/* Copyright (C) 2004 - 2009 rt2x00 SourceForge Project This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Module: rt2800usb Abstract: rt2800usb device specific routines. Supported chipsets: RT2800U. */ #include #include #include #include #include #include #include #include "rt2x00.h" #include "rt2x00usb.h" #include "rt2800lib.h" #include "rt2800.h" #include "rt2800usb.h" /* * Allow hardware encryption to be disabled. */ static int modparam_nohwcrypt = 1; module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); /* * Firmware functions */ static char *rt2800usb_get_firmware_name(struct rt2x00_dev *rt2x00dev) { return FIRMWARE_RT2870; } static bool rt2800usb_check_crc(const u8 *data, const size_t len) { u16 fw_crc; u16 crc; /* * The last 2 bytes in the firmware array are the crc checksum itself, * this means that we should never pass those 2 bytes to the crc * algorithm. */ fw_crc = (data[len - 2] << 8 | data[len - 1]); /* * Use the crc ccitt algorithm. * This will return the same value as the legacy driver which * used bit ordering reversion on the both the firmware bytes * before input input as well as on the final output. * Obviously using crc ccitt directly is much more efficient. */ crc = crc_ccitt(~0, data, len - 2); /* * There is a small difference between the crc-itu-t + bitrev and * the crc-ccitt crc calculation. In the latter method the 2 bytes * will be swapped, use swab16 to convert the crc to the correct * value. */ crc = swab16(crc); return fw_crc == crc; } static int rt2800usb_check_firmware(struct rt2x00_dev *rt2x00dev, const u8 *data, const size_t len) { u16 chipset = (rt2x00_rev(&rt2x00dev->chip) >> 16) & 0xffff; size_t offset = 0; /* * Firmware files: * There are 2 variations of the rt2870 firmware. * a) size: 4kb * b) size: 8kb * Note that (b) contains 2 seperate firmware blobs of 4k * within the file. The first blob is the same firmware as (a), * but the second blob is for the additional chipsets. */ if (len != 4096 && len != 8192) return FW_BAD_LENGTH; /* * Check if we need the upper 4kb firmware data or not. */ if ((len == 4096) && (chipset != 0x2860) && (chipset != 0x2872) && (chipset != 0x3070)) return FW_BAD_VERSION; /* * 8kb firmware files must be checked as if it were * 2 seperate firmware files. */ while (offset < len) { if (!rt2800usb_check_crc(data + offset, 4096)) return FW_BAD_CRC; offset += 4096; } return FW_OK; } static int rt2800usb_load_firmware(struct rt2x00_dev *rt2x00dev, const u8 *data, const size_t len) { unsigned int i; int status; u32 reg; u32 offset; u32 length; u16 chipset = (rt2x00_rev(&rt2x00dev->chip) >> 16) & 0xffff; /* * Check which section of the firmware we need. */ if ((chipset == 0x2860) || (chipset == 0x2872) || (chipset == 0x3070)) { offset = 0; length = 4096; } else { offset = 4096; length = 4096; } /* * Wait for stable hardware. */ for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt2800_register_read(rt2x00dev, MAC_CSR0, ®); if (reg && reg != ~0) break; msleep(1); } if (i == REGISTER_BUSY_COUNT) { ERROR(rt2x00dev, "Unstable hardware.\n"); return -EBUSY; } /* * Write firmware to device. */ rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE, USB_VENDOR_REQUEST_OUT, FIRMWARE_IMAGE_BASE, data + offset, length, REGISTER_TIMEOUT32(length)); rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0); rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0); /* * Send firmware request to device to load firmware, * we need to specify a long timeout time. */ status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0, USB_MODE_FIRMWARE, REGISTER_TIMEOUT_FIRMWARE); if (status < 0) { ERROR(rt2x00dev, "Failed to write Firmware to device.\n"); return status; } msleep(10); rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); /* * Send signal to firmware during boot time. */ rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0); if ((chipset == 0x3070) || (chipset == 0x3071) || (chipset == 0x3572)) { udelay(200); rt2800_mcu_request(rt2x00dev, MCU_CURRENT, 0, 0, 0); udelay(10); } /* * Wait for device to stabilize. */ for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, ®); if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY)) break; msleep(1); } if (i == REGISTER_BUSY_COUNT) { ERROR(rt2x00dev, "PBF system register not ready.\n"); return -EBUSY; } /* * Initialize firmware. */ rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0); rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); msleep(1); return 0; } /* * Device state switch handlers. */ static void rt2800usb_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state) { u32 reg; rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, (state == STATE_RADIO_RX_ON) || (state == STATE_RADIO_RX_ON_LINK)); rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); } static int rt2800usb_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev) { unsigned int i; u32 reg; for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) && !