/****************************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * BSD LICENSE * * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *****************************************************************************/ #include #include #include #include #include #include #include #include "iwl-drv.h" #include "iwl-trans.h" #include "iwl-csr.h" #include "iwl-prph.h" #include "iwl-agn-hw.h" #include "internal.h" static void __iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value) { u32 v; #ifdef CONFIG_IWLWIFI_DEBUG WARN_ON_ONCE(value & ~mask); #endif v = iwl_read32(trans, reg); v &= ~mask; v |= value; iwl_write32(trans, reg, v); } static inline void __iwl_trans_pcie_clear_bit(struct iwl_trans *trans, u32 reg, u32 mask) { __iwl_trans_pcie_set_bits_mask(trans, reg, mask, 0); } static inline void __iwl_trans_pcie_set_bit(struct iwl_trans *trans, u32 reg, u32 mask) { __iwl_trans_pcie_set_bits_mask(trans, reg, mask, mask); } static void iwl_pcie_set_pwr(struct iwl_trans *trans, bool vaux) { if (vaux && pci_pme_capable(to_pci_dev(trans->dev), PCI_D3cold)) iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_PWR_SRC_VAUX, ~APMG_PS_CTRL_MSK_PWR_SRC); else iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_PWR_SRC_VMAIN, ~APMG_PS_CTRL_MSK_PWR_SRC); } /* PCI registers */ #define PCI_CFG_RETRY_TIMEOUT 0x041 static void iwl_pcie_apm_config(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); u16 lctl; /* * HW bug W/A for instability in PCIe bus L0S->L1 transition. * Check if BIOS (or OS) enabled L1-ASPM on this device. * If so (likely), disable L0S, so device moves directly L0->L1; * costs negligible amount of power savings. * If not (unlikely), enable L0S, so there is at least some * power savings, even without L1. */ pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_LNKCTL, &lctl); if (lctl & PCI_EXP_LNKCTL_ASPM_L1) { /* L1-ASPM enabled; disable(!) L0S */ iwl_set_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED); dev_info(trans->dev, "L1 Enabled; Disabling L0S\n"); } else { /* L1-ASPM disabled; enable(!) L0S */ iwl_clear_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED); dev_info(trans->dev, "L1 Disabled; Enabling L0S\n"); } trans->pm_support = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S); } /* * Start up NIC's basic functionality after it has been reset * (e.g. after platform boot, or shutdown via iwl_pcie_apm_stop()) * NOTE: This does not load uCode nor start the embedded processor */ static int iwl_pcie_apm_init(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int ret = 0; IWL_DEBUG_INFO(trans, "Init card's basic functions\n"); /* * Use "set_bit" below rather than "write", to preserve any hardware * bits already set by default after reset. */ /* Disable L0S exit timer (platform NMI Work/Around) */ iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS, CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER); /* * Disable L0s without affecting L1; * don't wait for ICH L0s (ICH bug W/A) */ iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS, CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX); /* Set FH wait threshold to maximum (HW error during stress W/A) */ iwl_set_bit(trans, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL); /* * Enable HAP INTA (interrupt from management bus) to * wake device's PCI Express link L1a -> L0s */ iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A); iwl_pcie_apm_config(trans); /* Configure analog phase-lock-loop before activating to D0A */ if (trans->cfg->base_params->pll_cfg_val) iwl_set_bit(trans, CSR_ANA_PLL_CFG, trans->cfg->base_params->pll_cfg_val); /* * Set "initialization complete" bit to move adapter from * D0U* --> D0A* (powered-up active) state. */ iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); /* * Wait for clock stabilization; once stabilized, access to * device-internal resources is supported, e.g. iwl_write_prph() * and accesses to uCode SRAM. */ ret = iwl_poll_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); if (ret < 0) { IWL_DEBUG_INFO(trans, "Failed to init the card\n"); goto out; } /* * Enable DMA clock and wait for it to stabilize. * * Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" bits * do not disable clocks. This preserves any hardware bits already * set by default in "CLK_CTRL_REG" after reset. */ iwl_write_prph(trans, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT); udelay(20); /* Disable L1-Active */ iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG, APMG_PCIDEV_STT_VAL_L1_ACT_DIS); set_bit(STATUS_DEVICE_ENABLED, &trans_pcie->status); out: return ret; } static int iwl_pcie_apm_stop_master(struct iwl_trans *trans) { int ret = 0; /* stop device's busmaster DMA activity */ iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER); ret = iwl_poll_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_MASTER_DISABLED, CSR_RESET_REG_FLAG_MASTER_DISABLED, 100); if (ret) IWL_WARN(trans, "Master Disable Timed Out, 100 usec\n"); IWL_DEBUG_INFO(trans, "stop master\n"); return ret; } static void iwl_pcie_apm_stop(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); IWL_DEBUG_INFO(trans, "Stop card, put in low power state\n"); clear_bit(STATUS_DEVICE_ENABLED, &trans_pcie->status); /* Stop device's DMA activity */ iwl_pcie_apm_stop_master(trans); /* Reset the entire device */ iwl_set_bit(trans, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET); udelay(10); /* * Clear "initialization complete" bit to move adapter from * D0A* (powered-up Active) --> D0U* (Uninitialized) state. */ iwl_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); } static int iwl_pcie_nic_init(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); unsigned long flags; /* nic_init */ spin_lock_irqsave(&trans_pcie->irq_lock, flags); iwl_pcie_apm_init(trans); /* Set interrupt coalescing calibration timer to default (512 usecs) */ iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_CALIB_TIMEOUT_DEF); spin_unlock_irqrestore(&trans_pcie->irq_lock, flags); iwl_pcie_set_pwr(trans, false); iwl_op_mode_nic_config(trans->op_mode); /* Allocate the RX queue, or reset if it is already allocated */ iwl_pcie_rx_init(trans); /* Allocate or reset and init all Tx and Command queues */ if (iwl_pcie_tx_init(trans)) return -ENOMEM; if (trans->cfg->base_params->shadow_reg_enable) { /* enable shadow regs in HW */ iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL, 0x800FFFFF); IWL_DEBUG_INFO(trans, "Enabling shadow registers in device\n"); } return 0; } #define HW_READY_TIMEOUT (50) /* Note: returns poll_bit return value, which is >= 0 if success */ static int iwl_pcie_set_hw_ready(struct iwl_trans *trans) { int ret; iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_NIC_READY); /* See if we got it */ ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_NIC_READY, CSR_HW_IF_CONFIG_REG_BIT_NIC_READY, HW_READY_TIMEOUT); IWL_DEBUG_INFO(trans, "hardware%s ready\n", ret < 0 ? " not" : ""); return ret; } /* Note: returns standard 0/-ERROR code */ static int iwl_pcie_prepare_card_hw(struct iwl_trans *trans) { int ret; int t = 0; IWL_DEBUG_INFO(trans, "iwl_trans_prepare_card_hw enter\n"); ret = iwl_pcie_set_hw_ready(trans); /* If the card is ready, exit 0 */ if (ret >= 0) return 0; /* If HW is not ready, prepare the conditions to check again */ iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_PREPARE); do { ret = iwl_pcie_set_hw_ready(trans); if (ret >= 0) return 0; usleep_range(200, 1000); t += 200; } while (t < 150000); return ret; } /* * ucode */ static int iwl_pcie_load_firmware_chunk(struct iwl_trans *trans, u32 dst_addr, dma_addr_t phy_addr, u32 byte_cnt) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int ret; trans_pcie->ucode_write_complete = false; iwl_write_direct32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL), FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE); iwl_write_direct32(trans, FH_SRVC_CHNL_SRAM_ADDR_REG(FH_SRVC_CHNL), dst_addr); iwl_write_direct32(trans, FH_TFDIB_CTRL0_REG(FH_SRVC_CHNL), phy_addr & FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK); iwl_write_direct32(trans, FH_TFDIB_CTRL1_REG(FH_SRVC_CHNL), (iwl_get_dma_hi_addr(phy_addr) << FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt); iwl_write_direct32(trans, FH_TCSR_CHNL_TX_BUF_STS_REG(FH_SRVC_CHNL), 1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM | 1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX | FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID); iwl_write_direct32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL), FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE | FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD); ret = wait_event_timeout(trans_pcie->ucode_write_waitq, trans_pcie->ucode_write_complete, 5 * HZ); if (!ret) { IWL_ERR(trans, "Failed to load firmware chunk!\n"); return -ETIMEDOUT; } return 0; } static int iwl_pcie_load_section(struct iwl_trans *trans, u8 section_num, const struct fw_desc *section) { u8 *v_addr; dma_addr_t p_addr; u32 offset, chunk_sz = section->len; int ret = 0; IWL_DEBUG_FW(trans, "[%d] uCode section being loaded...