/* * Serial Attached SCSI (SAS) Discover process * * Copyright (C) 2005 Adaptec, Inc. All rights reserved. * Copyright (C) 2005 Luben Tuikov * * This file is licensed under GPLv2. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #include #include #include #include #include "sas_internal.h" #include #include #include "../scsi_sas_internal.h" /* ---------- Basic task processing for discovery purposes ---------- */ void sas_init_dev(struct domain_device *dev) { INIT_LIST_HEAD(&dev->siblings); INIT_LIST_HEAD(&dev->dev_list_node); switch (dev->dev_type) { case SAS_END_DEV: break; case EDGE_DEV: case FANOUT_DEV: INIT_LIST_HEAD(&dev->ex_dev.children); break; case SATA_DEV: case SATA_PM: case SATA_PM_PORT: INIT_LIST_HEAD(&dev->sata_dev.children); break; default: break; } } static void sas_task_timedout(unsigned long _task) { struct sas_task *task = (void *) _task; unsigned long flags; spin_lock_irqsave(&task->task_state_lock, flags); if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) task->task_state_flags |= SAS_TASK_STATE_ABORTED; spin_unlock_irqrestore(&task->task_state_lock, flags); complete(&task->completion); } static void sas_disc_task_done(struct sas_task *task) { if (!del_timer(&task->timer)) return; complete(&task->completion); } #define SAS_DEV_TIMEOUT 10 /** * sas_execute_task -- Basic task processing for discovery * @task: the task to be executed * @buffer: pointer to buffer to do I/O * @size: size of @buffer * @pci_dma_dir: PCI_DMA_... */ static int sas_execute_task(struct sas_task *task, void *buffer, int size, int pci_dma_dir) { int res = 0; struct scatterlist *scatter = NULL; struct task_status_struct *ts = &task->task_status; int num_scatter = 0; int retries = 0; struct sas_internal *i = to_sas_internal(task->dev->port->ha->core.shost->transportt); if (pci_dma_dir != PCI_DMA_NONE) { scatter = kzalloc(sizeof(*scatter), GFP_KERNEL); if (!scatter) goto out; sg_init_one(scatter, buffer, size); num_scatter = 1; } task->task_proto = task->dev->tproto; task->scatter = scatter; task->num_scatter = num_scatter; task->total_xfer_len = size; task->data_dir = pci_dma_dir; task->task_done = sas_disc_task_done; if (pci_dma_dir != PCI_DMA_NONE && sas_protocol_ata(task->task_proto)) { task->num_scatter = pci_map_sg(task->dev->port->ha->pcidev, task->scatter, task->num_scatter, task->data_dir); } for (retries = 0; retries < 5; retries++) { task->task_state_flags = SAS_TASK_STATE_PENDING; init_completion(&task->completion); task->timer.data = (unsigned long) task; task->timer.function = sas_task_timedout; task->timer.expires = jiffies + SAS_DEV_TIMEOUT*HZ; add_timer(&task->timer); res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL); if (res) { del_timer(&task->timer); SAS_DPRINTK("executing SAS discovery task failed:%d\n", res); goto ex_err; } wait_for_completion(&task->completion); res = -ETASK; if (task->task_state_flags & SAS_TASK_STATE_ABORTED) { int res2; SAS_DPRINTK("task aborted, flags:0x%x\n", task->task_state_flags); res2 = i->dft->lldd_abort_task(task); SAS_DPRINTK("came back from abort task\n"); if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { if (res2 == TMF_RESP_FUNC_COMPLETE) continue; /* Retry the task */ else goto ex_err; } } if (task->task_status.stat == SAM_BUSY || task->task_status.stat == SAM_TASK_SET_FULL || task->task_status.stat == SAS_QUEUE_FULL) { SAS_DPRINTK("task: q busy, sleeping...\n"); schedule_timeout_interruptible(HZ); } else if (task->task_status.stat == SAM_CHECK_COND) { struct scsi_sense_hdr shdr; if (!scsi_normalize_sense(ts->buf, ts->buf_valid_size, &shdr)) { SAS_DPRINTK("couldn't normalize sense\n"); continue; } if ((shdr.sense_key == 6 && shdr.asc == 0x29) || (shdr.sense_key == 2 && shdr.asc == 4 && shdr.ascq == 1)) { SAS_DPRINTK("device %016llx LUN: %016llx " "powering up or not ready yet, " "sleeping...