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY)) return 0; msleep(1); } ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n"); return -EACCES; } static int rt2800usb_enable_radio(struct rt2x00_dev *rt2x00dev) { u32 reg; u16 word; /* * Initialize all registers. */ if (unlikely(rt2800usb_wait_wpdma_ready(rt2x00dev) || rt2800_init_registers(rt2x00dev) || rt2800_init_bbp(rt2x00dev) || rt2800_init_rfcsr(rt2x00dev))) return -EIO; rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 1); rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); udelay(50); rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1); rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1); rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); rt2800_register_read(rt2x00dev, USB_DMA_CFG, ®); rt2x00_set_field32(®, USB_DMA_CFG_PHY_CLEAR, 0); /* Don't use bulk in aggregation when working with USB 1.1 */ rt2x00_set_field32(®, USB_DMA_CFG_RX_BULK_AGG_EN, (rt2x00dev->rx->usb_maxpacket == 512)); rt2x00_set_field32(®, USB_DMA_CFG_RX_BULK_AGG_TIMEOUT, 128); /* * Total room for RX frames in kilobytes, PBF might still exceed * this limit so reduce the number to prevent errors. */ rt2x00_set_field32(®, USB_DMA_CFG_RX_BULK_AGG_LIMIT, ((RX_ENTRIES * DATA_FRAME_SIZE) / 1024) - 3); rt2x00_set_field32(®, USB_DMA_CFG_RX_BULK_EN, 1); rt2x00_set_field32(®, USB_DMA_CFG_TX_BULK_EN, 1); rt2800_register_write(rt2x00dev, USB_DMA_CFG, reg); rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 1); rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1); rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); /* * Initialize LED control */ rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word); rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff, word & 0xff, (word >> 8) & 0xff); rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word); rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff, word & 0xff, (word >> 8) & 0xff); rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word); rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff, word & 0xff, (word >> 8) & 0xff); return 0; } static void rt2800usb_disable_radio(struct rt2x00_dev *rt2x00dev) { u32 reg; rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0); rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0); rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0); /* Wait for DMA, ignore error */ rt2800usb_wait_wpdma_ready(rt2x00dev); rt2x00usb_disable_radio(rt2x00dev); } static int rt2800usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { if (state == STATE_AWAKE) rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0); else rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2); return 0; } static int rt2800usb_set_device_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { int retval = 0; switch (state) { case STATE_RADIO_ON: /* * Before the radio can be enabled, the device first has * to be woken up. After that it needs a bit of time * to be fully awake and then the radio can be enabled. */ rt2800usb_set_state(rt2x00dev, STATE_AWAKE); msleep(1); retval = rt2800usb_enable_radio(rt2x00dev); break; case STATE_RADIO_OFF: /* * After the radio has been disabled, the device should * be put to sleep for powersaving. */ rt2800usb_disable_radio(rt2x00dev); rt2800usb_set_state(rt2x00dev, STATE_SLEEP); break; case STATE_RADIO_RX_ON: case STATE_RADIO_RX_ON_LINK: case STATE_RADIO_RX_OFF: case STATE_RADIO_RX_OFF_LINK: rt2800usb_toggle_rx(rt2x00dev, state); break; case STATE_RADIO_IRQ_ON: case STATE_RADIO_IRQ_OFF: /* No support, but no error either */ break; case STATE_DEEP_SLEEP: case STATE_SLEEP: case STATE_STANDBY: case STATE_AWAKE: retval = rt2800usb_set_state(rt2x00dev, state); break; default: retval = -ENOTSUPP; break; } if (unlikely(retval)) ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n", state, retval); return retval; } /* * TX descriptor initialization */ static void rt2800usb_write_tx_desc(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb, struct txentry_desc *txdesc) { struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb); __le32 *txi = skbdesc->desc; __le32 *txwi = &txi[TXINFO_DESC_SIZE / sizeof(__le32)]; u32 word; /* * Initialize TX Info descriptor */ rt2x00_desc_read(txwi, 0, &word); rt2x00_set_field32(&word, TXWI_W0_FRAG, test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, 0); rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0); rt2x00_set_field32(&word, TXWI_W0_TS, test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); rt2x00_set_field32(&word, TXWI_W0_AMPDU, test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags)); rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density); rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->ifs); rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs); rt2x00_set_field32(&word, TXWI_W0_BW, test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags)); rt2x00_set_field32(&word, TXWI_W0_SHORT_GI, test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags)); rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc); rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode); rt2x00_desc_write(txwi, 0, word); rt2x00_desc_read(txwi, 1, &word); rt2x00_set_field32(&word, TXWI_W1_ACK, test_bit(ENTRY_TXD_ACK, &txdesc->flags)); rt2x00_set_field32(&word, TXWI_W1_NSEQ, test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags)); rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size); rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID, test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ? txdesc->key_idx : 0xff); rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT, skb->len - txdesc->l2pad); rt2x00_set_field32(&word, TXWI_W1_PACKETID, skbdesc->entry->queue->qid + 1); rt2x00_desc_write(txwi, 1, word); /* * Always write 0 to IV/EIV fields, hardware will insert the IV * from the IVEIV register when TXINFO_W0_WIV is set to 0. * When TXINFO_W0_WIV is set to 1 it will use the IV data * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which * crypto entry in the registers should be used to encrypt the frame. */ _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */); _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */); /* * Initialize TX descriptor */ rt2x00_desc_read(txi, 0, &word); rt2x00_set_field32(&word, TXINFO_W0_USB_DMA_TX_PKT_LEN, skb->len + TXWI_DESC_SIZE); rt2x00_set_field32(&word, TXINFO_W0_WIV, !