/* * Copyright (c) 2010 Broadcom Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include "pub.h" #include "phy/phy_hal.h" #include "main.h" #include "stf.h" #include "channel.h" #include "mac80211_if.h" #include "debug.h" /* QDB() macro takes a dB value and converts to a quarter dB value */ #define QDB(n) ((n) * BRCMS_TXPWR_DB_FACTOR) #define LOCALE_MIMO_IDX_bn 0 #define LOCALE_MIMO_IDX_11n 0 /* max of BAND_5G_PWR_LVLS and 14 for 2.4 GHz */ #define BRCMS_MAXPWR_MIMO_TBL_SIZE 14 /* maxpwr mapping to 5GHz band channels: * maxpwr[0] - channels [34-48] * maxpwr[1] - channels [52-60] * maxpwr[2] - channels [62-64] * maxpwr[3] - channels [100-140] * maxpwr[4] - channels [149-165] */ #define BAND_5G_PWR_LVLS 5 /* 5 power levels for 5G */ #define LC(id) LOCALE_MIMO_IDX_ ## id #define LOCALES(mimo2, mimo5) \ {LC(mimo2), LC(mimo5)} /* macro to get 5 GHz channel group index for tx power */ #define CHANNEL_POWER_IDX_5G(c) (((c) < 52) ? 0 : \ (((c) < 62) ? 1 : \ (((c) < 100) ? 2 : \ (((c) < 149) ? 3 : 4)))) #define BRCM_2GHZ_2412_2462 REG_RULE(2412-10, 2462+10, 40, 0, 19, 0) #define BRCM_2GHZ_2467_2472 REG_RULE(2467-10, 2472+10, 20, 0, 19, \ NL80211_RRF_PASSIVE_SCAN | \ NL80211_RRF_NO_IBSS) #define BRCM_5GHZ_5180_5240 REG_RULE(5180-10, 5240+10, 40, 0, 21, \ NL80211_RRF_PASSIVE_SCAN | \ NL80211_RRF_NO_IBSS) #define BRCM_5GHZ_5260_5320 REG_RULE(5260-10, 5320+10, 40, 0, 21, \ NL80211_RRF_PASSIVE_SCAN | \ NL80211_RRF_DFS | \ NL80211_RRF_NO_IBSS) #define BRCM_5GHZ_5500_5700 REG_RULE(5500-10, 5700+10, 40, 0, 21, \ NL80211_RRF_PASSIVE_SCAN | \ NL80211_RRF_DFS | \ NL80211_RRF_NO_IBSS) #define BRCM_5GHZ_5745_5825 REG_RULE(5745-10, 5825+10, 40, 0, 21, \ NL80211_RRF_PASSIVE_SCAN | \ NL80211_RRF_NO_IBSS) static const struct ieee80211_regdomain brcms_regdom_x2 = { .n_reg_rules = 6, .alpha2 = "X2", .reg_rules = { BRCM_2GHZ_2412_2462, BRCM_2GHZ_2467_2472, BRCM_5GHZ_5180_5240, BRCM_5GHZ_5260_5320, BRCM_5GHZ_5500_5700, BRCM_5GHZ_5745_5825, } }; /* locale per-channel tx power limits for MIMO frames * maxpwr arrays are index by channel for 2.4 GHz limits, and * by sub-band for 5 GHz limits using CHANNEL_POWER_IDX_5G(channel) */ struct locale_mimo_info { /* tx 20 MHz power limits, qdBm units */ s8 maxpwr20[BRCMS_MAXPWR_MIMO_TBL_SIZE]; /* tx 40 MHz power limits, qdBm units */ s8 maxpwr40[BRCMS_MAXPWR_MIMO_TBL_SIZE]; }; /* Country names and abbreviations with locale defined from ISO 3166 */ struct country_info { const u8 locale_mimo_2G; /* 2.4G mimo info */ const u8 locale_mimo_5G; /* 5G mimo info */ }; struct brcms_regd { struct country_info country; const struct ieee80211_regdomain *regdomain; }; struct brcms_cm_info { struct brcms_pub *pub; struct brcms_c_info *wlc; const struct brcms_regd *world_regd; }; /* * MIMO Locale Definitions - 2.4 GHz */ static const struct locale_mimo_info locale_bn = { {QDB(13), QDB(13), QDB(13), QDB(13), QDB(13), QDB(13), QDB(13), QDB(13), QDB(13), QDB(13), QDB(13), QDB(13), QDB(13)}, {0, 0, QDB(13), QDB(13), QDB(13), QDB(13), QDB(13), QDB(13), QDB(13), QDB(13), QDB(13), 0, 0}, }; static const struct locale_mimo_info *g_mimo_2g_table[] = { &locale_bn }; /* * MIMO Locale Definitions - 5 GHz */ static const struct locale_mimo_info locale_11n = { { /* 12.5 dBm */ 50, 50, 