\n", SAS_ADDR(task->dev->sas_addr), SAS_ADDR(task->ssp_task.LUN)); schedule_timeout_interruptible(5*HZ); } else if (shdr.sense_key == 1) { res = 0; break; } else if (shdr.sense_key == 5) { break; } else { SAS_DPRINTK("dev %016llx LUN: %016llx " "sense key:0x%x ASC:0x%x ASCQ:0x%x" "\n", SAS_ADDR(task->dev->sas_addr), SAS_ADDR(task->ssp_task.LUN), shdr.sense_key, shdr.asc, shdr.ascq); } } else if (task->task_status.resp != SAS_TASK_COMPLETE || task->task_status.stat != SAM_GOOD) { SAS_DPRINTK("task finished with resp:0x%x, " "stat:0x%x\n", task->task_status.resp, task->task_status.stat); goto ex_err; } else { res = 0; break; } } ex_err: if (pci_dma_dir != PCI_DMA_NONE) { if (sas_protocol_ata(task->task_proto)) pci_unmap_sg(task->dev->port->ha->pcidev, task->scatter, task->num_scatter, task->data_dir); kfree(scatter); } out: return res; } /* ---------- Domain device discovery ---------- */ /** * sas_get_port_device -- Discover devices which caused port creation * @port: pointer to struct sas_port of interest * * Devices directly attached to a HA port, have no parent. This is * how we know they are (domain) "root" devices. All other devices * do, and should have their "parent" pointer set appropriately as * soon as a child device is discovered. */ static int sas_get_port_device(struct asd_sas_port *port) { unsigned long flags; struct asd_sas_phy *phy; struct sas_rphy *rphy; struct domain_device *dev; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; spin_lock_irqsave(&port->phy_list_lock, flags); if (list_empty(&port->phy_list)) { spin_unlock_irqrestore(&port->phy_list_lock, flags); kfree(dev); return -ENODEV; } phy = container_of(port->phy_list.next, struct asd_sas_phy, port_phy_el); spin_lock(&phy->frame_rcvd_lock); memcpy(dev->frame_rcvd, phy->frame_rcvd, min(sizeof(dev->frame_rcvd), (size_t)phy->frame_rcvd_size)); spin_unlock(&phy->frame_rcvd_lock); spin_unlock_irqrestore(&port->phy_list_lock, flags); if (dev->frame_rcvd[0] == 0x34 && port->oob_mode == SATA_OOB_MODE) { struct dev_to_host_fis *fis = (struct dev_to_host_fis *) dev->frame_rcvd; if (fis->interrupt_reason == 1 && fis->lbal == 1 && fis->byte_count_low==0x69 && fis->byte_count_high == 0x96 && (fis->device & ~0x10) == 0) dev->dev_type = SATA_PM; else dev->dev_type = SATA_DEV; dev->tproto = SATA_PROTO; } else { struct sas_identify_frame *id = (struct sas_identify_frame *) dev->frame_rcvd; dev->dev_type = id->dev_type; dev->iproto = id->initiator_bits; dev->tproto = id->target_bits; } sas_init_dev(dev); switch (dev->dev_type) { case SAS_END_DEV: case SATA_DEV: rphy = sas_end_device_alloc(port->port); break; case EDGE_DEV: rphy = sas_expander_alloc(port->port, SAS_EDGE_EXPANDER_DEVICE); break; case FANOUT_DEV: rphy = sas_expander_alloc(port->port, SAS_FANOUT_EXPANDER_DEVICE); break; default: printk("ERROR: Unidentified device type %d\n", dev->dev_type); rphy = NULL; break; } if (!rphy) { kfree(dev); return -ENODEV; } rphy->identify.phy_identifier = phy->phy->identify.phy_identifier; memcpy(dev->sas_addr, port->attached_sas_addr, SAS_ADDR_SIZE); sas_fill_in_rphy(dev, rphy); sas_hash_addr(dev->hashed_sas_addr, dev->sas_addr); port->port_dev = dev; dev->port = port; dev->linkrate = port->linkrate; dev->min_linkrate = port->linkrate; dev->max_linkrate = port->linkrate; dev->pathways = port->num_phys; memset(port->disc.fanout_sas_addr, 0, SAS_ADDR_SIZE); memset(port->disc.eeds_a, 0, SAS_ADDR_SIZE); memset(port->disc.eeds_b, 0, SAS_ADDR_SIZE); port->disc.max_level = 0; dev->rphy = rphy; spin_lock(&port->dev_list_lock); list_add_tail(&dev->dev_list_node, &port->dev_list); spin_unlock(&port->dev_list_lock); return 