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags)); rt2x00_set_field32(&word, TXINFO_W0_QSEL, 2); rt2x00_set_field32(&word, TXINFO_W0_SW_USE_LAST_ROUND, 0); rt2x00_set_field32(&word, TXINFO_W0_USB_DMA_NEXT_VALID, 0); rt2x00_set_field32(&word, TXINFO_W0_USB_DMA_TX_BURST, test_bit(ENTRY_TXD_BURST, &txdesc->flags)); rt2x00_desc_write(txi, 0, word); } /* * TX data initialization */ static void rt2800usb_write_beacon(struct queue_entry *entry) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); unsigned int beacon_base; u32 reg; /* * Add the descriptor in front of the skb. */ skb_push(entry->skb, entry->queue->desc_size); memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len); skbdesc->desc = entry->skb->data; /* * Disable beaconing while we are reloading the beacon data, * otherwise we might be sending out invalid data. */ rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); /* * Write entire beacon with descriptor to register. */ beacon_base = HW_BEACON_OFFSET(entry->entry_idx); rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE, USB_VENDOR_REQUEST_OUT, beacon_base, entry->skb->data, entry->skb->len, REGISTER_TIMEOUT32(entry->skb->len)); /* * Clean up the beacon skb. */ dev_kfree_skb(entry->skb); entry->skb = NULL; } static int rt2800usb_get_tx_data_len(struct queue_entry *entry) { int length; /* * The length _must_ include 4 bytes padding, * it should always be multiple of 4, * but it must _not_ be a multiple of the USB packet size. */ length = roundup(entry->skb->len + 4, 4); length += (4 * !(length % entry->queue->usb_maxpacket)); return length; } static void rt2800usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev, const enum data_queue_qid queue) { u32 reg; if (queue != QID_BEACON) { rt2x00usb_kick_tx_queue(rt2x00dev, queue); return; } rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); if (!rt2x00_get_field32(reg, BCN_TIME_CFG_BEACON_GEN)) { rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1); rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 1); rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1); rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); } } /* * RX control handlers */ static void rt2800usb_fill_rxdone(struct queue_entry *entry, struct rxdone_entry_desc *rxdesc) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); __le32 *rxd = (__le32 *)entry->skb->data; __le32 *rxwi; u32 rxd0; u32 rxwi0; u32 rxwi1; u32 rxwi2; u32 rxwi3; /* * Copy descriptor to the skbdesc->desc buffer, making it safe from * moving of frame data in rt2x00usb. */ memcpy(skbdesc->desc, rxd, skbdesc->desc_len); rxd = (__le32 *)skbdesc->desc; rxwi = &rxd[RXINFO_DESC_SIZE / sizeof(__le32)]; /* * It is now safe to read the descriptor on all architectures. */ rt2x00_desc_read(rxd, 0, &rxd0); rt2x00_desc_read(rxwi, 0, &rxwi0); rt2x00_desc_read(rxwi, 1, &rxwi1); rt2x00_desc_read(rxwi, 2, &rxwi2); rt2x00_desc_read(rxwi, 3, &rxwi3); if (rt2x00_get_field32(rxd0, RXD_W0_CRC_ERROR)) rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) { rxdesc->cipher = rt2x00_get_field32(rxwi0, RXWI_W0_UDF); rxdesc->cipher_status = rt2x00_get_field32(rxd0, RXD_W0_CIPHER_ERROR); } if (rt2x00_get_field32(rxd0, RXD_W0_DECRYPTED)) { /* * Hardware has stripped IV/EIV data from 802.11 frame during * decryption. Unfortunately the descriptor doesn't contain * any fields with the EIV/IV data either, so they can't * be restored by rt2x00lib. */ rxdesc->flags |= RX_FLAG_IV_STRIPPED; if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) rxdesc->flags |= RX_FLAG_DECRYPTED; else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) rxdesc->flags |= RX_FLAG_MMIC_ERROR; } if (rt2x00_get_field32(rxd0, RXD_W0_MY_BSS)) rxdesc->dev_flags |= RXDONE_MY_BSS; if (rt2x00_get_field32(rxd0, RXD_W0_L2PAD)) { rxdesc->dev_flags |= RXDONE_L2PAD; skbdesc->flags |= SKBDESC_L2_PADDED; } if (rt2x00_get_field32(rxwi1, RXWI_W1_SHORT_GI)) rxdesc->flags |= RX_FLAG_SHORT_GI; if (rt2x00_get_field32(rxwi1, RXWI_W1_BW)) rxdesc->flags |= RX_FLAG_40MHZ; /* * Detect RX rate, always use MCS as signal type. */ rxdesc->dev_flags |= RXDONE_SIGNAL_MCS; rxdesc->rate_mode = rt2x00_get_field32(rxwi1, RXWI_W1_PHYMODE); rxdesc->signal = rt2x00_get_field32(rxwi1, RXWI_W1_MCS); /* * Mask of 0x8 bit to remove the short preamble flag. */ if (rxdesc->rate_mode == RATE_MODE_CCK) rxdesc->signal &= ~0x8; rxdesc->rssi = (rt2x00_get_field32(rxwi2, RXWI_W2_RSSI0) + rt2x00_get_field32(rxwi2, RXWI_W2_RSSI1)) / 2; rxdesc->noise = (rt2x00_get_field32(rxwi3, RXWI_W3_SNR0) + rt2x00_get_field32(rxwi3, RXWI_W3_SNR1)) / 2; rxdesc->size = rt2x00_get_field32(rxwi0, RXWI_W0_MPDU_TOTAL_BYTE_COUNT); /* * Remove RXWI descriptor from start of buffer. */ skb_pull(entry->skb, skbdesc->desc_len); skb_trim(entry->skb, rxdesc->size); } /* * Device probe functions. */ static int rt2800usb_validate_eeprom(struct rt2x00_dev *rt2x00dev) { u16 word; u8 *mac; u8 default_lna_gain; rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE); /* * Start validation of the data that has been read. */ mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); if (!is_valid_ether_addr(mac)) { random_ether_addr(mac); EEPROM(rt2x00dev, "MAC: %pM\n", mac); } rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2); rt2x00_set_field16(&word, EEPROM_ANTENNA_TXPATH, 1); rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2820); rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); } else if (rt2x00_rev(&rt2x00dev->chip) < RT2883_VERSION) { /* * There is a max of 2 RX streams for RT2870 series */ if (rt2x00_get_field16(word, EEPROM_ANTENNA_RXPATH) > 2) rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2); rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_NIC_HW_RADIO, 0); rt2x00_set_field16(&word, EEPROM_NIC_DYNAMIC_TX_AGC, 0); rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0); rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0); rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_BG, 0); rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_A, 0); rt2x00_set_field16(&word, EEPROM_NIC_WPS_PBC, 0); rt2x00_set_field16(&word, EEPROM_NIC_BW40M_BG, 0); rt2x00_set_field16(&word, EEPROM_NIC_BW40M_A, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word); if ((word & 0x00ff) == 0x00ff) { rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE, LED_MODE_TXRX_ACTIVITY); rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); rt2x00_eeprom_write(rt2x00dev, EEPROM_LED1, 0x5555); rt2x00_eeprom_write(rt2x00dev, EEPROM_LED2, 0x2221); rt2x00_eeprom_write(rt2x00dev, EEPROM_LED3, 0xa9f8); EEPROM(rt2x00dev, "Freq: 0x%04x\n", word); } /* * During the LNA validation we are going to use * lna0 as correct value. Note that EEPROM_LNA * is never validated. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word); default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0); rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word); if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10) rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0); if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10) rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word); rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word); if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10) rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0); if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 || rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff) rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1, default_lna_gain); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word); rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word); if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10) rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0); if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10) rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word); rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word); if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10) rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0); if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 || rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff) rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2, default_lna_gain); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word); return 0; } static int rt2800usb_init_eeprom(struct rt2x00_dev *rt2x00dev) { u32 reg; u16 value; u16 eeprom; /* * Read EEPROM word for configuration. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); /* * Identify RF chipset. */ value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); rt2800_register_read(rt2x00dev, MAC_CSR0, ®); rt2x00_set_chip(rt2x00dev, RT2870, value, reg); /* * The check for rt2860 is not a typo, some rt2870 hardware * identifies itself as rt2860 in the CSR register. */ if (!rt2x00_check_rev(&rt2x00dev->chip, 0xfff00000, 0x28600000) && !rt2x00_check_rev(&rt2x00dev->chip, 0xfff00000, 0x28700000) && !rt2x00_check_rev(&rt2x00dev->chip, 0xfff00000, 0x28800000) && !rt2x00_check_rev(&rt2x00dev->chip, 0xffff0000, 0x30700000)) { ERROR(rt2x00dev, "Invalid RT chipset detected.\n"); return -ENODEV; } if (!rt2x00_rf(&rt2x00dev->chip, RF2820) && !rt2x00_rf(&rt2x00dev->chip, RF2850) && !rt2x00_rf(&rt2x00dev->chip, RF2720) && !rt2x00_rf(&rt2x00dev->chip, RF2750) && !rt2x00_rf(&rt2x00dev->chip, RF3020) && !rt2x00_rf(&rt2x00dev->chip, RF2020)) { ERROR(rt2x00dev, "Invalid RF chipset detected.\n"); return -ENODEV; } /* * Identify default antenna configuration. */ rt2x00dev->default_ant.tx = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH); rt2x00dev->default_ant.rx = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH); /* * Read frequency offset and RF programming sequence. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom); rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); /* * Read external LNA informations. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A)) __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags); if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG)) __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags); /* * Detect if this device has an hardware controlled radio. */ if (rt2x00_get_field16(eeprom, EEPROM_NIC_HW_RADIO)) __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags); /* * Store led settings, for correct led behaviour. */ #ifdef CONFIG_RT2X00_LIB_LEDS rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY); rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &rt2x00dev->led_mcu_reg); #endif /* CONFIG_RT2X00_LIB_LEDS */ return 0; } /* * RF value list for rt2870 * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750) */ static const struct rf_channel rf_vals[] = { { 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b }, { 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f }, { 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b }, { 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f }, { 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b }, { 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f }, { 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b }, { 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f }, { 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b }, { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f }, { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b }, { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f }, { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b }, { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 }, /* 802.11 UNI / HyperLan 2 */ { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 }, { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 }, { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 }, { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 }, { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b }, { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b }, { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 }, { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 }, { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b }, { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 }, { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 }, { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 }, /* 802.11 HyperLan 2 */ { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 }, { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 }, { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 }, { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 }, { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 }, { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b }, { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 }, { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 }, { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 }, { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 }, { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b }, { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 }, { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b }, { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 }, { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b }, { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 }, /* 802.11 UNII */ { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 }, { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 }, { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f }, { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f }, { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 }, { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 }, { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 }, { 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f }, { 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 }, { 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 }, { 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f }, /* 802.11 Japan */ { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b }, { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 }, { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b }, { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 }, { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 }, { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b }, { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 }, }; /* * RF value list for rt3070 * Supports: 2.4 GHz */ static const struct rf_channel rf_vals_3070[] = { {1, 241, 2, 2 }, {2, 241, 2, 7 }, {3, 242, 2, 2 }, {4, 242, 2, 7 }, {5, 243, 2, 2 }, {6, 243, 2, 7 }, {7, 244, 2, 2 }, {8, 244, 2, 7 }, {9, 245, 2, 2 }, {10, 245, 2, 7 }, {11, 246, 2, 2 }, {12, 246, 2, 7 }, {13, 247, 2, 2 }, {14, 248, 2, 4 }, }; static int rt2800usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev) { struct hw_mode_spec *spec = &rt2x00dev->spec; struct channel_info *info; char *tx_power1; char *tx_power2; unsigned int i; u16 eeprom; /* * Initialize all hw fields. */ rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_SUPPORTS_PS | IEEE80211_HW_PS_NULLFUNC_STACK; rt2x00dev->hw->extra_tx_headroom = TXINFO_DESC_SIZE + TXWI_DESC_SIZE; SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0)); rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); /* * Initialize HT information. */ spec->ht.ht_supported = true; spec->ht.cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_GRN_FLD | IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_TX_STBC | IEEE80211_HT_CAP_RX_STBC | IEEE80211_HT_CAP_PSMP_SUPPORT; spec->ht.ampdu_factor = 3; spec->ht.ampdu_density = 4; spec->ht.