50, QDB(15), QDB(15)}, {QDB(14), QDB(15), QDB(15), QDB(15), QDB(15)}, }; static const struct locale_mimo_info *g_mimo_5g_table[] = { &locale_11n }; static const struct brcms_regd cntry_locales[] = { /* Worldwide RoW 2, must always be at index 0 */ { .country = LOCALES(bn, 11n), .regdomain = &brcms_regdom_x2, }, }; static const struct locale_mimo_info *brcms_c_get_mimo_2g(u8 locale_idx) { if (locale_idx >= ARRAY_SIZE(g_mimo_2g_table)) return NULL; return g_mimo_2g_table[locale_idx]; } static const struct locale_mimo_info *brcms_c_get_mimo_5g(u8 locale_idx) { if (locale_idx >= ARRAY_SIZE(g_mimo_5g_table)) return NULL; return g_mimo_5g_table[locale_idx]; } /* * Indicates whether the country provided is valid to pass * to cfg80211 or not. * * returns true if valid; false if not. */ static bool brcms_c_country_valid(const char *ccode) { /* * only allow ascii alpha uppercase for the first 2 * chars. */ if (!((0x80 & ccode[0]) == 0 && ccode[0] >= 0x41 && ccode[0] <= 0x5A && (0x80 & ccode[1]) == 0 && ccode[1] >= 0x41 && ccode[1] <= 0x5A && ccode[2] == '\0')) return false; /* * do not match ISO 3166-1 user assigned country codes * that may be in the driver table */ if (!strcmp("AA", ccode) || /* AA */ !strcmp("ZZ", ccode) || /* ZZ */ ccode[0] == 'X' || /* XA - XZ */ (ccode[0] == 'Q' && /* QM - QZ */ (ccode[1] >= 'M' && ccode[1] <= 'Z'))) return false; if (!strcmp("NA", ccode)) return false; return true; } static const struct brcms_regd *brcms_world_regd(const char *regdom, int len) { const struct brcms_regd *regd = NULL; int i; for (i = 0; i < ARRAY_SIZE(cntry_locales); i++) { if (!strncmp(regdom, cntry_locales[i].regdomain->alpha2, len)) { regd = &cntry_locales[i]; break; } } return regd; } static const struct brcms_regd *brcms_default_world_regd(void) { return &cntry_locales[0]; } /* JP, J1 - J10 are Japan ccodes */ static bool brcms_c_japan_ccode(const char *ccode) { return (ccode[0] == 'J' && (ccode[1] == 'P' || (ccode[1] >= '1' && ccode[1] <= '9'))); } static void brcms_c_channel_min_txpower_limits_with_local_constraint( struct brcms_cm_info *wlc_cm, struct txpwr_limits *txpwr, u8 local_constraint_qdbm) { int j; /* CCK Rates */ for (j = 0; j < WL_TX_POWER_CCK_NUM; j++) txpwr->cck[j] = min(txpwr->cck[j], local_constraint_qdbm); /* 20 MHz Legacy OFDM SISO */ for (j = 0; j < WL_TX_POWER_OFDM_NUM; j++) txpwr->ofdm[j] = min(txpwr->ofdm[j], local_constraint_qdbm); /* 20 MHz Legacy OFDM CDD */ for (j = 0; j < BRCMS_NUM_RATES_OFDM; j++) txpwr->ofdm_cdd[j] = min(txpwr->ofdm_cdd[j], local_constraint_qdbm); /* 40 MHz Legacy OFDM SISO */ for (j = 0; j < BRCMS_NUM_RATES_OFDM; j++) txpwr->ofdm_40_siso[j] = min(txpwr->ofdm_40_siso[j], local_constraint_qdbm); /* 40 MHz Legacy OFDM CDD */ for (j = 0; j < BRCMS_NUM_RATES_OFDM; j++) txpwr->ofdm_40_cdd[j] = min(txpwr->ofdm_40_cdd[j], local_constraint_qdbm); /* 20MHz MCS 0-7 SISO */ for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++) txpwr->mcs_20_siso[j] = min(txpwr->mcs_20_siso[j], local_constraint_qdbm); /* 20MHz MCS 0-7 CDD */ for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++) txpwr->mcs_20_cdd[j] = min(txpwr->mcs_20_cdd[j], local_constraint_qdbm); /* 20MHz MCS 0-7 STBC */ for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++) txpwr->mcs_20_stbc[j] = min(txpwr->mcs_20_stbc[j], local_constraint_qdbm); /* 20MHz MCS 8-15 MIMO */ for (j = 0; j < BRCMS_NUM_RATES_MCS_2_STREAM; j++) txpwr->mcs_20_mimo[j] = min(txpwr->mcs_20_mimo[j], local_constraint_qdbm); /* 40MHz MCS 0-7 SISO */ for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++) txpwr->mcs_40_siso[j] = min(txpwr->mcs_40_siso[j], local_constraint_qdbm); /* 40MHz MCS 0-7 CDD */ for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++) txpwr->mcs_40_cdd[j] = min(txpwr->mcs_40_cdd[j], local_constraint_qdbm); /* 40MHz MCS 0-7 STBC */ for (j = 0; j < BRCMS_NUM_RATES_MCS_1_STREAM; j++) txpwr->mcs_40_stbc[j] = min(txpwr->mcs_40_stbc[j], local_constraint_qdbm); /* 40MHz MCS 8-15 MIMO */ for (j = 0; j < BRCMS_NUM_RATES_MCS_2_STREAM; j++) txpwr->mcs_40_mimo[j] = min(txpwr->mcs_40_mimo[j], local_constraint_qdbm); /* 40MHz MCS 32 */ txpwr->mcs32 = min(txpwr->mcs32, local_constraint_qdbm); } /* * set the driver's current country and regulatory information * using a country code as the source. Look up built in country * information found with the country code. */ static void brcms_c_set_country(struct brcms_cm_info *wlc_cm, const struct brcms_regd *regd) { struct brcms_c_info *wlc = wlc_cm->wlc; if ((wlc->pub->_n_enab & SUPPORT_11N) != wlc->protection->nmode_user) brcms_c_set_nmode(wlc); brcms_c_stf_ss_update(wlc, wlc->bandstate[BAND_2G_INDEX]); brcms_c_stf_ss_update(wlc, wlc->bandstate[BAND_5G_INDEX]); brcms_c_set_gmode(wlc, wlc->protection->gmode_user, false); return; } struct brcms_cm_info *brcms_c_channel_mgr_attach(struct brcms_c_info *wlc) { struct brcms_cm_info *wlc_cm; struct brcms_pub *pub = wlc->pub; struct ssb_sprom *sprom = &wlc->hw->d11core->bus->sprom; const char *ccode = sprom->alpha2; int ccode_len = sizeof(sprom->alpha2); wlc_cm = kzalloc(sizeof(struct brcms_cm_info), GFP_ATOMIC); if (wlc_cm == NULL) return NULL; wlc_cm->pub = pub; wlc_cm->wlc = wlc; wlc->cmi = wlc_cm; /* store the country code for passing up as a regulatory hint */ wlc_cm->world_regd = brcms_world_regd(ccode, ccode_len); if (brcms_c_country_valid(ccode)) strncpy(wlc->pub->srom_ccode, ccode, ccode_len); /* * If no custom world domain is found in the SROM, use the * default "X2" domain. */ if (!wlc_cm->world_regd) { wlc_cm->world_regd = brcms_default_world_regd(); ccode = wlc_cm->world_regd->regdomain->alpha2; ccode_len = BRCM_CNTRY_BUF_SZ - 1; } /* save default country for exiting 11d regulatory mode */ strncpy(wlc->country_default, ccode, ccode_len); /* initialize autocountry_default to driver default */ strncpy(wlc->autocountry_default, ccode, ccode_len); brcms_c_set_country(wlc_cm, wlc_cm->world_regd); return wlc_cm; } void brcms_c_channel_mgr_detach(struct brcms_cm_info *wlc_cm) { kfree(wlc_cm); } void brcms_c_channel_set_chanspec(struct brcms_cm_info *wlc_cm, u16 chanspec, u8 local_constraint_qdbm) { struct brcms_c_info *wlc = wlc_cm->wlc; struct ieee80211_channel *ch = wlc->pub->ieee_hw->conf.channel; struct txpwr_limits txpwr; brcms_c_channel_reg_limits(wlc_cm, chanspec, &txpwr); brcms_c_channel_min_txpower_limits_with_local_constraint( wlc_cm, &txpwr, local_constraint_qdbm ); /* set or restore gmode as required by regulatory */ if (ch->flags & IEEE80211_CHAN_NO_OFDM) brcms_c_set_gmode(wlc, GMODE_LEGACY_B, false); else brcms_c_set_gmode(wlc, wlc->protection->gmode_user, false); brcms_b_set_chanspec(wlc->hw, chanspec, !!