow(up->dev); } pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); } static void serial_omap_release_port(struct uart_port *port) { dev_dbg(port->dev, "serial_omap_release_port+\n"); } static int serial_omap_request_port(struct uart_port *port) { dev_dbg(port->dev, "serial_omap_request_port+\n"); return 0; } static void serial_omap_config_port(struct uart_port *port, int flags) { struct uart_omap_port *up = to_uart_omap_port(port); dev_dbg(up->port.dev, "serial_omap_config_port+%d\n", up->port.line); up->port.type = PORT_OMAP; up->port.flags |= UPF_SOFT_FLOW | UPF_HARD_FLOW; } static int serial_omap_verify_port(struct uart_port *port, struct serial_struct *ser) { /* we don't want the core code to modify any port params */ dev_dbg(port->dev, "serial_omap_verify_port+\n"); return -EINVAL; } static const char * serial_omap_type(struct uart_port *port) { struct uart_omap_port *up = to_uart_omap_port(port); dev_dbg(up->port.dev, "serial_omap_type+%d\n", up->port.line); return up->name; } #define BOTH_EMPTY (UART_LSR_TEMT | UART_LSR_THRE) static inline void wait_for_xmitr(struct uart_omap_port *up) { unsigned int status, tmout = 10000; /* Wait up to 10ms for the character(s) to be sent. */ do { status = serial_in(up, UART_LSR); if (status & UART_LSR_BI) up->lsr_break_flag = UART_LSR_BI; if (--tmout == 0) break; udelay(1); } while ((status & BOTH_EMPTY) != BOTH_EMPTY); /* Wait up to 1s for flow control if necessary */ if (up->port.flags & UPF_CONS_FLOW) { tmout = 1000000; for (tmout = 1000000; tmout; tmout--) { unsigned int msr = serial_in(up, UART_MSR); up->msr_saved_flags |= msr & MSR_SAVE_FLAGS; if (msr & UART_MSR_CTS) break; udelay(1); } } } #ifdef CONFIG_CONSOLE_POLL static void serial_omap_poll_put_char(struct uart_port *port, unsigned char ch) { struct uart_omap_port *up = to_uart_omap_port(port); pm_runtime_get_sync(up->dev); wait_for_xmitr(up); serial_out(up, UART_TX, ch); pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); } static int serial_omap_poll_get_char(struct uart_port *port) { struct uart_omap_port *up = to_uart_omap_port(port); unsigned int status; pm_runtime_get_sync(up->dev); status = serial_in(up, UART_LSR); if (!(status & UART_LSR_DR)) { status = NO_POLL_CHAR; goto out; } status = serial_in(up, UART_RX); out: pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); return status; } #endif /* CONFIG_CONSOLE_POLL */ #ifdef CONFIG_SERIAL_OMAP_CONSOLE static struct uart_omap_port *serial_omap_console_ports[OMAP_MAX_HSUART_PORTS]; static struct uart_driver serial_omap_reg; static void serial_omap_console_putchar(struct uart_port *port, int ch) { struct uart_omap_port *up = to_uart_omap_port(port); wait_for_xmitr(up); serial_out(up, UART_TX, ch); } static void serial_omap_console_write(struct console *co, const char *s, unsigned int count) { struct uart_omap_port *up = serial_omap_console_ports[co->index]; unsigned long flags; unsigned int ier; int locked = 1; pm_runtime_get_sync(up->dev); local_irq_save(flags); if (up->port.sysrq) locked = 0; else if (oops_in_progress) locked = spin_trylock(&up->port.lock); else spin_lock(&up->port.lock); /* * First save the IER then disable the interrupts */ ier = serial_in(up, UART_IER); serial_out(up, UART_IER, 0); uart_console_write(&up->port, s, count, serial_omap_console_putchar); /* * Finally, wait for transmitter to become