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED | IEEE80211_HT_MCS_TX_RX_DIFF | ((rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) - 1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT); switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH)) { case 3: spec->ht.mcs.rx_mask[2] = 0xff; case 2: spec->ht.mcs.rx_mask[1] = 0xff; case 1: spec->ht.mcs.rx_mask[0] = 0xff; spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */ break; } /* * Initialize hw_mode information. */ spec->supported_bands = SUPPORT_BAND_2GHZ; spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; if (rt2x00_rf(&rt2x00dev->chip, RF2820) || rt2x00_rf(&rt2x00dev->chip, RF2720)) { spec->num_channels = 14; spec->channels = rf_vals; } else if (rt2x00_rf(&rt2x00dev->chip, RF2850) || rt2x00_rf(&rt2x00dev->chip, RF2750)) { spec->supported_bands |= SUPPORT_BAND_5GHZ; spec->num_channels = ARRAY_SIZE(rf_vals); spec->channels = rf_vals; } else if (rt2x00_rf(&rt2x00dev->chip, RF3020) || rt2x00_rf(&rt2x00dev->chip, RF2020)) { spec->num_channels = ARRAY_SIZE(rf_vals_3070); spec->channels = rf_vals_3070; } /* * Create channel information array */ info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; spec->channels_info = info; tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1); tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2); for (i = 0; i < 14; i++) { info[i].tx_power1 = TXPOWER_G_FROM_DEV(tx_power1[i]); info[i].tx_power2 = TXPOWER_G_FROM_DEV(tx_power2[i]); } if (spec->num_channels > 14) { tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1); tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2); for (i = 14; i < spec->num_channels; i++) { info[i].tx_power1 = TXPOWER_A_FROM_DEV(tx_power1[i]); info[i].tx_power2 = TXPOWER_A_FROM_DEV(tx_power2[i]); } } return 0; } static const struct rt2800_ops rt2800usb_rt2800_ops = { .register_read = rt2x00usb_register_read, .register_write = rt2x00usb_register_write, .register_write_lock = rt2x00usb_register_write_lock, .register_multiread = rt2x00usb_register_multiread, .register_multiwrite = rt2x00usb_register_multiwrite, .regbusy_read = rt2x00usb_regbusy_read, }; static int rt2800usb_probe_hw(struct rt2x00_dev *rt2x00dev) { int retval; rt2x00_set_chip_intf(rt2x00dev, RT2X00_CHIP_INTF_USB); rt2x00dev->priv = (void *)&rt2800usb_rt2800_ops; /* * Allocate eeprom data. */ retval = rt2800usb_validate_eeprom(rt2x00dev); if (retval) return retval; retval = rt2800usb_init_eeprom(rt2x00dev); if (retval) return retval; /* * Initialize hw specifications. */ retval = rt2800usb_probe_hw_mode(rt2x00dev); if (retval) return retval; /* * This device has multiple filters for control frames * and has a separate filter for PS Poll frames. */ __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags); __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags); /* * This device requires firmware. */ __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags); __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags); if (!modparam_nohwcrypt) __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags); /* * Set the rssi offset. */ rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; return 0; } static const struct rt2x00lib_ops rt2800usb_rt2x00_ops = { .probe_hw = rt2800usb_probe_hw, .get_firmware_name = rt2800usb_get_firmware_name, .check_firmware = rt2800usb_check_firmware, .load_firmware = rt2800usb_load_firmware, .initialize = rt2x00usb_initialize, .uninitialize = rt2x00usb_uninitialize, .clear_entry = rt2x00usb_clear_entry, .set_device_state = rt2800usb_set_device_state, .rfkill_poll = rt2800_rfkill_poll, .link_stats = rt2800_link_stats, .reset_tuner = rt2800_reset_tuner, .link_tuner = rt2800_link_tuner, .write_tx_desc = rt2800usb_write_tx_desc, .write_tx_data = rt2x00usb_write_tx_data, .write_beacon = rt2800usb_write_beacon, .get_tx_data_len = rt2800usb_get_tx_data_len, .kick_tx_queue = rt2800usb_kick_tx_queue, .kill_tx_queue = rt2x00usb_kill_tx_queue, .fill_rxdone = rt2800usb_fill_rxdone, .config_shared_key = rt2800_config_shared_key, .config_pairwise_key = rt2800_config_pairwise_key, .config_filter = rt2800_config_filter, .config_intf = rt2800_config_intf, .config_erp = rt2800_config_erp, .config_ant = rt2800_config_ant, .config = rt2800_config, }; static const struct data_queue_desc rt2800usb_queue_rx = { .entry_num = RX_ENTRIES, .data_size = AGGREGATION_SIZE, .desc_size = RXINFO_DESC_SIZE + RXWI_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_usb), }; static const struct data_queue_desc rt2800usb_queue_tx = { .entry_num = TX_ENTRIES, .data_size = AGGREGATION_SIZE, .desc_size = TXINFO_DESC_SIZE + TXWI_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_usb), }; static const struct data_queue_desc rt2800usb_queue_bcn = { .entry_num = 8 * BEACON_ENTRIES, .data_size = MGMT_FRAME_SIZE, .desc_size = TXINFO_DESC_SIZE + TXWI_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_usb), }; static const struct rt2x00_ops rt2800usb_ops = { .name = KBUILD_MODNAME, .max_sta_intf = 1, .max_ap_intf = 8, .eeprom_size = EEPROM_SIZE, .rf_size = RF_SIZE, .tx_queues = NUM_TX_QUEUES, .rx = &rt2800usb_queue_rx, .tx = &rt2800usb_queue_tx, .bcn = &rt2800usb_queue_bcn, .lib = &rt2800usb_rt2x00_ops, .hw = &rt2800_mac80211_ops, #ifdef