\n", section_num); v_addr = dma_alloc_coherent(trans->dev, chunk_sz, &p_addr, GFP_KERNEL | __GFP_NOWARN); if (!v_addr) { IWL_DEBUG_INFO(trans, "Falling back to small chunks of DMA\n"); chunk_sz = PAGE_SIZE; v_addr = dma_alloc_coherent(trans->dev, chunk_sz, &p_addr, GFP_KERNEL); if (!v_addr) return -ENOMEM; } for (offset = 0; offset < section->len; offset += chunk_sz) { u32 copy_size; copy_size = min_t(u32, chunk_sz, section->len - offset); memcpy(v_addr, (u8 *)section->data + offset, copy_size); ret = iwl_pcie_load_firmware_chunk(trans, section->offset + offset, p_addr, copy_size); if (ret) { IWL_ERR(trans, "Could not load the [%d] uCode section\n", section_num); break; } } dma_free_coherent(trans->dev, chunk_sz, v_addr, p_addr); return ret; } static int iwl_pcie_load_given_ucode(struct iwl_trans *trans, const struct fw_img *image) { int i, ret = 0; for (i = 0; i < IWL_UCODE_SECTION_MAX; i++) { if (!image->sec[i].data) break; ret = iwl_pcie_load_section(trans, i, &image->sec[i]); if (ret) return ret; } /* Remove all resets to allow NIC to operate */ iwl_write32(trans, CSR_RESET, 0); return 0; } static int iwl_trans_pcie_start_fw(struct iwl_trans *trans, const struct fw_img *fw, bool run_in_rfkill) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); int ret; bool hw_rfkill; /* This may fail if AMT took ownership of the device */ if (iwl_pcie_prepare_card_hw(trans)) { IWL_WARN(trans, "Exit HW not ready\n"); return -EIO; } clear_bit(STATUS_FW_ERROR, &trans_pcie->status); iwl_enable_rfkill_int(trans); /* If platform's RF_KILL switch is NOT set to KILL */ hw_rfkill = iwl_is_rfkill_set(trans); if (hw_rfkill) set_bit(STATUS_RFKILL, &trans_pcie->status); else clear_bit(STATUS_RFKILL, &trans_pcie->status); iwl_op_mode_hw_rf_kill(trans->op_mode, hw_rfkill); if (hw_rfkill && !run_in_rfkill) return -ERFKILL; iwl_write32(trans, CSR_INT, 0xFFFFFFFF); ret = iwl_pcie_nic_init(trans); if (ret) { IWL_ERR(trans, "Unable to init nic\n"); return ret; } /* make sure rfkill handshake bits are cleared */ iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED); /* clear (again), then enable host interrupts */ iwl_write32(trans, CSR_INT, 0xFFFFFFFF); iwl_enable_interrupts(trans); /* really make sure rfkill handshake bits are cleared */ iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); /* Load the given image to the HW */ return iwl_pcie_load_given_ucode(trans, fw); } static void iwl_trans_pcie_fw_alive(struct iwl_trans *trans, u32 scd_addr) { iwl_pcie_reset_ict(trans); iwl_pcie_tx_start(trans, scd_addr); } static void iwl_trans_pcie_stop_device(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); unsigned long flags; /* tell the device to stop sending interrupts */ spin_lock_irqsave(&trans_pcie->irq_lock, flags); iwl_disable_interrupts(trans); spin_unlock_irqrestore(&trans_pcie->irq_lock, flags); /* device going down, Stop using ICT table */ iwl_pcie_disable_ict(trans); /* * If a HW restart happens during firmware loading, * then the firmware loading might call this function * and later it might be called again due to the * restart. So don't process again if the device is * already dead. */ if (test_bit(STATUS_DEVICE_ENABLED, &trans_pcie->status)) { iwl_pcie_tx_stop(trans); iwl_pcie_rx_stop(trans); /* Power-down device's busmaster DMA clocks */ iwl_write_prph(trans, APMG_CLK_DIS_REG, APMG_CLK_VAL_DMA_CLK_RQT); udelay(5); } /* Make sure (redundant) we've released our request to stay awake */ iwl_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); /* Stop the device, and put it in low power state */ iwl_pcie_apm_stop(trans); /* Upon stop, the APM issues an interrupt if HW RF kill is set. * Clean again the interrupt here */ spin_lock_irqsave(&trans_pcie->irq_lock, flags); iwl_disable_interrupts(trans); spin_unlock_irqrestore(&trans_pcie->irq_lock, flags); iwl_enable_rfkill_int(trans); /* stop and reset the on-board processor */ iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_NEVO_RESET); /* clear all status bits */ clear_bit(STATUS_HCMD_ACTIVE, &trans_pcie->status); clear_bit(STATUS_INT_ENABLED, &trans_pcie->status); clear_bit(STATUS_DEVICE_ENABLED, &trans_pcie->status); clear_bit(STATUS_TPOWER_PMI, &trans_pcie->status); clear_bit(STATUS_RFKILL, &trans_pcie->status); } static void iwl_trans_pcie_d3_suspend(struct iwl_trans *trans, bool test) { iwl_disable_interrupts(trans); /* * in testing mode, the host stays awake and the * hardware won't be reset (not even partially) */ if (test) return; iwl_pcie_disable_ict(trans); iwl_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); iwl_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); /* * reset TX queues -- some of their registers reset during S3 * so if we don't reset everything here the D3 image would try * to execute some invalid memory upon resume */ iwl_trans_pcie_tx_reset(trans); iwl_pcie_set_pwr(trans, true); } static int iwl_trans_pcie_d3_resume(struct iwl_trans *trans, enum iwl_d3_status *status, bool test) { u32 val; int ret; if (test) { iwl_enable_interrupts(trans); *status = IWL_D3_STATUS_ALIVE; return 0; } iwl_pcie_set_pwr(trans, false); val = iwl_read32(trans, CSR_RESET); if (val & CSR_RESET_REG_FLAG_NEVO_RESET) { *status = IWL_D3_STATUS_RESET; return 0; } /* * Also enables interrupts - none will happen as the device doesn't * know we're waking it up, only when the opmode actually tells it * after this