(ch->flags & IEEE80211_CHAN_PASSIVE_SCAN), &txpwr); } void brcms_c_channel_reg_limits(struct brcms_cm_info *wlc_cm, u16 chanspec, struct txpwr_limits *txpwr) { struct brcms_c_info *wlc = wlc_cm->wlc; struct ieee80211_channel *ch = wlc->pub->ieee_hw->conf.channel; uint i; uint chan; int maxpwr; int delta; const struct country_info *country; struct brcms_band *band; int conducted_max = BRCMS_TXPWR_MAX; const struct locale_mimo_info *li_mimo; int maxpwr20, maxpwr40; int maxpwr_idx; uint j; memset(txpwr, 0, sizeof(struct txpwr_limits)); if (WARN_ON(!ch)) return; country = &wlc_cm->world_regd->country; chan = CHSPEC_CHANNEL(chanspec); band = wlc->bandstate[chspec_bandunit(chanspec)]; li_mimo = (band->bandtype == BRCM_BAND_5G) ? brcms_c_get_mimo_5g(country->locale_mimo_5G) : brcms_c_get_mimo_2g(country->locale_mimo_2G); delta = band->antgain; if (band->bandtype == BRCM_BAND_2G) conducted_max = QDB(22); maxpwr = QDB(ch->max_power) - delta; maxpwr = max(maxpwr, 0); maxpwr = min(maxpwr, conducted_max); /* CCK txpwr limits for 2.4G band */ if (band->bandtype == BRCM_BAND_2G) { for (i = 0; i < BRCMS_NUM_RATES_CCK; i++) txpwr->cck[i] = (u8) maxpwr; } for (i = 0; i < BRCMS_NUM_RATES_OFDM; i++) { txpwr->ofdm[i] = (u8) maxpwr; /* * OFDM 40 MHz SISO has the same power as the corresponding * MCS0-7 rate unless overriden by the locale specific code. * We set this value to 0 as a flag (presumably 0 dBm isn't * a possibility) and then copy the MCS0-7 value to the 40 MHz * value if it wasn't explicitly set. */ txpwr->ofdm_40_siso[i] = 0; txpwr->ofdm_cdd[i] = (u8) maxpwr; txpwr->ofdm_40_cdd[i] = 0; } delta = 0; if (band->antgain > QDB(6)) delta = band->antgain - QDB(6); /* Excess over 6 dB */ if (band->bandtype == BRCM_BAND_2G) maxpwr_idx = (chan - 1); else maxpwr_idx = CHANNEL_POWER_IDX_5G(chan); maxpwr20 = li_mimo->maxpwr20[maxpwr_idx]; maxpwr40 = li_mimo->maxpwr40[maxpwr_idx]; maxpwr20 = maxpwr20 - delta; maxpwr20 = max(maxpwr20, 0); maxpwr40 = maxpwr40 - delta; maxpwr40 = max(maxpwr40, 0); /* Fill in the MCS 0-7 (SISO) rates */ for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) { /* * 20 MHz has the same power as the corresponding OFDM rate * unless overriden by the locale specific code. */ txpwr->mcs_20_siso[i] = txpwr->ofdm[i]; txpwr->mcs_40_siso[i] = 0; } /* Fill in the MCS 0-7 CDD rates */ for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) { txpwr->mcs_20_cdd[i] = (u8) maxpwr20; txpwr->mcs_40_cdd[i] = (u8) maxpwr40; } /* * These locales have SISO expressed in the * table and override CDD later */ if (li_mimo == &locale_bn) { if (li_mimo == &locale_bn) { maxpwr20 = QDB(16); maxpwr40 = 0; if (chan >= 3 && chan <= 11) maxpwr40 = QDB(16); } for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) { txpwr->mcs_20_siso[i] = (u8) maxpwr20; txpwr->mcs_40_siso[i] = (u8) maxpwr40; } } /* Fill in the MCS 0-7 STBC rates */ for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) { txpwr->mcs_20_stbc[i] = 0; txpwr->mcs_40_stbc[i] = 0; } /* Fill in the MCS 8-15 SDM rates */ for (i = 0; i < BRCMS_NUM_RATES_MCS_2_STREAM; i++) { txpwr->mcs_20_mimo[i] = (u8) maxpwr20; txpwr->mcs_40_mimo[i] = (u8) maxpwr40; } /* Fill in MCS32 */ txpwr->mcs32 = (u8) maxpwr40; for (i = 0, j = 0; i < BRCMS_NUM_RATES_OFDM; i++, j++) { if (txpwr->ofdm_40_cdd[i] == 0) txpwr->ofdm_40_cdd[i] = txpwr->mcs_40_cdd[j]; if (i == 0) { i = i + 1; if (txpwr->ofdm_40_cdd[i] == 0) txpwr->ofdm_40_cdd[i] = txpwr->mcs_40_cdd[j]; } } /* * Copy the 40 MHZ MCS 0-7 CDD value to the 40 MHZ MCS 0-7 SISO * value if it wasn't provided explicitly. */ for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) { if (txpwr->mcs_40_siso[i] == 0) txpwr->mcs_40_siso[i] = txpwr->mcs_40_cdd[i]; } for (i = 0, j = 0; i < BRCMS_NUM_RATES_OFDM; i++, j++) { if (txpwr->ofdm_40_siso[i] == 0) txpwr->ofdm_40_siso[i] = txpwr->mcs_40_siso[j]; if (i == 0) { i = i + 1; if (txpwr->ofdm_40_siso[i] == 0) txpwr->ofdm_40_siso[i] = txpwr->mcs_40_siso[j]; } } /* * Copy the 20 and 40 MHz MCS0-7 CDD values to the corresponding * STBC values if they weren't provided explicitly. */ for (i = 0; i < BRCMS_NUM_RATES_MCS_1_STREAM; i++) { if (txpwr->mcs_20_stbc[i] == 0) txpwr->mcs_20_stbc[i] = txpwr->mcs_20_cdd[i]; if (txpwr->mcs_40_stbc[i] == 0) txpwr->mcs_40_stbc[i] = txpwr->mcs_40_cdd[i]; } return; } /* * Verify the chanspec is using a legal set of parameters, i.e. that the * chanspec specified a band, bw, ctl_sb and channel and that the * combination could be legal given any set of circumstances. * RETURNS: true is the chanspec is malformed, false if it looks good. */ static bool brcms_c_chspec_malformed(u16 chanspec) { /* must be 2G or 5G band */ if (!CHSPEC_IS5G(chanspec) && !CHSPEC_IS2G(chanspec)) return true; /* must be 20 or 40 bandwidth */ if (!CHSPEC_IS40(chanspec) && !CHSPEC_IS20(chanspec)) return true; /* 20MHZ b/w must have no ctl sb, 40 must have a ctl sb */ if (CHSPEC_IS20(chanspec)) { if (!CHSPEC_SB_NONE(chanspec)) return true; } else if (!CHSPEC_SB_UPPER(chanspec) && !CHSPEC_SB_LOWER(chanspec)) { return true; } return false; } /* * Validate the chanspec for this locale, for 40MHZ we need to also * check that the sidebands are valid 20MZH channels in this locale * and they are also a legal HT combination */ static bool brcms_c_valid_chanspec_ext(struct brcms_cm_info *wlc_cm, u16 chspec) { struct brcms_c_info *wlc = wlc_cm->wlc; u8 channel = CHSPEC_CHANNEL(chspec); /* check the chanspec */ if (brcms_c_chspec_malformed(chspec)) { brcms_err(wlc->hw->d11core, "wl%d: malformed chanspec 0x%x\n", wlc->pub->unit, chspec); return false; } if (CHANNEL_BANDUNIT(wlc_cm->wlc, channel) != chspec_bandunit(chspec)) return false; return true; } bool brcms_c_valid_chanspec_db(struct brcms_cm_info *wlc_cm, u16 chspec) { return brcms_c_valid_chanspec_ext(wlc_cm, chspec); } static bool brcms_is_radar_freq(u16 center_freq) { return center_freq >= 5260 && center_freq <= 5700; } static void brcms_reg_apply_radar_flags(struct wiphy *wiphy) { struct ieee80211_supported_band *sband; struct ieee80211_channel *ch; int i; sband = wiphy->bands[IEEE80211_BAND_5GHZ]; if (!sband) return; for (i = 0; i < sband->n_channels; i++) { ch = &sband->channels[i]; if (!brcms_is_radar_freq(ch->center_freq)) continue; /* * All channels in this range should be passive and have * DFS enabled. */ if (!