0; } /* ---------- Discover and Revalidate ---------- */ /* ---------- SATA ---------- */ static void sas_get_ata_command_set(struct domain_device *dev) { struct dev_to_host_fis *fis = (struct dev_to_host_fis *) dev->frame_rcvd; if ((fis->sector_count == 1 && /* ATA */ fis->lbal == 1 && fis->lbam == 0 && fis->lbah == 0 && fis->device == 0) || (fis->sector_count == 0 && /* CE-ATA (mATA) */ fis->lbal == 0 && fis->lbam == 0xCE && fis->lbah == 0xAA && (fis->device & ~0x10) == 0)) dev->sata_dev.command_set = ATA_COMMAND_SET; else if ((fis->interrupt_reason == 1 && /* ATAPI */ fis->lbal == 1 && fis->byte_count_low == 0x14 && fis->byte_count_high == 0xEB && (fis->device & ~0x10) == 0)) dev->sata_dev.command_set = ATAPI_COMMAND_SET; else if ((fis->sector_count == 1 && /* SEMB */ fis->lbal == 1 && fis->lbam == 0x3C && fis->lbah == 0xC3 && fis->device == 0) || (fis->interrupt_reason == 1 && /* SATA PM */ fis->lbal == 1 && fis->byte_count_low == 0x69 && fis->byte_count_high == 0x96 && (fis->device & ~0x10) == 0)) /* Treat it as a superset? */ dev->sata_dev.command_set = ATAPI_COMMAND_SET; } /** * sas_issue_ata_cmd -- Basic SATA command processing for discovery * @dev: the device to send the command to * @command: the command register * @features: the features register * @buffer: pointer to buffer to do I/O * @size: size of @buffer * @pci_dma_dir: PCI_DMA_... */ static int sas_issue_ata_cmd(struct domain_device *dev, u8 command, u8 features, void *buffer, int size, int pci_dma_dir) { int res = 0; struct sas_task *task; struct dev_to_host_fis *d2h_fis = (struct dev_to_host_fis *) &dev->frame_rcvd[0]; res = -ENOMEM; task = sas_alloc_task(GFP_KERNEL); if (!task) goto out; task->dev = dev; task->ata_task.fis.fis_type = 0x27; task->ata_task.fis.command = command; task->ata_task.fis.features = features; task->ata_task.fis.device = d2h_fis->device; task->ata_task.retry_count = 1; res = sas_execute_task(task, buffer, size, pci_dma_dir); sas_free_task(task); out: return res; } static void sas_sata_propagate_sas_addr(struct domain_device *dev) { unsigned long flags; struct asd_sas_port *port = dev->port; struct asd_sas_phy *phy; BUG_ON(dev->parent); memcpy(port->attached_sas_addr, dev->sas_addr, SAS_ADDR_SIZE); spin_lock_irqsave(&port->phy_list_lock, flags); list_for_each_entry(phy, &port->phy_list, port_phy_el) memcpy(phy->attached_sas_addr, dev->sas_addr, SAS_ADDR_SIZE); spin_unlock_irqrestore(&port->phy_list_lock, flags); } #define ATA_IDENTIFY_DEV 0xEC #define ATA_IDENTIFY_PACKET_DEV 0xA1 #define ATA_SET_FEATURES 0xEF #define ATA_FEATURE_PUP_STBY_SPIN_UP 0x07 /** * sas_discover_sata_dev -- discover a STP/SATA device (SATA_DEV) * @dev: STP/SATA device of interest (ATA/ATAPI) * * The LLDD has already been notified of this device, so that we can * send FISes to it. Here we try to get IDENTIFY DEVICE or IDENTIFY * PACKET DEVICE, if ATAPI device, so that the LLDD can fine-tune its * performance for this device. */ static int sas_discover_sata_dev(struct domain_device *dev) { int res; __le16 *identify_x; u8 command; identify_x = kzalloc(512, GFP_KERNEL); if (!identify_x) return -ENOMEM; if (dev->sata_dev.command_set == ATA_COMMAND_SET) { dev->sata_dev.identify_device = identify_x; command = ATA_IDENTIFY_DEV; } else { dev->sata_dev.identify_packet_device = identify_x; command = ATA_IDENTIFY_PACKET_DEV; } res = sas_issue_ata_cmd(dev, command, 0, identify_x, 512, PCI_DMA_FROMDEVICE); if (res) goto out_err; /* lives on the media? */ if (le16_to_cpu(identify_x[0]) & 4) { /* incomplete response */ SAS_DPRINTK("sending SET FEATURE/PUP_STBY_SPIN_UP to " "dev %llx\n", SAS_ADDR(dev->sas_addr)); if (!le16_to_cpu(identify_x[83] & (1<<6))) goto cont1; res = sas_issue_ata_cmd(dev, ATA_SET_FEATURES, ATA_FEATURE_PUP_STBY_SPIN_UP, NULL, 0, PCI_DMA_NONE); if (res) goto cont1; schedule_timeout_interruptible(5*HZ); /* More time? */ res = sas_issue_ata_cmd(dev, command, 0, identify_x, 512, PCI_DMA_FROMDEVICE); if (res) goto out_err; } cont1: /* Get WWN */ if (dev->port->oob_mode != SATA_OOB_MODE) { memcpy(dev->sas_addr, dev->sata_dev.rps_resp.rps.stp_sas_addr, SAS_ADDR_SIZE); } else if (dev->sata_dev.command_set == ATA_COMMAND_SET && (le16_to_cpu(dev->sata_dev.identify_device[108]) & 0xF000) == 0x5000) { int i; for (i = 0; i < 4; i++) { dev->sas_addr[2*i] = (le16_to_cpu(dev->sata_dev.identify_device[108+i]) & 0xFF00) >> 8; dev->sas_addr[2*i+1] = le16_to_cpu(dev->sata_dev.identify_device[108+i]) & 0x00FF; } } sas_hash_addr(dev->hashed_sas_addr, dev->sas_addr); if (!dev->parent) sas_sata_propagate_sas_addr(dev); /* XXX Hint: register this SATA device with SATL. When this returns, dev->sata_dev->lu is alive and present. sas_satl_register_dev(dev); */ sas_fill_in_rphy(dev, dev->rphy); return 0; out_err: dev->sata_dev.identify_packet_device = NULL; dev->sata_dev.identify_device = NULL; kfree(identify_x); return res; } static int sas_discover_sata_pm(struct domain_device *dev) { return -ENODEV; } int sas_notify_lldd_dev_found(struct domain_device *dev) { int res = 0; struct sas_ha_struct *sas_ha = dev->port->ha; struct Scsi_Host *shost = sas_ha->core.shost; struct sas_internal *i = to_sas_internal(shost->transportt); if (i->dft->lldd_dev_found) { res = i->dft->lldd_dev_found(dev); if (res) { printk("sas: driver on pcidev %s cannot handle " "device %llx, error:%d\n", pci_name(sas_ha->pcidev), SAS_ADDR(dev->sas_addr), res); } } return res; } void sas_notify_lldd_dev_gone(struct domain_device *dev) { struct sas_ha_struct *sas_ha = dev->port->ha; struct Scsi_Host *shost = sas_ha->core.shost; struct sas_internal *i = to_sas_internal(shost->transportt); if (i->dft->lldd_dev_gone) i->dft->lldd_dev_gone(dev); } /* ---------- Common/dispatchers ---------- */ /** * sas_discover_sata -- discover an STP/SATA domain device * @dev: pointer to struct domain_device of interest * * First we notify the LLDD of this device, so we can send frames to * it. Then depending on the type of device we call the appropriate * discover functions. Once device discover is done, we notify the * LLDD so that it can fine-tune its parameters for the device, by * removing it and then adding it. That is, the second time around, * the driver would have certain fields, that it is looking at, set. * Finally we initialize the kobj so that the device can be added to * the system at registration time. Devices directly attached to a HA * port, have no parents. All other devices do, and should have their * "parent" pointer set appropriately before calling this function. */ int sas_discover_sata(struct domain_device *dev) { int res; sas_get_ata_command_set(dev); res = sas_notify_lldd_dev_found(dev); if (res) return res; switch (dev->dev_type) { case SATA_DEV: res = sas_discover_sata_dev(dev); break; case SATA_PM: res = sas_discover_sata_pm(dev); break; default: break; } sas_notify_lldd_dev_gone(dev); if (!res) { sas_notify_lldd_dev_found(dev); res = sas_rphy_add(dev->rphy); } return res; } /** * sas_discover_end_dev -- discover an end device (SSP, etc) * @end: pointer to domain device of interest * * See comment in sas_discover_sata(). */ int sas_discover_end_dev(struct domain_device *dev) { int res; res = sas_notify_lldd_dev_found(dev); if (res) goto out_err2; res = sas_rphy_add(dev->rphy); if (res) goto out_err; return 0; out_err: sas_notify_lldd_dev_gone(dev); out_err2: return res; } /* ---------- Device registration and unregistration ---------- */ static inline void