empty * and restore the IER */ wait_for_xmitr(up); serial_out(up, UART_IER, ier); /* * The receive handling will happen properly because the * receive ready bit will still be set; it is not cleared * on read. However, modem control will not, we must * call it if we have saved something in the saved flags * while processing with interrupts off. */ if (up->msr_saved_flags) check_modem_status(up); pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); if (locked) spin_unlock(&up->port.lock); local_irq_restore(flags); } static int __init serial_omap_console_setup(struct console *co, char *options) { struct uart_omap_port *up; int baud = 115200; int bits = 8; int parity = 'n'; int flow = 'n'; if (serial_omap_console_ports[co->index] == NULL) return -ENODEV; up = serial_omap_console_ports[co->index]; if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); return uart_set_options(&up->port, co, baud, parity, bits, flow); } static struct console serial_omap_console = { .name = OMAP_SERIAL_NAME, .write = serial_omap_console_write, .device = uart_console_device, .setup = serial_omap_console_setup, .flags = CON_PRINTBUFFER, .index = -1, .data = &serial_omap_reg, }; static void serial_omap_add_console_port(struct uart_omap_port *up) { serial_omap_console_ports[up->port.line] = up; } #define OMAP_CONSOLE (&serial_omap_console) #else #define OMAP_CONSOLE NULL static inline void serial_omap_add_console_port(struct uart_omap_port *up) {} #endif /* Enable or disable the rs485 support */ static void serial_omap_config_rs485(struct uart_port *port, struct serial_rs485 *rs485conf) { struct uart_omap_port *up = to_uart_omap_port(port); unsigned long flags; unsigned int mode; int val; pm_runtime_get_sync(up->dev); spin_lock_irqsave(&up->port.lock, flags); /* Disable interrupts from this port */ mode = up->ier; up->ier = 0; serial_out(up, UART_IER, 0); /* store new config */ up->rs485 = *rs485conf; /* * Just as a precaution, only allow rs485 * to be enabled if the gpio pin is valid */ if (gpio_is_valid(up->rts_gpio)) { /* enable / disable rts */ val = (up->rs485.flags & SER_RS485_ENABLED) ? SER_RS485_RTS_AFTER_SEND : SER_RS485_RTS_ON_SEND; val = (up->rs485.flags & val) ? 1 : 0; gpio_set_value(up->rts_gpio, val); } else up->rs485.flags &= ~SER_RS485_ENABLED; /* Enable interrupts */ up->ier = mode; serial_out(up, UART_IER, up->ier); /* If RS-485 is disabled, make sure the THR interrupt is fired when * TX FIFO is below the trigger level. */ if (!(up->rs485.flags & SER_RS485_ENABLED) && (up->scr & OMAP_UART_SCR_TX_EMPTY)) { up->scr &= ~OMAP_UART_SCR_TX_EMPTY; serial_out(up, UART_OMAP_SCR, up->scr); } spin_unlock_irqrestore(&up->port.lock, flags); pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); } static int serial_omap_ioctl(struct uart_port *port, unsigned int cmd, unsigned long arg) { struct serial_rs485 rs485conf; switch (cmd) { case TIOCSRS485: if (copy_from_user(&rs485conf, (struct serial_rs485 *) arg, sizeof(rs485conf))) return -EFAULT; serial_omap_config_rs485(port, &rs485conf); break; case TIOCGRS485: if (copy_to_user((struct serial_rs485 *) arg, &(to_uart_omap_port(port)->rs485), sizeof(rs485conf))) return -EFAULT; break; default: return -ENOIOCTLCMD; } return 0; } static struct uart_ops serial_omap_pops = { .tx_empty = serial_omap_tx_empty, .set_mctrl = serial_omap_set_mctrl, .get_mctrl = serial_omap_get_mctrl, .stop_tx = serial_omap_stop_tx, .start_tx = serial_omap_start_tx, .throttle = serial_omap_throttle, .unthrottle = serial_omap_unthrottle, .stop_rx = serial_omap_stop_rx, .enable_ms = serial_omap_enable_ms, .break_ctl = serial_omap_break_ctl, .startup = serial_omap_startup, .shutdown = serial_omap_shutdown, .set_termios = serial_omap_set_termios, .pm = serial_omap_pm, .type = serial_omap_type, .release_port = serial_omap_release_port, .request_port = serial_omap_request_port, .config_port = serial_omap_config_port, .verify_port = serial_omap_verify_port, .ioctl = serial_omap_ioctl, #ifdef CONFIG_CONSOLE_POLL .poll_put_char = serial_omap_poll_put_char, .poll_get_char = serial_omap_poll_get_char, #endif }; static struct uart_driver serial_omap_reg = { .owner = THIS_MODULE, .driver_name = "OMAP-SERIAL", .dev_name = OMAP_SERIAL_NAME, .nr = OMAP_MAX_HSUART_PORTS, .cons = OMAP_CONSOLE, }; #ifdef CONFIG_PM_SLEEP static int serial_omap_prepare(struct device *dev) { struct uart_omap_port *up = dev_get_drvdata(dev); up->is_suspending = true; return 0; } static void serial_omap_complete(struct device *dev) { struct uart_omap_port *up = dev_get_drvdata(dev); up->is_suspending = false; } static int serial_omap_suspend(struct device *dev) { struct uart_omap_port *up = dev_get_drvdata(dev); uart_suspend_port(&serial_omap_reg, &up->port); flush_work(&up->qos_work); return 0; } static int serial_omap_resume(struct device *dev) { struct uart_omap_port *up = dev_get_drvdata(dev); uart_resume_port(&serial_omap_reg, &up->port); return 0; } #else #define serial_omap_prepare NULL #define serial_omap_complete NULL #endif /* CONFIG_PM_SLEEP */ static void omap_serial_fill_features_erratas(struct uart_omap_port *up) { u32 mvr, scheme; u16 revision, major, minor; mvr = readl(up->port.membase + (UART_OMAP_MVER << up->port.regshift)); /* Check revision register scheme */ scheme = mvr >> OMAP_UART_MVR_SCHEME_SHIFT; switch (scheme) { case 0: /* Legacy Scheme: OMAP2/3 */ /* MINOR_REV[0:4], MAJOR_REV[4:7] */ major = (mvr & OMAP_UART_LEGACY_MVR_MAJ_MASK) >> OMAP_UART_LEGACY_MVR_MAJ_SHIFT; minor = (mvr & OMAP_UART_LEGACY_MVR_MIN_MASK); break; case 1: /* New Scheme: OMAP4+ */ /* MINOR_REV[0:5], MAJOR_REV[8:10] */ major = (mvr & OMAP_UART_MVR_MAJ_MASK) >> OMAP_UART_MVR_MAJ_SHIFT; minor = (mvr & OMAP_UART_MVR_MIN_MASK); break; default: dev_warn(up->dev, "Unknown %s revision, defaulting to highest\n", up->name); /* highest possible revision */ major = 0xff; minor = 0xff; } /* normalize revision for the driver */ revision = UART_BUILD_REVISION(major, minor); switch (revision) { case OMAP_UART_REV_46: up->errata |= (UART_ERRATA_i202_MDR1_ACCESS | UART_ERRATA_i291_DMA_FORCEIDLE); break; case OMAP_UART_REV_52: up->errata |= (UART_ERRATA_i202_MDR1_ACCESS | UART_ERRATA_i291_DMA_FORCEIDLE); up->features |= OMAP_UART_WER_HAS_TX_WAKEUP; break; case OMAP_UART_REV_63: up->errata |= UART_ERRATA_i202_MDR1_ACCESS; up->features |= OMAP_UART_WER_HAS_TX_WAKEUP; break; default: break; } } static struct omap_uart_port_info *of_get_uart_port_info(struct device *dev) { struct omap_uart_port_info *omap_up_info; omap_up_info = devm_kzalloc(dev, sizeof(*omap_up_info), GFP_KERNEL); if (!omap_up_info) return NULL; /* out of memory */ of_property_read_u32(dev->of_node, "clock-frequency", &omap_up_info->uartclk); return