(ch->flags & IEEE80211_CHAN_DISABLED)) ch->flags |= IEEE80211_CHAN_RADAR | IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_PASSIVE_SCAN; } } static void brcms_reg_apply_beaconing_flags(struct wiphy *wiphy, enum nl80211_reg_initiator initiator) { struct ieee80211_supported_band *sband; struct ieee80211_channel *ch; const struct ieee80211_reg_rule *rule; int band, i, ret; for (band = 0; band < IEEE80211_NUM_BANDS; band++) { sband = wiphy->bands[band]; if (!sband) continue; for (i = 0; i < sband->n_channels; i++) { ch = &sband->channels[i]; if (ch->flags & (IEEE80211_CHAN_DISABLED | IEEE80211_CHAN_RADAR)) continue; if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) { ret = freq_reg_info(wiphy, ch->center_freq, 0, &rule); if (ret) continue; if (!(rule->flags & NL80211_RRF_NO_IBSS)) ch->flags &= ~IEEE80211_CHAN_NO_IBSS; if (!(rule->flags & NL80211_RRF_PASSIVE_SCAN)) ch->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN; } else if (ch->beacon_found) { ch->flags &= ~(IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_PASSIVE_SCAN); } } } } static int brcms_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct brcms_info *wl = hw->priv; struct brcms_c_info *wlc = wl->wlc; struct ieee80211_supported_band *sband; struct ieee80211_channel *ch; int band, i; bool ch_found = false; brcms_reg_apply_radar_flags(wiphy); if (request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) brcms_reg_apply_beaconing_flags(wiphy, request->initiator); /* Disable radio if all channels disallowed by regulatory */ for (band = 0; !ch_found && band < IEEE80211_NUM_BANDS; band++) { sband = wiphy->bands[band]; if (!sband) continue; for (i = 0; !ch_found && i < sband->n_channels; i++) { ch = &sband->channels[i]; if (!(ch->flags & IEEE80211_CHAN_DISABLED)) ch_found = true; } } if (ch_found) { mboolclr(wlc->pub->radio_disabled, WL_RADIO_COUNTRY_DISABLE); } else { mboolset(wlc->pub->radio_disabled, WL_RADIO_COUNTRY_DISABLE); brcms_err(wlc->hw->d11core, "wl%d: %s: no valid channel for \"%s\"\n", wlc->pub->unit, __func__, request->alpha2); } if (wlc->pub->_nbands > 1 || wlc->band->bandtype == BRCM_BAND_2G) wlc_phy_chanspec_ch14_widefilter_set(wlc->band->pi, brcms_c_japan_ccode(request->alpha2)); return 0; } void brcms_c_regd_init(struct brcms_c_info *wlc) { struct wiphy *wiphy = wlc->wiphy; const struct brcms_regd *regd = wlc->cmi->world_regd; struct ieee80211_supported_band *sband; struct ieee80211_channel *ch; struct brcms_chanvec sup_chan; struct brcms_band *band; int band_idx, i; /* Disable any channels not supported by the phy */ for (band_idx = 0; band_idx < wlc->pub->_nbands; band_idx++) { band = wlc->bandstate[band_idx]; wlc_phy_chanspec_band_validch(band->pi, band->bandtype, &sup_chan); if (band_idx == BAND_2G_INDEX) sband = wiphy->bands[IEEE80211_BAND_2GHZ]; else sband = wiphy->bands[IEEE80211_BAND_5GHZ]; for (i = 0; i < sband->n_channels; i++) { ch = &sband->channels[i]; if (!isset(sup_chan.vec, ch->hw_value)) ch->flags |= IEEE80211_CHAN_DISABLED; } } wlc->wiphy->reg_notifier = brcms_reg_notifier; wlc->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY | WIPHY_FLAG_STRICT_REGULATORY; wiphy_apply_custom_regulatory(wlc->wiphy, regd->regdomain); brcms_reg_apply_beaconing_flags(wiphy, NL80211_REGDOM_SET_BY_DRIVER); }