call. */ iwl_pcie_reset_ict(trans); iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); ret = iwl_poll_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); if (ret) { IWL_ERR(trans, "Failed to resume the device (mac ready)\n"); return ret; } iwl_trans_pcie_tx_reset(trans); ret = iwl_pcie_rx_init(trans); if (ret) { IWL_ERR(trans, "Failed to resume the device (RX reset)\n"); return ret; } *status = IWL_D3_STATUS_ALIVE; return 0; } static int iwl_trans_pcie_start_hw(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); bool hw_rfkill; int err; err = iwl_pcie_prepare_card_hw(trans); if (err) { IWL_ERR(trans, "Error while preparing HW: %d\n", err); return err; } iwl_pcie_apm_init(trans); /* From now on, the op_mode will be kept updated about RF kill state */ iwl_enable_rfkill_int(trans); hw_rfkill = iwl_is_rfkill_set(trans); if (hw_rfkill) set_bit(STATUS_RFKILL, &trans_pcie->status); else clear_bit(STATUS_RFKILL, &trans_pcie->status); iwl_op_mode_hw_rf_kill(trans->op_mode, hw_rfkill); return 0; } static void iwl_trans_pcie_stop_hw(struct iwl_trans *trans, bool op_mode_leaving) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); bool hw_rfkill; unsigned long flags; spin_lock_irqsave(&trans_pcie->irq_lock, flags); iwl_disable_interrupts(trans); spin_unlock_irqrestore(&trans_pcie->irq_lock, flags); iwl_pcie_apm_stop(trans); spin_lock_irqsave(&trans_pcie->irq_lock, flags); iwl_disable_interrupts(trans); spin_unlock_irqrestore(&trans_pcie->irq_lock, flags); iwl_pcie_disable_ict(trans); if (!op_mode_leaving) { /* * Even if we stop the HW, we still want the RF kill * interrupt */ iwl_enable_rfkill_int(trans); /* * Check again since the RF kill state may have changed while * all the interrupts were disabled, in this case we couldn't * receive the RF kill interrupt and update the state in the * op_mode. */ hw_rfkill = iwl_is_rfkill_set(trans); if (hw_rfkill) set_bit(STATUS_RFKILL, &trans_pcie->status); else clear_bit(STATUS_RFKILL, &trans_pcie->status); iwl_op_mode_hw_rf_kill(trans->op_mode, hw_rfkill); } } static void iwl_trans_pcie_write8(struct iwl_trans *trans, u32 ofs, u8 val) { writeb(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs); } static void iwl_trans_pcie_write32(struct iwl_trans *trans, u32 ofs, u32 val) { writel(val, IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs); } static u32 iwl_trans_pcie_read32(struct iwl_trans *trans, u32 ofs) { return readl(IWL_TRANS_GET_PCIE_TRANS(trans)->hw_base + ofs); } static u32 iwl_trans_pcie_read_prph(struct iwl_trans *trans, u32 reg) { iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_RADDR, ((reg & 0x000FFFFF) | (3 << 24))); return iwl_trans_pcie_read32(trans, HBUS_TARG_PRPH_RDAT); } static void iwl_trans_pcie_write_prph(struct iwl_trans *trans, u32 addr, u32 val) { iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WADDR, ((addr & 0x000FFFFF) | (3 << 24))); iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WDAT, val); } static void iwl_trans_pcie_configure(struct iwl_trans *trans, const struct iwl_trans_config *trans_cfg) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); trans_pcie->cmd_queue = trans_cfg->cmd_queue; trans_pcie->cmd_fifo = trans_cfg->cmd_fifo; if (WARN_ON(trans_cfg->n_no_reclaim_cmds > MAX_NO_RECLAIM_CMDS)) trans_pcie->n_no_reclaim_cmds = 0; else trans_pcie->n_no_reclaim_cmds = trans_cfg->n_no_reclaim_cmds; if (trans_pcie->n_no_reclaim_cmds) memcpy(trans_pcie->no_reclaim_cmds, trans_cfg->no_reclaim_cmds, trans_pcie->n_no_reclaim_cmds * sizeof(u8)); trans_pcie->rx_buf_size_8k = trans_cfg->rx_buf_size_8k; if (trans_pcie->rx_buf_size_8k) trans_pcie->rx_page_order = get_order(8 * 1024); else trans_pcie->rx_page_order = get_order(4 * 1024); trans_pcie->wd_timeout = msecs_to_jiffies(trans_cfg->queue_watchdog_timeout); trans_pcie->command_names = trans_cfg->command_names; trans_pcie->bc_table_dword = trans_cfg->bc_table_dword; } void iwl_trans_pcie_free(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); synchronize_irq(trans_pcie->pci_dev->irq); iwl_pcie_tx_free(trans); iwl_pcie_rx_free(trans); free_irq(trans_pcie->pci_dev->irq, trans); iwl_pcie_free_ict(trans); pci_disable_msi(trans_pcie->pci_dev); iounmap(trans_pcie->hw_base); pci_release_regions(trans_pcie->pci_dev); pci_disable_device(trans_pcie->pci_dev); kmem_cache_destroy(trans->dev_cmd_pool); kfree(trans); } static void iwl_trans_pcie_set_pmi(struct iwl_trans *trans, bool state) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); if (state) set_bit(STATUS_TPOWER_PMI, &trans_pcie->status); else clear_bit(STATUS_TPOWER_PMI, &trans_pcie->status); } #ifdef CONFIG_PM_SLEEP static int iwl_trans_pcie_suspend(struct iwl_trans *trans) { return 0; } static int iwl_trans_pcie_resume(struct iwl_trans *trans) { bool hw_rfkill; iwl_enable_rfkill_int(trans); hw_rfkill = iwl_is_rfkill_set(trans); iwl_op_mode_hw_rf_kill(trans->op_mode, hw_rfkill); return 0; } #endif /* CONFIG_PM_SLEEP */ static bool iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans, bool silent, unsigned long *flags) { int ret; struct iwl_trans_pcie *pcie_trans = IWL_TRANS_GET_PCIE_TRANS(trans); spin_lock_irqsave(&pcie_trans->reg_lock, *flags); /* this bit wakes up the NIC */ __iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); /* * These bits say the device is running, and should keep running for * at least a short while (at least as long as MAC_ACCESS_REQ stays 1), * but they do not indicate that embedded SRAM is restored yet; * 3945 and 4965 have volatile SRAM, and must save/restore contents * to/from host DRAM when sleeping/waking for power-saving. * Each direction takes approximately 1/4 millisecond; with this * overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a * series of register accesses are expected (e.g. reading Event Log), * to keep device from sleeping. * * CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that * SRAM is okay/restored. We don't check that here because this call * is just for hardware register access; but GP1 MAC_SLEEP check is a * good idea before accessing 3945/4965 SRAM (e.g. reading Event Log). * * 5000 series and later (including 1000 series) have non-volatile SRAM, * and do not save/restore SRAM when power cycling. */ ret = iwl_poll_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN, (CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY | CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000); if (unlikely(ret < 0)) { iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI); if (!silent) { u32 val = iwl_read32(trans, CSR_GP_CNTRL); WARN_ONCE(1, "Timeout waiting for hardware access (CSR_GP_CNTRL 0x%08x)\n", val); spin_unlock_irqrestore(&pcie_trans->reg_lock, *flags); return false; } } /* * Fool sparse by faking we release the lock - sparse will * track nic_access anyway. */ __release(&pcie_trans->reg_lock); return true; } static void iwl_trans_pcie_release_nic_access(struct iwl_trans *trans, unsigned long *flags) { struct iwl_trans_pcie *pcie_trans = IWL_TRANS_GET_PCIE_TRANS(trans); lockdep_assert_held(&pcie_trans->reg_lock); /* * Fool sparse by faking we acquiring the lock - sparse will * track nic_access anyway. */ __acquire(&pcie_trans->reg_lock); __iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); /* * Above we read the CSR_GP_CNTRL register, which will flush * any previous writes, but we need the write that clears the * MAC_ACCESS_REQ bit to be performed before any other writes * scheduled on different CPUs (after we drop reg_lock). */ mmiowb(); spin_unlock_irqrestore(&pcie_trans->reg_lock, *flags); } static int iwl_trans_pcie_read_mem(struct iwl_trans *trans, u32 addr, void *buf, int dwords) { unsigned long flags; int offs, ret = 0; u32 *vals = buf; if (iwl_trans_grab_nic_access(trans, false, &flags)) { iwl_write32(trans, HBUS_TARG_MEM_RADDR, addr); for (offs = 0; offs < dwords; offs++) vals[offs] = iwl_read32(trans, HBUS_TARG_MEM_RDAT); iwl_trans_release_nic_access(trans, &flags); } else { ret = -EBUSY; } return ret; } static int iwl_trans_pcie_write_mem(struct iwl_trans *trans, u32 addr, const void *buf, int dwords) { unsigned long flags; int offs, ret = 0; const u32 *vals = buf; if (iwl_trans_grab_nic_access(trans, false, &flags)) { iwl_write32(trans, HBUS_TARG_MEM_WADDR, addr); for (offs = 0; offs < dwords; offs++) iwl_write32(trans, HBUS_TARG_MEM_WDAT, vals ? vals[offs] : 0); iwl_trans_release_nic_access(trans, &flags); } else { ret = -EBUSY; } return ret; } #define IWL_FLUSH_WAIT_MS 2000 static int iwl_trans_pcie_wait_txq_empty(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq; struct iwl_queue *q; int cnt; unsigned long now = jiffies; u32 scd_sram_addr; u8 buf[16]; int ret = 0; /* waiting for all the tx frames complete might take a while */ for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) { if (cnt == trans_pcie->cmd_queue) continue; txq = &trans_pcie->txq[cnt]; q = &txq->q; while (q->read_ptr != q->write_ptr && !time_after(jiffies, now + msecs_to_jiffies(IWL_FLUSH_WAIT_MS))) msleep(1); if (q->read_ptr != q->write_ptr) { IWL_ERR(trans, "fail to flush all tx fifo queues Q %d\n", cnt); ret = -ETIMEDOUT; break; } } if (!ret) return 0; IWL_ERR(trans, "Current SW read_ptr %d write_ptr %d\n", txq->q.read_ptr, txq->q.write_ptr); scd_sram_addr = trans_pcie->scd_base_addr + SCD_TX_STTS_QUEUE_OFFSET(txq->q.id); iwl_trans_read_mem_bytes(trans, scd_sram_addr, buf, sizeof(buf)); iwl_print_hex_error(trans, buf, sizeof(buf)); for (cnt = 0; cnt < FH_TCSR_CHNL_NUM; cnt++) IWL_ERR(trans, "FH TRBs(%d) = 0x%08x\n", cnt, iwl_read_direct32(trans, FH_TX_TRB_REG(cnt))); for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) { u32 status = iwl_read_prph(trans, SCD_QUEUE_STATUS_BITS(cnt)); u8 fifo = (status >> SCD_QUEUE_STTS_REG_POS_TXF) & 0x7; bool active = !!