omap_up_info; } static int serial_omap_probe_rs485(struct uart_omap_port *up, struct device_node *np) { struct serial_rs485 *rs485conf = &up->rs485; u32 rs485_delay[2]; enum of_gpio_flags flags; int ret; rs485conf->flags = 0; up->rts_gpio = -EINVAL; if (!np) return 0; if (of_property_read_bool(np, "rs485-rts-active-high")) rs485conf->flags |= SER_RS485_RTS_ON_SEND; else rs485conf->flags |= SER_RS485_RTS_AFTER_SEND; /* check for tx enable gpio */ up->rts_gpio = of_get_named_gpio_flags(np, "rts-gpio", 0, &flags); if (gpio_is_valid(up->rts_gpio)) { ret = gpio_request(up->rts_gpio, "omap-serial"); if (ret < 0) return ret; ret = gpio_direction_output(up->rts_gpio, flags & SER_RS485_RTS_AFTER_SEND); if (ret < 0) return ret; } else if (up->rts_gpio == -EPROBE_DEFER) { return -EPROBE_DEFER; } else { up->rts_gpio = -EINVAL; } if (of_property_read_u32_array(np, "rs485-rts-delay", rs485_delay, 2) == 0) { rs485conf->delay_rts_before_send = rs485_delay[0]; rs485conf->delay_rts_after_send = rs485_delay[1]; } if (of_property_read_bool(np, "rs485-rx-during-tx")) rs485conf->flags |= SER_RS485_RX_DURING_TX; if (of_property_read_bool(np, "linux,rs485-enabled-at-boot-time")) rs485conf->flags |= SER_RS485_ENABLED; return 0; } static int serial_omap_probe(struct platform_device *pdev) { struct uart_omap_port *up; struct resource *mem, *irq; struct omap_uart_port_info *omap_up_info = dev_get_platdata(&pdev->dev); int ret, uartirq = 0, wakeirq = 0; /* The optional wakeirq may be specified in the board dts file */ if (pdev->dev.of_node) { uartirq = irq_of_parse_and_map(pdev->dev.of_node, 0); if (!uartirq) return -EPROBE_DEFER; wakeirq = irq_of_parse_and_map(pdev->dev.of_node, 1); omap_up_info = of_get_uart_port_info(&pdev->dev); pdev->dev.platform_data = omap_up_info; } else { irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!irq) { dev_err(&pdev->dev, "no irq resource?\n"); return -ENODEV; } uartirq = irq->start; } mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!mem) { dev_err(&pdev->dev, "no mem resource?\n"); return -ENODEV; } if (!devm_request_mem_region(&pdev->dev, mem->start, resource_size(mem), pdev->dev.driver->name)) { dev_err(&pdev->dev, "memory region already claimed\n"); return -EBUSY; } if (gpio_is_valid(omap_up_info->DTR_gpio) && omap_up_info->DTR_present) { ret = gpio_request(omap_up_info->DTR_gpio, "omap-serial"); if (ret < 0) return ret; ret = gpio_direction_output(omap_up_info->DTR_gpio, omap_up_info->DTR_inverted); if (ret < 0) return ret; } up = devm_kzalloc(&pdev->dev, sizeof(*up), GFP_KERNEL); if (!up) return -ENOMEM; if (gpio_is_valid(omap_up_info->DTR_gpio) && omap_up_info->DTR_present) { up->DTR_gpio = omap_up_info->DTR_gpio; up->DTR_inverted = omap_up_info->DTR_inverted; } else up->DTR_gpio = -EINVAL; up->DTR_active = 0; up->dev = &pdev->dev; up->port.dev = &pdev->dev; up->port.type = PORT_OMAP; up->port.iotype = UPIO_MEM; up->port.irq = uartirq; up->wakeirq = wakeirq; if (!up->wakeirq) dev_info(up->port.dev, "no wakeirq for uart%d\n", up->port.line); up->port.regshift = 2; up->port.fifosize = 64; up->port.ops = &serial_omap_pops; if (pdev->dev.of_node) up->port.line = of_alias_get_id(pdev->dev.of_node, "serial"); else up->port.line = pdev->id; if (up->port.line < 0) { dev_err(&pdev->dev, "failed to get alias/pdev id, errno %d\n", up->port.line); ret = -ENODEV; goto err_port_line; } ret = serial_omap_probe_rs485(up, pdev->dev.of_node); if (ret < 0) goto err_rs485; sprintf(up->name, "OMAP UART%d", up->port.line); up->port.mapbase = mem->start; up->port.membase = devm_ioremap(&pdev->dev, mem->start, resource_size(mem)); if (!up->port.membase) { dev_err(&pdev->dev, "can't ioremap UART\n"); ret = -ENOMEM; goto err_ioremap; } up->port.flags = omap_up_info->flags; up->port.uartclk = omap_up_info->uartclk; if (!up->port.uartclk) { up->port.uartclk = DEFAULT_CLK_SPEED; dev_warn(&pdev->dev, "No clock speed specified: using default: %d\n", DEFAULT_CLK_SPEED); } up->latency = PM_QOS_CPU_DMA_LAT_DEFAULT_VALUE; up->calc_latency = PM_QOS_CPU_DMA_LAT_DEFAULT_VALUE; pm_qos_add_request(&up->pm_qos_request, PM_QOS_CPU_DMA_LATENCY, up->latency); serial_omap_uart_wq = create_singlethread_workqueue(up->name); INIT_WORK(&up->qos_work, serial_omap_uart_qos_work); platform_set_drvdata(pdev, up); if (omap_up_info->autosuspend_timeout == 0) omap_up_info->autosuspend_timeout = -1; device_init_wakeup(up->dev, true); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_set_autosuspend_delay(&pdev->dev, omap_up_info->autosuspend_timeout); pm_runtime_irq_safe(&pdev->dev); pm_runtime_enable(&pdev->dev); pm_runtime_get_sync(&pdev->dev); omap_serial_fill_features_erratas(up); ui[up->port.line] = up; serial_omap_add_console_port(up); ret = uart_add_one_port(&serial_omap_reg, &up->port); if (ret != 0) goto err_add_port; pm_runtime_mark_last_busy(up->dev); pm_runtime_put_autosuspend(up->dev); return 0; err_add_port: pm_runtime_put(&pdev->dev); pm_runtime_disable(&pdev->dev); err_ioremap: err_rs485: err_port_line: dev_err(&pdev->dev, "[UART%d]: failure [%s]: %d\n", pdev->id, __func__, ret); return ret; } static int serial_omap_remove(struct platform_device *dev) { struct uart_omap_port *up = platform_get_drvdata(dev); pm_runtime_put_sync(up->dev); pm_runtime_disable(up->dev); uart_remove_one_port(&serial_omap_reg, &up->port); pm_qos_remove_request(&up->pm_qos_request); device_init_wakeup(&dev->dev, false); return 0; } /* * Work Around for Errata i202 (2430, 3430, 3630, 4430 and 4460) * The access to uart register after MDR1 Access * causes UART to corrupt data. * * Need a delay = * 5 L4 clock cycles + 5 UART functional clock cycle (@48MHz = ~0.2uS) * give 10 times as much */ static void serial_omap_mdr1_errataset(struct uart_omap_port *up, u8 mdr1) { u8 timeout = 255; serial_out(up, UART_OMAP_MDR1, mdr1); udelay(2); serial_out(up, UART_FCR, up->fcr | UART_FCR_CLEAR_XMIT | UART_FCR_CLEAR_RCVR); /* * Wait for FIFO to empty: when empty, RX_FIFO_E bit is 0 and * TX_FIFO_E bit is 1. */ while (UART_LSR_THRE != (serial_in(up, UART_LSR) & (UART_LSR_THRE | UART_LSR_DR))) { timeout--; if (!timeout) { /* Should *never* happen. we warn and carry on */ dev_crit(up->dev, "Errata i202: timedout %x\n", serial_in(up, UART_LSR)); break; } udelay(1); } } #ifdef CONFIG_PM_RUNTIME static void serial_omap_restore_context(struct uart_omap_port *up) { if (up->errata & UART_ERRATA_i202_MDR1_ACCESS) serial_omap_mdr1_errataset(up, UART_OMAP_MDR1_DISABLE); else serial_out(up, UART_OMAP_MDR1, UART_OMAP_MDR1_DISABLE); serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B); /* Config B mode */ serial_out(up, UART_EFR, UART_EFR_ECB); serial_out(up, UART_LCR, 0x0); /* Operational mode */ serial_out(up, UART_IER, 