sas_unregister_common_dev(struct domain_device *dev) { sas_notify_lldd_dev_gone(dev); if (!dev->parent) dev->port->port_dev = NULL; else list_del_init(&dev->siblings); list_del_init(&dev->dev_list_node); } void sas_unregister_dev(struct domain_device *dev) { if (dev->rphy) { sas_remove_children(&dev->rphy->dev); sas_rphy_delete(dev->rphy); dev->rphy = NULL; } if (dev->dev_type == EDGE_DEV || dev->dev_type == FANOUT_DEV) { /* remove the phys and ports, everything else should be gone */ kfree(dev->ex_dev.ex_phy); dev->ex_dev.ex_phy = NULL; } sas_unregister_common_dev(dev); } void sas_unregister_domain_devices(struct asd_sas_port *port) { struct domain_device *dev, *n; list_for_each_entry_safe_reverse(dev,n,&port->dev_list,dev_list_node) sas_unregister_dev(dev); port->port->rphy = NULL; } /* ---------- Discovery and Revalidation ---------- */ /** * sas_discover_domain -- discover the domain * @port: port to the domain of interest * * NOTE: this process _must_ quit (return) as soon as any connection * errors are encountered. Connection recovery is done elsewhere. * Discover process only interrogates devices in order to discover the * domain. */ static void sas_discover_domain(struct work_struct *work) { struct domain_device *dev; int error = 0; struct sas_discovery_event *ev = container_of(work, struct sas_discovery_event, work); struct asd_sas_port *port = ev->port; sas_begin_event(DISCE_DISCOVER_DOMAIN, &port->disc.disc_event_lock, &port->disc.pending); if (port->port_dev) return; error = sas_get_port_device(port); if (error) return; dev = port->port_dev; SAS_DPRINTK("DOING DISCOVERY on port %d, pid:%d\n", port->id, current->pid); switch (dev->dev_type) { case SAS_END_DEV: error = sas_discover_end_dev(dev); break; case EDGE_DEV: case FANOUT_DEV: error = sas_discover_root_expander(dev); break; case SATA_DEV: case SATA_PM: error = sas_discover_sata(dev); break; default: SAS_DPRINTK("unhandled device %d\n", dev->dev_type); break; } if (error) { sas_rphy_free(dev->rphy); dev->rphy = NULL; spin_lock(&port->dev_list_lock); list_del_init(&dev->dev_list_node); spin_unlock(&port->dev_list_lock); kfree(dev); /* not kobject_register-ed yet */ port->port_dev = NULL; } SAS_DPRINTK("DONE DISCOVERY on port %d, pid:%d, result:%d\n", port->id, current->pid, error); } static void sas_revalidate_domain(struct work_struct *work) { int res = 0; struct sas_discovery_event *ev = container_of(work, struct sas_discovery_event, work); struct asd_sas_port *port = ev->port; sas_begin_event(DISCE_REVALIDATE_DOMAIN, &port->disc.disc_event_lock, &port->disc.pending); SAS_DPRINTK("REVALIDATING DOMAIN on port %d, pid:%d\n", port->id, current->pid); if (port->port_dev) res = sas_ex_revalidate_domain(port->port_dev); SAS_DPRINTK("done REVALIDATING DOMAIN on port %d, pid:%d, res 0x%x\n", port->id, current->pid, res); } /* ---------- Events ---------- */ int sas_discover_event(struct asd_sas_port *port, enum discover_event ev) { struct sas_discovery *disc; if (!port) return 0; disc = &port->disc; BUG_ON(ev >= DISC_NUM_EVENTS); sas_queue_event(ev, &disc->disc_event_lock, &disc->pending, &disc->disc_work[ev].work, port->ha); return 0; } /** * sas_init_disc -- initialize the discovery struct in the port * @port: pointer to struct port * * Called when the ports are being initialized. */ void sas_init_disc(struct sas_discovery *disc, struct asd_sas_port *port) { int i; static const work_func_t sas_event_fns[DISC_NUM_EVENTS] = { [DISCE_DISCOVER_DOMAIN] = sas_discover_domain, [DISCE_REVALIDATE_DOMAIN] = sas_revalidate_domain, }; spin_lock_init(&disc->disc_event_lock); disc->pending = 0; for (i = 0; i < DISC_NUM_EVENTS; i++) { INIT_WORK(&disc->disc_work[i].work, sas_event_fns[i]); disc->disc_work[i].port = port; } }