CONFIG_RT2X00_LIB_DEBUGFS .debugfs = &rt2800_rt2x00debug, #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ }; /* * rt2800usb module information. */ static struct usb_device_id rt2800usb_device_table[] = { /* Abocom */ { USB_DEVICE(0x07b8, 0x2870), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x07b8, 0x2770), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x07b8, 0x3070), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x07b8, 0x3071), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x07b8, 0x3072), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x1482, 0x3c09), USB_DEVICE_DATA(&rt2800usb_ops) }, /* AirTies */ { USB_DEVICE(0x1eda, 0x2310), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Amigo */ { USB_DEVICE(0x0e0b, 0x9031), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0e0b, 0x9041), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Amit */ { USB_DEVICE(0x15c5, 0x0008), USB_DEVICE_DATA(&rt2800usb_ops) }, /* ASUS */ { USB_DEVICE(0x0b05, 0x1731), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0b05, 0x1732), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0b05, 0x1742), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0b05, 0x1760), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0b05, 0x1761), USB_DEVICE_DATA(&rt2800usb_ops) }, /* AzureWave */ { USB_DEVICE(0x13d3, 0x3247), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x13d3, 0x3262), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x13d3, 0x3273), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x13d3, 0x3284), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Belkin */ { USB_DEVICE(0x050d, 0x8053), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x050d, 0x805c), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x050d, 0x815c), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x050d, 0x825a), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Buffalo */ { USB_DEVICE(0x0411, 0x00e8), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0411, 0x012e), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Conceptronic */ { USB_DEVICE(0x14b2, 0x3c06), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x14b2, 0x3c07), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x14b2, 0x3c08), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x14b2, 0x3c09), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x14b2, 0x3c11), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x14b2, 0x3c12), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x14b2, 0x3c23), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x14b2, 0x3c25), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x14b2, 0x3c27), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x14b2, 0x3c28), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Corega */ { USB_DEVICE(0x07aa, 0x002f), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x07aa, 0x003c), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x07aa, 0x003f), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x18c5, 0x0008), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x18c5, 0x0012), USB_DEVICE_DATA(&rt2800usb_ops) }, /* D-Link */ { USB_DEVICE(0x07d1, 0x3c09), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x07d1, 0x3c0a), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x07d1, 0x3c0b), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x07d1, 0x3c0d), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x07d1, 0x3c0e), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x07d1, 0x3c0f), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x07d1, 0x3c11), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x07d1, 0x3c13), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Edimax */ { USB_DEVICE(0x7392, 0x7711), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x7392, 0x7717), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x7392, 0x7718), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Encore */ { USB_DEVICE(0x203d, 0x1480), USB_DEVICE_DATA(&rt2800usb_ops) }, /* EnGenius */ { USB_DEVICE(0X1740, 0x9701), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x1740, 0x9702), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x1740, 0x9703), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x1740, 0x9705), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x1740, 0x9706), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x1740, 0x9801), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Gemtek */ { USB_DEVICE(0x15a9, 0x0010), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Gigabyte */ { USB_DEVICE(0x1044, 0x800b), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x1044, 0x800c), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x1044, 0x800d), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Hawking */ { USB_DEVICE(0x0e66, 0x0001), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0e66, 0x0003), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0e66, 0x0009), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0e66, 0x000b), USB_DEVICE_DATA(&rt2800usb_ops) }, /* I-O DATA */ { USB_DEVICE(0x04bb, 0x0945), USB_DEVICE_DATA(&rt2800usb_ops) }, /* LevelOne */ { USB_DEVICE(0x1740, 0x0605), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x1740, 0x0615), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Linksys */ { USB_DEVICE(0x1737, 0x0070), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x1737, 