0x0); serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B); /* Config B mode */ serial_out(up, UART_DLL, up->dll); serial_out(up, UART_DLM, up->dlh); serial_out(up, UART_LCR, 0x0); /* Operational mode */ serial_out(up, UART_IER, up->ier); serial_out(up, UART_FCR, up->fcr); serial_out(up, UART_LCR, UART_LCR_CONF_MODE_A); serial_out(up, UART_MCR, up->mcr); serial_out(up, UART_LCR, UART_LCR_CONF_MODE_B); /* Config B mode */ serial_out(up, UART_OMAP_SCR, up->scr); serial_out(up, UART_EFR, up->efr); serial_out(up, UART_LCR, up->lcr); if (up->errata & UART_ERRATA_i202_MDR1_ACCESS) serial_omap_mdr1_errataset(up, up->mdr1); else serial_out(up, UART_OMAP_MDR1, up->mdr1); serial_out(up, UART_OMAP_WER, up->wer); } static int serial_omap_runtime_suspend(struct device *dev) { struct uart_omap_port *up = dev_get_drvdata(dev); if (!up) return -EINVAL; /* * When using 'no_console_suspend', the console UART must not be * suspended. Since driver suspend is managed by runtime suspend, * preventing runtime suspend (by returning error) will keep device * active during suspend. */ if (up->is_suspending && !console_suspend_enabled && uart_console(&up->port)) return -EBUSY; up->context_loss_cnt = serial_omap_get_context_loss_count(up); if (device_may_wakeup(dev)) { if (!up->wakeups_enabled) { serial_omap_enable_wakeup(up, true); up->wakeups_enabled = true; } } else { if (up->wakeups_enabled) { serial_omap_enable_wakeup(up, false); up->wakeups_enabled = false; } } up->latency = PM_QOS_CPU_DMA_LAT_DEFAULT_VALUE; schedule_work(&up->qos_work); return 0; } static int serial_omap_runtime_resume(struct device *dev) { struct uart_omap_port *up = dev_get_drvdata(dev); int loss_cnt = serial_omap_get_context_loss_count(up); if (loss_cnt < 0) { dev_dbg(dev, "serial_omap_get_context_loss_count failed : %d\n", loss_cnt); serial_omap_restore_context(up); } else if (up->context_loss_cnt != loss_cnt) { serial_omap_restore_context(up); } up->latency = up->calc_latency; schedule_work(&up->qos_work); return 0; } #endif static const struct dev_pm_ops serial_omap_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(serial_omap_suspend, serial_omap_resume) SET_RUNTIME_PM_OPS(serial_omap_runtime_suspend, serial_omap_runtime_resume, NULL) .prepare = serial_omap_prepare, .complete = serial_omap_complete, }; #if defined(CONFIG_OF) static const struct of_device_id omap_serial_of_match[] = { { .compatible = "ti,omap2-uart" }, { .compatible = "ti,omap3-uart" }, { .compatible = "ti,omap4-uart" }, {}, }; MODULE_DEVICE_TABLE(of, omap_serial_of_match); #endif static struct platform_driver serial_omap_driver = { .probe = serial_omap_probe, .remove = serial_omap_remove, .driver = { .name = DRIVER_NAME, .pm = &serial_omap_dev_pm_ops, .of_match_table = of_match_ptr(omap_serial_of_match), }, }; static int __init serial_omap_init(void) { int ret; ret = uart_register_driver(&serial_omap_reg); if (ret != 0) return ret; ret = platform_driver_register(&serial_omap_driver); if (ret != 0) uart_unregister_driver(&serial_omap_reg); return ret; } static void __exit serial_omap_exit(void) { platform_driver_unregister(&serial_omap_driver); uart_unregister_driver(&serial_omap_reg); } module_init(serial_omap_init); module_exit(serial_omap_exit); MODULE_DESCRIPTION("OMAP High Speed UART driver"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Texas Instruments Inc");