(status & BIT(SCD_QUEUE_STTS_REG_POS_ACTIVE)); u32 tbl_dw = iwl_trans_read_mem32(trans, trans_pcie->scd_base_addr + SCD_TRANS_TBL_OFFSET_QUEUE(cnt)); if (cnt & 0x1) tbl_dw = (tbl_dw & 0xFFFF0000) >> 16; else tbl_dw = tbl_dw & 0x0000FFFF; IWL_ERR(trans, "Q %d is %sactive and mapped to fifo %d ra_tid 0x%04x [%d,%d]\n", cnt, active ? "" : "in", fifo, tbl_dw, iwl_read_prph(trans, SCD_QUEUE_RDPTR(cnt)) & (txq->q.n_bd - 1), iwl_read_prph(trans, SCD_QUEUE_WRPTR(cnt))); } return ret; } static void iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); unsigned long flags; spin_lock_irqsave(&trans_pcie->reg_lock, flags); __iwl_trans_pcie_set_bits_mask(trans, reg, mask, value); spin_unlock_irqrestore(&trans_pcie->reg_lock, flags); } static const char *get_fh_string(int cmd) { #define IWL_CMD(x) case x: return #x switch (cmd) { IWL_CMD(FH_RSCSR_CHNL0_STTS_WPTR_REG); IWL_CMD(FH_RSCSR_CHNL0_RBDCB_BASE_REG); IWL_CMD(FH_RSCSR_CHNL0_WPTR); IWL_CMD(FH_MEM_RCSR_CHNL0_CONFIG_REG); IWL_CMD(FH_MEM_RSSR_SHARED_CTRL_REG); IWL_CMD(FH_MEM_RSSR_RX_STATUS_REG); IWL_CMD(FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV); IWL_CMD(FH_TSSR_TX_STATUS_REG); IWL_CMD(FH_TSSR_TX_ERROR_REG); default: return "UNKNOWN"; } #undef IWL_CMD } int iwl_pcie_dump_fh(struct iwl_trans *trans, char **buf) { int i; static const u32 fh_tbl[] = { FH_RSCSR_CHNL0_STTS_WPTR_REG, FH_RSCSR_CHNL0_RBDCB_BASE_REG, FH_RSCSR_CHNL0_WPTR, FH_MEM_RCSR_CHNL0_CONFIG_REG, FH_MEM_RSSR_SHARED_CTRL_REG, FH_MEM_RSSR_RX_STATUS_REG, FH_MEM_RSSR_RX_ENABLE_ERR_IRQ2DRV, FH_TSSR_TX_STATUS_REG, FH_TSSR_TX_ERROR_REG }; #ifdef CONFIG_IWLWIFI_DEBUGFS if (buf) { int pos = 0; size_t bufsz = ARRAY_SIZE(fh_tbl) * 48 + 40; *buf = kmalloc(bufsz, GFP_KERNEL); if (!*buf) return -ENOMEM; pos += scnprintf(*buf + pos, bufsz - pos, "FH register values:\n"); for (i = 0; i < ARRAY_SIZE(fh_tbl); i++) pos += scnprintf(*buf + pos, bufsz - pos, " %34s: 0X%08x\n", get_fh_string(fh_tbl[i]), iwl_read_direct32(trans, fh_tbl[i])); return pos; } #endif IWL_ERR(trans, "FH register values:\n"); for (i = 0; i < ARRAY_SIZE(fh_tbl); i++) IWL_ERR(trans, " %34s: 0X%08x\n", get_fh_string(fh_tbl[i]), iwl_read_direct32(trans, fh_tbl[i])); return 0; } static const char *get_csr_string(int cmd) { #define IWL_CMD(x) case x: return #x switch (cmd) { IWL_CMD(CSR_HW_IF_CONFIG_REG); IWL_CMD(CSR_INT_COALESCING); IWL_CMD(CSR_INT); IWL_CMD(CSR_INT_MASK); IWL_CMD(CSR_FH_INT_STATUS); IWL_CMD(CSR_GPIO_IN); IWL_CMD(CSR_RESET); IWL_CMD(CSR_GP_CNTRL); IWL_CMD(CSR_HW_REV); IWL_CMD(CSR_EEPROM_REG); IWL_CMD(CSR_EEPROM_GP); IWL_CMD(CSR_OTP_GP_REG); IWL_CMD(CSR_GIO_REG); IWL_CMD(CSR_GP_UCODE_REG); IWL_CMD(CSR_GP_DRIVER_REG); IWL_CMD(CSR_UCODE_DRV_GP1); IWL_CMD(CSR_UCODE_DRV_GP2); IWL_CMD(CSR_LED_REG); IWL_CMD(CSR_DRAM_INT_TBL_REG); IWL_CMD(CSR_GIO_CHICKEN_BITS); IWL_CMD(CSR_ANA_PLL_CFG); IWL_CMD(CSR_HW_REV_WA_REG); IWL_CMD(CSR_DBG_HPET_MEM_REG); default: return "UNKNOWN"; } #undef IWL_CMD } void iwl_pcie_dump_csr(struct iwl_trans *trans) { int i; static const u32 csr_tbl[] = { CSR_HW_IF_CONFIG_REG, CSR_INT_COALESCING, CSR_INT, CSR_INT_MASK, CSR_FH_INT_STATUS, CSR_GPIO_IN, CSR_RESET, CSR_GP_CNTRL, CSR_HW_REV, CSR_EEPROM_REG, CSR_EEPROM_GP, CSR_OTP_GP_REG, CSR_GIO_REG, CSR_GP_UCODE_REG, CSR_GP_DRIVER_REG, CSR_UCODE_DRV_GP1, CSR_UCODE_DRV_GP2, CSR_LED_REG, CSR_DRAM_INT_TBL_REG, CSR_GIO_CHICKEN_BITS, CSR_ANA_PLL_CFG, CSR_HW_REV_WA_REG, CSR_DBG_HPET_MEM_REG }; IWL_ERR(trans, "CSR values:\n"); IWL_ERR(trans, "(2nd byte of CSR_INT_COALESCING is " "CSR_INT_PERIODIC_REG)\n"); for (i = 0; i < ARRAY_SIZE(csr_tbl); i++) { IWL_ERR(trans, " %25s: 0X%08x\n", get_csr_string(csr_tbl[i]), iwl_read32(trans, csr_tbl[i])); } } #ifdef CONFIG_IWLWIFI_DEBUGFS /* create and remove of files */ #define DEBUGFS_ADD_FILE(name, parent, mode) do { \ if (!debugfs_create_file(#name, mode, parent, trans, \ &iwl_dbgfs_##name##_ops)) \ goto err; \ } while (0) /* file operation */ #define DEBUGFS_READ_FUNC(name) \ static ssize_t iwl_dbgfs_##name##_read(struct file *file, \ char __user *user_buf, \ size_t count, loff_t *ppos); #define DEBUGFS_WRITE_FUNC(name) \ static ssize_t iwl_dbgfs_##name##_write(struct file *file, \ const char __user *user_buf, \ size_t count, loff_t *ppos); #define DEBUGFS_READ_FILE_OPS(name) \ DEBUGFS_READ_FUNC(name); \ static const struct file_operations iwl_dbgfs_##name##_ops = { \ .read = iwl_dbgfs_##name##_read, \ .open = simple_open, \ .llseek = generic_file_llseek, \ }; #define DEBUGFS_WRITE_FILE_OPS(name) \ DEBUGFS_WRITE_FUNC(name); \ static const struct file_operations iwl_dbgfs_##name##_ops = { \ .write = iwl_dbgfs_##name##_write, \ .open = simple_open, \ .llseek = generic_file_llseek, \ }; #define DEBUGFS_READ_WRITE_FILE_OPS(name) \ DEBUGFS_READ_FUNC(name); \ DEBUGFS_WRITE_FUNC(name); \ static const struct file_operations iwl_dbgfs_##name##_ops = { \ .write = iwl_dbgfs_##name##_write, \ .read = iwl_dbgfs_##name##_read, \ .open = simple_open, \ .llseek = generic_file_llseek, \ }; static ssize_t iwl_dbgfs_tx_queue_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_txq *txq; struct iwl_queue *q; char *buf; int pos = 0; int cnt; int ret; size_t bufsz; bufsz = sizeof(char) * 64 * trans->cfg->base_params->num_of_queues; if (!trans_pcie->txq) return -EAGAIN; buf = kzalloc(bufsz, GFP_KERNEL); if (!buf) return -ENOMEM; for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) { txq = &trans_pcie->txq[cnt]; q = &txq->q; pos += scnprintf(buf + pos, bufsz - pos, "hwq %.2d: read=%u write=%u use=%d stop=%d\n", cnt, q->read_ptr, q->write_ptr, !!test_bit(cnt, trans_pcie->queue_used), !!test_bit(cnt, trans_pcie->queue_stopped)); } ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos); kfree(buf); return ret; } static ssize_t iwl_dbgfs_rx_queue_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct iwl_rxq *rxq = &trans_pcie->rxq; char buf[256]; int pos = 0; const size_t bufsz = sizeof(buf); pos += scnprintf(buf + pos, bufsz - pos, "read: %u\n", rxq->read); pos += scnprintf(buf + pos, bufsz - pos, "write: %u\n", rxq->write); pos += scnprintf(buf + pos, bufsz - pos, "free_count: %u\n", rxq->free_count); if (rxq->rb_stts) { pos += scnprintf(buf + pos, bufsz - pos, "closed_rb_num: %u\n", le16_to_cpu(rxq->rb_stts->closed_rb_num) & 0x0FFF); } else { pos += scnprintf(buf + pos, bufsz - pos, "closed_rb_num: Not Allocated\n"); } return simple_read_from_buffer(user_buf, count, ppos, buf, pos); } static ssize_t iwl_dbgfs_interrupt_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct isr_statistics *isr_stats = &trans_pcie->isr_stats; int pos = 0; char *buf; int bufsz = 24 * 64; /* 24 items * 64 char per item */ ssize_t ret; buf = kzalloc(bufsz, GFP_KERNEL); if (!buf) return -ENOMEM; pos += scnprintf(buf + pos, bufsz - pos, "Interrupt Statistics Report:\n"); pos += scnprintf(buf + pos, bufsz - pos, "HW Error:\t\t\t %u\n", isr_stats->hw); pos += scnprintf(buf + pos, bufsz - pos, "SW Error:\t\t\t %u\n", isr_stats->sw); if (isr_stats->sw || isr_stats->hw) { pos += scnprintf(buf + pos, bufsz - pos, "\tLast Restarting Code: 0x%X\n", isr_stats->err_code); } #ifdef CONFIG_IWLWIFI_DEBUG pos += scnprintf(buf + pos, bufsz - pos, "Frame transmitted:\t\t %u\n", isr_stats->sch); pos += scnprintf(buf + pos, bufsz - pos, "Alive interrupt:\t\t %u\n", isr_stats->alive); #endif pos += scnprintf(buf + pos, bufsz - pos, "HW RF KILL switch toggled:\t %u\n", isr_stats->rfkill); pos += scnprintf(buf + pos, bufsz - pos, "CT KILL:\t\t\t %u\n", isr_stats->ctkill); pos += scnprintf(buf + pos, bufsz - pos, "Wakeup Interrupt:\t\t %u\n", isr_stats->wakeup); pos += scnprintf(buf + pos, bufsz - pos, "Rx command responses:\t\t %u\n", isr_stats->rx); pos += scnprintf(buf + pos, bufsz - pos, "Tx/FH interrupt:\t\t %u\n", isr_stats->tx); pos += scnprintf(buf + pos, bufsz - pos, "Unexpected INTA:\t\t %u\n", isr_stats->unhandled); ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos); kfree(buf); return ret; } static ssize_t iwl_dbgfs_interrupt_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); struct isr_statistics *isr_stats = &trans_pcie->isr_stats; char buf[8]; int buf_size; u32 reset_flag; memset(buf, 0, sizeof(buf)); buf_size = min(count, sizeof(buf) - 1); if (copy_from_user(buf, user_buf, buf_size)) return -EFAULT; if (sscanf(buf, "%x", &reset_flag) != 1) return -EFAULT; if (reset_flag == 0) memset(isr_stats, 0, sizeof(*isr_stats)); return count; } static ssize_t iwl_dbgfs_csr_write(struct file *file, const char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; char buf[8]; int buf_size; int csr; memset(buf, 0, sizeof(buf)); buf_size = min(count, sizeof(buf) - 1); if (copy_from_user(buf, user_buf, buf_size)) return -EFAULT; if (sscanf(buf, "%d", &csr) != 1) return -EFAULT; iwl_pcie_dump_csr(trans); return count; } static ssize_t iwl_dbgfs_fh_reg_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct iwl_trans *trans = file->private_data; char *buf = NULL; int pos = 0; ssize_t ret = -EFAULT; ret = pos = iwl_pcie_dump_fh(trans, &buf); if (buf) { ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos); kfree(buf); } return ret; } DEBUGFS_READ_WRITE_FILE_OPS(interrupt); DEBUGFS_READ_FILE_OPS(fh_reg); DEBUGFS_READ_FILE_OPS(rx_queue); DEBUGFS_READ_FILE_OPS(tx_queue); DEBUGFS_WRITE_FILE_OPS(csr); /* * Create the debugfs files and directories * */ static int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans, struct dentry *dir) { DEBUGFS_ADD_FILE(rx_queue, dir, S_IRUSR); DEBUGFS_ADD_FILE(tx_queue, dir, S_IRUSR); DEBUGFS_ADD_FILE(interrupt, dir, S_IWUSR | S_IRUSR); DEBUGFS_ADD_FILE(csr, dir, S_IWUSR); DEBUGFS_ADD_FILE(fh_reg, dir, S_IRUSR); return 