0x0071), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x1737, 0x0077), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Logitec */ { USB_DEVICE(0x0789, 0x0162), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0789, 0x0163), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0789, 0x0164), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Motorola */ { USB_DEVICE(0x100d, 0x9031), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x100d, 0x9032), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Ovislink */ { USB_DEVICE(0x1b75, 0x3072), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Pegatron */ { USB_DEVICE(0x1d4d, 0x0002), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x1d4d, 0x000c), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x1d4d, 0x000e), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Philips */ { USB_DEVICE(0x0471, 0x200f), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Planex */ { USB_DEVICE(0x2019, 0xed06), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x2019, 0xab24), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x2019, 0xab25), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Qcom */ { USB_DEVICE(0x18e8, 0x6259), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Quanta */ { USB_DEVICE(0x1a32, 0x0304), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Ralink */ { USB_DEVICE(0x0db0, 0x3820), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0db0, 0x6899), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x148f, 0x2070), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x148f, 0x2770), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x148f, 0x2870), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x148f, 0x3070), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x148f, 0x3071), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x148f, 0x3072), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x148f, 0x3572), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Samsung */ { USB_DEVICE(0x04e8, 0x2018), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Siemens */ { USB_DEVICE(0x129b, 0x1828), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Sitecom */ { USB_DEVICE(0x0df6, 0x0017), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0df6, 0x002b), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0df6, 0x002c), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0df6, 0x002d), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0df6, 0x0039), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0df6, 0x003b), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0df6, 0x003c), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0df6, 0x003d), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0df6, 0x003e), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0df6, 0x003f), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0df6, 0x0040), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0df6, 0x0042), USB_DEVICE_DATA(&rt2800usb_ops) }, /* SMC */ { USB_DEVICE(0x083a, 0x6618), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x083a, 0x7511), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x083a, 0x7512), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x083a, 0x7522), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x083a, 0x8522), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x083a, 0xa512), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x083a, 0xa618), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x083a, 0xb522), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x083a, 0xc522), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Sparklan */ { USB_DEVICE(0x15a9, 0x0006), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Sweex */ { USB_DEVICE(0x177f, 0x0153), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x177f, 0x0302), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x177f, 0x0313), USB_DEVICE_DATA(&rt2800usb_ops) }, /* U-Media*/ { USB_DEVICE(0x157e, 0x300e), USB_DEVICE_DATA(&rt2800usb_ops) }, /* ZCOM */ { USB_DEVICE(0x0cde, 0x0022), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0cde, 0x0025), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Zinwell */ { USB_DEVICE(0x5a57, 0x0280), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x5a57, 0x0282), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x5a57, 0x0283), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x5a57, 0x5257), USB_DEVICE_DATA(&rt2800usb_ops) }, /* Zyxel */ { USB_DEVICE(0x0586, 0x3416), USB_DEVICE_DATA(&rt2800usb_ops) }, { USB_DEVICE(0x0586, 0x341a), USB_DEVICE_DATA(&rt2800usb_ops) }, { 0, } }; MODULE_AUTHOR(DRV_PROJECT); MODULE_VERSION(DRV_VERSION); MODULE_DESCRIPTION("Ralink RT2800 USB Wireless LAN driver."); MODULE_SUPPORTED_DEVICE("Ralink RT2870 USB chipset based cards"); MODULE_DEVICE_TABLE(usb, rt2800usb_device_table); MODULE_FIRMWARE(FIRMWARE_RT2870); MODULE_LICENSE("GPL"); static struct usb_driver rt2800usb_driver = { .name = KBUILD_MODNAME, .id_table = rt2800usb_device_table, .probe = rt2x00usb_probe, .disconnect = rt2x00usb_disconnect, .suspend = rt2x00usb_suspend, .resume = rt2x00usb_resume, }; static int __init rt2800usb_init(void) { return usb_register(&rt2800usb_driver); } static void __exit rt2800usb_exit(void) { usb_deregister(&rt2800usb_driver); } module_init(rt2800usb_init); module_exit(rt2800usb_exit);