0; err: IWL_ERR(trans, "failed to create the trans debugfs entry\n"); return -ENOMEM; } #else static int iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans, struct dentry *dir) { return 0; } #endif /*CONFIG_IWLWIFI_DEBUGFS */ static const struct iwl_trans_ops trans_ops_pcie = { .start_hw = iwl_trans_pcie_start_hw, .stop_hw = iwl_trans_pcie_stop_hw, .fw_alive = iwl_trans_pcie_fw_alive, .start_fw = iwl_trans_pcie_start_fw, .stop_device = iwl_trans_pcie_stop_device, .d3_suspend = iwl_trans_pcie_d3_suspend, .d3_resume = iwl_trans_pcie_d3_resume, .send_cmd = iwl_trans_pcie_send_hcmd, .tx = iwl_trans_pcie_tx, .reclaim = iwl_trans_pcie_reclaim, .txq_disable = iwl_trans_pcie_txq_disable, .txq_enable = iwl_trans_pcie_txq_enable, .dbgfs_register = iwl_trans_pcie_dbgfs_register, .wait_tx_queue_empty = iwl_trans_pcie_wait_txq_empty, #ifdef CONFIG_PM_SLEEP .suspend = iwl_trans_pcie_suspend, .resume = iwl_trans_pcie_resume, #endif .write8 = iwl_trans_pcie_write8, .write32 = iwl_trans_pcie_write32, .read32 = iwl_trans_pcie_read32, .read_prph = iwl_trans_pcie_read_prph, .write_prph = iwl_trans_pcie_write_prph, .read_mem = iwl_trans_pcie_read_mem, .write_mem = iwl_trans_pcie_write_mem, .configure = iwl_trans_pcie_configure, .set_pmi = iwl_trans_pcie_set_pmi, .grab_nic_access = iwl_trans_pcie_grab_nic_access, .release_nic_access = iwl_trans_pcie_release_nic_access, .set_bits_mask = iwl_trans_pcie_set_bits_mask, }; struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev, const struct pci_device_id *ent, const struct iwl_cfg *cfg) { struct iwl_trans_pcie *trans_pcie; struct iwl_trans *trans; u16 pci_cmd; int err; trans = kzalloc(sizeof(struct iwl_trans) + sizeof(struct iwl_trans_pcie), GFP_KERNEL); if (!trans) return NULL; trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); trans->ops = &trans_ops_pcie; trans->cfg = cfg; trans_lockdep_init(trans); trans_pcie->trans = trans; spin_lock_init(&trans_pcie->irq_lock); spin_lock_init(&trans_pcie->reg_lock); init_waitqueue_head(&trans_pcie->ucode_write_waitq); /* W/A - seems to solve weird behavior. We need to remove this if we * don't want to stay in L1 all the time. This wastes a lot of power */ pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); if (pci_enable_device(pdev)) { err = -ENODEV; goto out_no_pci; } pci_set_master(pdev); err = pci_set_dma_mask(pdev, DMA_BIT_MASK(36)); if (!err) err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(36)); if (err) { err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (!err) err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); /* both attempts failed: */ if (err) { dev_err(&pdev->dev, "No suitable DMA available\n"); goto out_pci_disable_device; } } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(&pdev->dev, "pci_request_regions failed\n"); goto out_pci_disable_device; } trans_pcie->hw_base = pci_ioremap_bar(pdev, 0); if (!trans_pcie->hw_base) { dev_err(&pdev->dev, "pci_ioremap_bar failed\n"); err = -ENODEV; goto out_pci_release_regions; } /* We disable the RETRY_TIMEOUT register (0x41) to keep * PCI Tx retries from interfering with C3 CPU state */ pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00); err = pci_enable_msi(pdev); if (err) { dev_err(&pdev->dev, "pci_enable_msi failed(0X%x)\n", err); /* enable rfkill interrupt: hw bug w/a */ pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); if (pci_cmd & PCI_COMMAND_INTX_DISABLE) { pci_cmd &= ~PCI_COMMAND_INTX_DISABLE; pci_write_config_word(pdev, PCI_COMMAND, pci_cmd); } } trans->dev = &pdev->dev; trans_pcie->pci_dev = pdev; trans->hw_rev = iwl_read32(trans, CSR_HW_REV); trans->hw_id = (pdev->device << 16) + pdev->subsystem_device; snprintf(trans->hw_id_str, sizeof(trans->hw_id_str), "PCI ID: 0x%04X:0x%04X", pdev->device, pdev->subsystem_device); /* Initialize the wait queue for commands */ init_waitqueue_head(&trans_pcie->wait_command_queue); snprintf(trans->dev_cmd_pool_name, sizeof(trans->dev_cmd_pool_name), "iwl_cmd_pool:%s", dev_name(trans->dev)); trans->dev_cmd_headroom = 0; trans->dev_cmd_pool = kmem_cache_create(trans->dev_cmd_pool_name, sizeof(struct iwl_device_cmd) + trans->dev_cmd_headroom, sizeof(void *), SLAB_HWCACHE_ALIGN, NULL); if (!trans->dev_cmd_pool) goto out_pci_disable_msi; trans_pcie->inta_mask = CSR_INI_SET_MASK; if (iwl_pcie_alloc_ict(trans)) goto out_free_cmd_pool; if (request_threaded_irq(pdev->irq, iwl_pcie_isr_ict, iwl_pcie_irq_handler, IRQF_SHARED, DRV_NAME, trans)) { IWL_ERR(trans, "Error allocating IRQ %d\n", pdev->irq); goto out_free_ict; } return trans; out_free_ict: iwl_pcie_free_ict(trans); out_free_cmd_pool: kmem_cache_destroy(trans->dev_cmd_pool); out_pci_disable_msi: pci_disable_msi(pdev); out_pci_release_regions: pci_release_regions(pdev); out_pci_disable_device: pci_disable_device(pdev); out_no_pci: kfree(trans); return NULL; }