/* * Atheros CARL9170 driver * * mac80211 interaction code * * Copyright 2008, Johannes Berg * Copyright 2009, 2010, Christian Lamparter * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, see * http://www.gnu.org/licenses/. * * This file incorporates work covered by the following copyright and * permission notice: * Copyright (c) 2007-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include "hw.h" #include "carl9170.h" #include "cmd.h" static int modparam_nohwcrypt; module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); MODULE_PARM_DESC(nohwcrypt, "Disable hardware crypto offload."); int modparam_noht; module_param_named(noht, modparam_noht, int, S_IRUGO); MODULE_PARM_DESC(noht, "Disable MPDU aggregation."); #define RATE(_bitrate, _hw_rate, _txpidx, _flags) { \ .bitrate = (_bitrate), \ .flags = (_flags), \ .hw_value = (_hw_rate) | (_txpidx) << 4, \ } struct ieee80211_rate __carl9170_ratetable[] = { RATE(10, 0, 0, 0), RATE(20, 1, 1, IEEE80211_RATE_SHORT_PREAMBLE), RATE(55, 2, 2, IEEE80211_RATE_SHORT_PREAMBLE), RATE(110, 3, 3, IEEE80211_RATE_SHORT_PREAMBLE), RATE(60, 0xb, 0, 0), RATE(90, 0xf, 0, 0), RATE(120, 0xa, 0, 0), RATE(180, 0xe, 0, 0), RATE(240, 0x9, 0, 0), RATE(360, 0xd, 1, 0), RATE(480, 0x8, 2, 0), RATE(540, 0xc, 3, 0), }; #undef RATE #define carl9170_g_ratetable (__carl9170_ratetable + 0) #define carl9170_g_ratetable_size 12 #define carl9170_a_ratetable (__carl9170_ratetable + 4) #define carl9170_a_ratetable_size 8 /* * NB: The hw_value is used as an index into the carl9170_phy_freq_params * array in phy.c so that we don't have to do frequency lookups! */ #define CHAN(_freq, _idx) { \ .center_freq = (_freq), \ .hw_value = (_idx), \ .max_power = 18, /* XXX */ \ } static struct ieee80211_channel carl9170_2ghz_chantable[] = { CHAN(2412, 0), CHAN(2417, 1), CHAN(2422, 2), CHAN(2427, 3), CHAN(2432, 4), CHAN(2437, 5), CHAN(2442, 6), CHAN(2447, 7), CHAN(2452, 8), CHAN(2457, 9), CHAN(2462, 10), CHAN(2467, 11), CHAN(2472, 12), CHAN(2484, 13), }; static struct ieee80211_channel carl9170_5ghz_chantable[] = { CHAN(4920, 14), CHAN(4940, 15), CHAN(4960, 16), CHAN(4980, 17), CHAN(5040, 18), CHAN(5060, 19), CHAN(5080, 20), CHAN(5180, 21), CHAN(5200, 22), CHAN(5220, 23), CHAN(5240, 24), CHAN(5260, 25), CHAN(5280, 26), CHAN(5300, 27), CHAN(5320, 28), CHAN(5500, 29), CHAN(5520, 30), CHAN(5540, 31), CHAN(5560, 32), CHAN(5580, 33), CHAN(5600, 34), CHAN(5620, 35), CHAN(5640, 36), CHAN(5660, 37), CHAN(5680, 38), CHAN(5700, 39), CHAN(5745, 40), CHAN(5765, 41), CHAN(5785, 42), CHAN(5805, 43), CHAN(5825, 44), CHAN(5170, 45), CHAN(5190, 46), CHAN(5210, 47), CHAN(5230, 48), }; #undef CHAN #define CARL9170_HT_CAP \ { \ .ht_supported = true, \ .cap = IEEE80211_HT_CAP_MAX_AMSDU | \ IEEE80211_HT_CAP_SUP_WIDTH_20_40 | \ IEEE80211_HT_CAP_SGI_40 | \ IEEE80211_HT_CAP_DSSSCCK40 | \ IEEE80211_HT_CAP_SM_PS, \ .ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K, \ .ampdu_density = IEEE80211_HT_MPDU_DENSITY_8, \ .mcs = { \ .rx_mask = { 0xff, 0xff, 0, 0, 0x1, 0, 0, 0, 0, 0, }, \ .rx_highest = cpu_to_le16(300), \ .tx_params = IEEE80211_HT_MCS_TX_DEFINED, \ }, \ } static struct ieee80211_supported_band carl9170_band_2GHz = { .channels = carl9170_2ghz_chantable, .n_channels = ARRAY_SIZE(carl9170_2ghz_chantable), .bitrates = carl9170_g_ratetable, .n_bitrates = carl9170_g_ratetable_size, .ht_cap = CARL9170_HT_CAP, }; static struct ieee80211_supported_band carl9170_band_5GHz = { .channels = carl9170_5ghz_chantable, .n_channels = ARRAY_SIZE(carl9170_5ghz_chantable), .bitrates = carl9170_a_ratetable, .n_bitrates = carl9170_a_ratetable_size, .ht_cap = CARL9170_HT_CAP, }; static void carl9170_ampdu_gc(struct ar9170 *ar) { struct carl9170_sta_tid *tid_info; LIST_HEAD(tid_gc); rcu_read_lock(); list_for_each_entry_rcu(tid_info, &ar->tx_ampdu_list, list) { spin_lock_bh(&ar->tx_ampdu_list_lock); if (tid_info->state == CARL9170_TID_STATE_SHUTDOWN) { tid_info->state = CARL9170_TID_STATE_KILLED; list_del_rcu(&tid_info->list); ar->tx_ampdu_list_len--; list_add_tail(&tid_info->tmp_list, &tid_gc); } spin_unlock_bh(&ar->tx_ampdu_list_lock); } rcu_assign_pointer(ar->tx_ampdu_iter, tid_info); rcu_read_unlock(); synchronize_rcu(); while (!list_empty(&tid_gc)) { struct sk_buff *skb; tid_info = list_first_entry(&tid_gc, struct carl9170_sta_tid, tmp_list); while ((skb = __skb_dequeue(&tid_info->queue))) carl9170_tx_status(ar, skb, false); list_del_init(&tid_info->tmp_list); kfree(tid_info); } } static void carl9170_flush(struct ar9170 *ar, bool drop_queued) { if (drop_queued) { int i; /* * We can only drop frames which have not been uploaded * to the device yet. */ for (i = 0; i < ar->hw->queues; i++) { struct sk_buff *skb; while ((skb = skb_dequeue(&ar->tx_pending[i]))) { struct ieee80211_tx_info *info; info = IEEE80211_SKB_CB(skb); if (info->flags & IEEE80211_TX_CTL_AMPDU) atomic_dec(&ar->tx_ampdu_upload); carl9170_tx_status(ar, skb, false); } } } /* Wait for all other outstanding frames to timeout. */ if (atomic_read(&ar->tx_total_queued)) WARN_ON(wait_for_completion_timeout(&ar->tx_flush, HZ) == 0); } static void carl9170_flush_ba(struct ar9170 *ar) { struct sk_buff_head free; struct carl9170_sta_tid *tid_info; struct sk_buff *skb; __skb_queue_head_init(&free); rcu_read_lock(); spin_lock_bh(&ar->tx_ampdu_list_lock); list_for_each_entry_rcu(tid_info, &ar->tx_ampdu_list, list) { if (tid_info->state > CARL9170_TID_STATE_SUSPEND) { tid_info->state = CARL9170_TID_STATE_SUSPEND; spin_lock(&tid_info->lock); while ((skb = __skb_dequeue(&tid_info->queue))) __skb_queue_tail(&free, skb); spin_unlock(&tid_info->lock); } } spin_unlock_bh(&ar->tx_ampdu_list_lock); rcu_read_unlock(); while ((skb = __skb_dequeue(&free))) carl9170_tx_status(ar, skb, false); } static void carl9170_zap_queues(struct ar9170 *ar) { struct carl9170_vif_info *cvif; unsigned int i; carl9170_ampdu_gc(ar); carl9170_flush_ba(ar); carl9170_flush(ar, true); for (i = 0; i < ar->hw->queues; i++) { spin_lock_bh(&ar->tx_status[i].lock); while (!skb_queue_empty(&ar->tx_status[i])) { struct sk_buff *skb; skb = skb_peek(&ar->tx_status[i]); carl9170_tx_get_skb(skb); spin_unlock_bh(&ar->tx_status[i].lock); carl9170_tx_drop(ar, skb); spin_lock_bh(&ar->tx_status[i].lock); carl9170_tx_put_skb(skb); } spin_unlock_bh(&ar->tx_status[i].lock); } BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_SOFT < 1); BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_HARD < CARL9170_NUM_TX_LIMIT_SOFT); BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_HARD >= CARL9170_BAW_BITS); /* reinitialize queues statistics */ memset(&ar->tx_stats, 0, sizeof(ar->tx_stats)); for (i = 0; i < ar->hw->queues; i++) ar->tx_stats[i].limit = CARL9170_NUM_TX_LIMIT_HARD; for (i = 0; i < DIV_ROUND_UP(ar->fw.mem_blocks, BITS_PER_LONG); i++) ar->mem_bitmap[i] = 0; rcu_read_lock(); list_for_each_entry_rcu(cvif, &ar->vif_list, list) { spin_lock_bh(&ar->beacon_lock); dev_kfree_skb_any(cvif->beacon); cvif->beacon = NULL; spin_unlock_bh(&ar->beacon_lock); } rcu_read_unlock(); atomic_set(&ar->tx_ampdu_upload, 0); atomic_set(&ar->tx_ampdu_scheduler, 0); atomic_set(&ar->tx_total_pending, 0); atomic_set(&ar->tx_total_queued, 0); atomic_set(&ar->mem_free_blocks, ar->fw.mem_blocks); } #define CARL9170_FILL_QUEUE(queue, ai_fs, cwmin, cwmax, _txop) \ do { \ queue.aifs = ai_fs; \ queue.cw_min = cwmin; \ queue.cw_max = cwmax; \ queue.txop = _txop; \ } while (0) static int carl9170_op_start(struct ieee80211_hw *hw) { struct ar9170 *ar = hw->priv; int err, i; mutex_lock(&ar->mutex); carl9170_zap_queues(ar); /* reset QoS defaults */ CARL9170_FILL_QUEUE(ar->edcf[0], 3, 15, 1023, 0); /* BEST EFFORT */ CARL9170_FILL_QUEUE(ar->edcf[1], 2, 7, 15, 94); /* VIDEO */ CARL9170_FILL_QUEUE(ar->edcf[2], 2, 3, 7, 47); /* VOICE */ CARL9170_FILL_QUEUE(ar->edcf[3], 7, 15, 1023, 0); /* BACKGROUND */ CARL9170_FILL_QUEUE(ar->edcf[4], 2, 3, 7, 0); /* SPECIAL */ ar->current_factor = ar->current_density = -1; /* "The first key is unique." */ ar->usedkeys = 1; ar->filter_state = 0; ar->ps.last_action = jiffies; ar->ps.last_slept = jiffies; ar->erp_mode = CARL9170_ERP_AUTO; ar->rx_software_decryption = false; ar->disable_offload = false; for (i = 0; i < ar->hw->queues; i++) { ar->queue_stop_timeout[i] = jiffies; ar->max_queue_stop_timeout[i] = 0; } atomic_set(&ar->mem_allocs, 0); err = carl9170_usb_open(ar); if (err) goto out; err = carl9170_init_mac(ar); if (err) goto out; err = carl9170_set_qos(ar); if (err) goto out; if (ar->fw.rx_filter) { err = carl9170_rx_filter(ar, CARL9170_RX_FILTER_OTHER_RA | CARL9170_RX_FILTER_CTL_OTHER | CARL9170_RX_FILTER_BAD); if (err) goto out; } err = carl9170_write_reg(ar, AR9170_MAC_REG_DMA_TRIGGER, AR9170_DMA_TRIGGER_RXQ); if (err) goto out; /* Clear key-cache */ for (i = 0; i < AR9170_CAM_MAX_USER + 4; i++) { err = carl9170_upload_key(ar, i, NULL, AR9170_ENC_ALG_NONE, 0, NULL, 0); if (err) goto out; err = carl9170_upload_key(ar, i, NULL, AR9170_ENC_ALG_NONE, 1, NULL, 0); if (err) goto out; if (i < AR9170_CAM_MAX_USER) { err = carl9170_disable_key(ar, i); if (err) goto out; } } carl9170_set_state_when(ar, CARL9170_IDLE, CARL9170_STARTED); ieee80211_wake_queues(ar->hw); err = 0; out: mutex_unlock(&ar->mutex); return err; } static void carl9170_cancel_worker(struct ar9170 *ar) { cancel_delayed_work_sync(&ar->tx_janitor); #ifdef CONFIG_CARL9170_LEDS cancel_delayed_work_sync(&ar->led_work); #endif /* CONFIG_CARL9170_LEDS */ cancel_work_sync(&ar->ps_work); cancel_work_sync(&ar->ampdu_work); } static void carl9170_op_stop(struct ieee80211_hw *hw) { struct ar9170 *ar = hw->priv; carl9170_set_state_when(ar, CARL9170_STARTED, CARL9170_IDLE); ieee80211_stop_queues(ar->hw); mutex_lock(&ar->mutex); if (IS_ACCEPTING_CMD(ar)) { rcu_assign_pointer(ar->beacon_iter, NULL); carl9170_led_set_state(ar, 0); /* stop DMA */ carl9170_write_reg(ar, AR9170_MAC_REG_DMA_TRIGGER, 0); carl9170_usb_stop(ar); } carl9170_zap_queues(ar); mutex_unlock(&ar->mutex); carl9170_cancel_worker(ar); } static void carl9170_restart_work(struct work_struct *work) { struct ar9170 *ar = container_of(work, struct ar9170, restart_work); int err; ar->usedkeys = 0; ar->filter_state = 0; carl9170_cancel_worker(ar); mutex_lock(&ar->mutex); err = carl9170_usb_restart(ar); if (net_ratelimit()) { if (err) { dev_err(&ar->udev->dev, "Failed to restart device " " (%d).\n", err); } else { dev_info(&ar->udev->dev, "device restarted " "successfully.\n"); } } carl9170_zap_queues(ar); mutex_unlock(&ar->mutex); if (!err) { ar->restart_counter++; atomic_set(&ar->pending_restarts, 0); ieee80211_restart_hw(ar->hw); } else { /* * The reset was unsuccessful and the device seems to * be dead. But there's still one option: a low-level * usb subsystem reset... */ carl9170_usb_reset(ar); } } void carl9170_restart(struct ar9170 *ar, const enum carl9170_restart_reasons r) { carl9170_set_state_when(ar, CARL9170_STARTED, CARL9170_IDLE); /* * Sometimes, an error can trigger several different reset events. * By ignoring these *surplus* reset events, the device won't be * killed again, right after it has recovered. */ if (atomic_inc_return(&ar->pending_restarts) > 1) { dev_dbg(&ar->udev->dev, "ignoring restart (%d)\n", r); return; } ieee80211_stop_queues(ar->hw); dev_err(&ar->udev->dev, "restart device (%d)\n", r); if (!WARN_ON(r == CARL9170_RR_NO_REASON) || !WARN_ON(r >= __CARL9170_RR_LAST)) ar->last_reason = r; if (!ar->registered) return; if (IS_ACCEPTING_CMD(ar) && !ar->needs_full_reset) ieee80211_queue_work(ar->hw, &ar->restart_work); else carl9170_usb_reset(ar); /* * At this point, the device instance might have vanished/disabled. * So, don't put any code which access the ar9170 struct * without proper protection. */ } static int carl9170_init_interface(struct ar9170 *ar, struct ieee80211_vif *vif) { struct ath_common *common = &ar->common; int err; if (!vif) { WARN_ON_ONCE(IS_STARTED(ar)); return 0; } memcpy(common->macaddr, vif->addr, ETH_ALEN); if (modparam_nohwcrypt || ((vif->type != NL80211_IFTYPE_STATION) && (vif->type != NL80211_IFTYPE_AP))) { ar->rx_software_decryption = true; ar->disable_offload = true; } err = carl9170_set_operating_mode(ar); return err; } static int carl9170_op_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct carl9170_vif_info *vif_priv = (void *) vif->drv_priv; struct ieee80211_vif *main_vif; struct ar9170 *ar = hw->priv; int vif_id = -1, err = 0; mutex_lock(&ar->mutex); rcu_read_lock(); if (vif_priv->active) { /* * Skip the interface structure initialization, * if the vif survived the _restart call. */ vif_id = vif_priv->id; vif_priv->enable_beacon = false; spin_lock_bh(&ar->beacon_lock); dev_kfree_skb_any(vif_priv->beacon); vif_priv->beacon = NULL; spin_unlock_bh(&ar->beacon_lock); goto init; } main_vif = carl9170_get_main_vif(ar); if (main_vif) { switch (main_vif->type) { case NL80211_IFTYPE_STATION: if (vif->type == NL80211_IFTYPE_STATION) break; err = -EBUSY; rcu_read_unlock(); goto unlock; case NL80211_IFTYPE_AP: if ((vif->type == NL80211_IFTYPE_STATION) || (vif->type == NL80211_IFTYPE_WDS) || (vif->type == NL80211_IFTYPE_AP)) break; err = -EBUSY; rcu_read_unlock(); goto unlock; default: rcu_read_unlock(); goto unlock; } } vif_id = bitmap_find_free_region(&ar->vif_bitmap, ar->fw.vif_num, 0); if (vif_id < 0) { rcu_read_unlock(); err = -ENOSPC; goto unlock; } BUG_ON(ar->vif_priv[vif_id].id != vif_id); vif_priv->active = true; vif_priv->id = vif_id; vif_priv->enable_beacon = false; ar->vifs++; list_add_tail_rcu(&vif_priv->list, &ar->vif_list); rcu_assign_pointer(ar->vif_priv[vif_id].vif, vif); init: if (carl9170_get_main_vif(ar) == vif) { rcu_assign_pointer(ar->beacon_iter, vif_priv); rcu_read_unlock(); err = carl9170_init_interface(ar, vif); if (err) goto unlock; } else { rcu_read_unlock(); err = carl9170_mod_virtual_mac(ar, vif_id, vif->addr); if (err) goto unlock; } unlock: if (err && (vif_id != -1)) { vif_priv->active = false; bitmap_release_region(&ar->vif_bitmap, vif_id, 0); ar->vifs--; rcu_assign_pointer(ar->vif_priv[vif_id].vif, NULL); list_del_rcu(&vif_priv->list); mutex_unlock(&ar->mutex); synchronize_rcu(); } else { if (ar->vifs > 1) ar->ps.off_override |= PS_OFF_VIF; mutex_unlock(&ar->mutex); } return err; } static void carl9170_op_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct carl9170_vif_info *vif_priv = (void *) vif->drv_priv; struct ieee80211_vif *main_vif; struct ar9170 *ar = hw->priv; unsigned int id; mutex_lock(&ar->mutex); if (WARN_ON_ONCE(!vif_priv->active)) goto unlock; ar->vifs--; rcu_read_lock(); main_vif = carl9170_get_main_vif(ar); id = vif_priv->id; vif_priv->active = false; WARN_ON(vif_priv->enable_beacon); vif_priv->enable_beacon = false; list_del_rcu(&vif_priv->list); rcu_assign_pointer(ar->vif_priv[id].vif, NULL); if (vif == main_vif) { rcu_read_unlock(); if (ar->vifs) { WARN_ON(carl9170_init_interface(ar, carl9170_get_main_vif(ar))); } else { carl9170_set_operating_mode(ar); } } else { rcu_read_unlock(); WARN_ON(carl9170_mod_virtual_mac(ar, id, NULL)); } carl9170_update_beacon(ar, false); carl9170_flush_cab(ar, id); spin_lock_bh(&ar->beacon_lock); dev_kfree_skb_any(vif_priv->beacon); vif_priv->beacon = NULL; spin_unlock_bh(&ar->beacon_lock); bitmap_release_region(&ar->vif_bitmap, id, 0); carl9170_set_beacon_timers(ar); if (ar->vifs == 1) ar->ps.off_override &= ~PS_OFF_VIF; unlock: mutex_unlock(&ar->mutex); synchronize_rcu(); } void carl9170_ps_check(struct ar9170 *ar) { ieee80211_queue_work(ar->hw, &ar->ps_work); } /* caller must hold ar->mutex */ static int carl9170_ps_update(struct ar9170 *ar) { bool ps = false; int err = 0; if (!ar->ps.off_override) ps = (ar->hw->conf.flags & IEEE80211_CONF_PS); if (ps != ar->ps.state) { err = carl9170_powersave(ar, ps); if (err) return err; if (ar->ps.state && !ps) { ar->ps.sleep_ms = jiffies_to_msecs(jiffies - ar->ps.last_action); } if (ps) ar->ps.last_slept = jiffies; ar->ps.last_action = jiffies; ar->ps.state = ps; } return 0; } static void carl9170_ps_work(struct work_struct *work) { struct ar9170 *ar = container_of(work, struct ar9170, ps_work); mutex_lock(&ar->mutex); if (IS_STARTED(ar)) WARN_ON_ONCE(carl9170_ps_update(ar) != 0); mutex_unlock(&ar->mutex); } static int carl9170_op_config(struct ieee80211_hw *hw, u32 changed) { struct ar9170 *ar = hw->priv; int err = 0; mutex_lock(&ar->mutex); if (changed & IEEE80211_CONF_CHANGE_LISTEN_INTERVAL) { /* TODO */ err = 0; } if (changed & IEEE80211_CONF_CHANGE_PS) { err = carl9170_ps_update(ar); if (err) goto out; } if (changed & IEEE80211_CONF_CHANGE_POWER) { /* TODO */ err = 0; } if (changed & IEEE80211_CONF_CHANGE_SMPS) { /* TODO */ err = 0; } if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { /* adjust slot time for 5 GHz */ err = carl9170_set_slot_time(ar); if (err) goto out; err = carl9170_set_channel(ar, hw->conf.channel, hw->conf.channel_type, CARL9170_RFI_NONE); if (err) goto out; err = carl9170_set_dyn_sifs_ack(ar); if (err) goto out; err = carl9170_set_rts_cts_rate(ar); if (err) goto out; } out: mutex_unlock(&ar->mutex); return err; } static u64 carl9170_op_prepare_multicast(struct ieee80211_hw *hw, struct netdev_hw_addr_list *mc_list) { struct netdev_hw_addr *ha; u64 mchash; /* always get broadcast frames */ mchash = 1ULL << (0xff >> 2); netdev_hw_addr_list_for_each(ha, mc_list) mchash |= 1ULL << (ha->addr[5] >> 2); return mchash; } static void carl9170_op_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *new_flags, u64 multicast) { struct ar9170 *ar = hw->priv; /* mask supported flags */ *new_flags &= FIF_ALLMULTI | ar->rx_filter_caps; if (!IS_ACCEPTING_CMD(ar)) return; mutex_lock(&ar->mutex); ar->filter_state = *new_flags; /* * We can support more by setting the sniffer bit and * then checking the error flags, later. */ if (changed_flags & FIF_ALLMULTI && *new_flags & FIF_ALLMULTI) multicast = ~0ULL; if (multicast != ar->cur_mc_hash) WARN_ON(carl9170_update_multicast(ar, multicast)); if (changed_flags & (FIF_OTHER_BSS | FIF_PROMISC_IN_BSS)) { ar->sniffer_enabled = !!(*new_flags & (FIF_OTHER_BSS | FIF_PROMISC_IN_BSS)); WARN_ON(carl9170_set_operating_mode(ar)); } if (ar->fw.rx_filter && changed_flags & ar->rx_filter_caps) { u32 rx_filter = 0; if (!(*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))) rx_filter |= CARL9170_RX_FILTER_BAD; if (!(*new_flags & FIF_CONTROL)) rx_filter |= CARL9170_RX_FILTER_CTL_OTHER; if (!(*new_flags & FIF_PSPOLL)) rx_filter |= CARL9170_RX_FILTER_CTL_PSPOLL; if (!(*new_flags & (FIF_OTHER_BSS | FIF_PROMISC_IN_BSS))) { rx_filter |= CARL9170_RX_FILTER_OTHER_RA; rx_filter |= CARL9170_RX_FILTER_DECRY_FAIL; } WARN_ON(carl9170_rx_filter(ar, rx_filter)); } mutex_unlock(&ar->mutex); } static void carl9170_op_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf, u32 changed) { struct ar9170 *ar = hw->priv; struct ath_common *common = &ar->common; int err = 0; struct carl9170_vif_info *vif_priv; struct ieee80211_vif *main_vif; mutex_lock(&ar->mutex); vif_priv = (void *) vif->drv_priv; main_vif = carl9170_get_main_vif(ar); if (WARN_ON(!main_vif)) goto out; if (changed & BSS_CHANGED_BEACON_ENABLED) { struct carl9170_vif_info *iter; int i = 0; vif_priv->enable_beacon = bss_conf->enable_beacon; rcu_read_lock(); list_for_each_entry_rcu(iter, &ar->vif_list, list) { if (iter->active && iter->enable_beacon) i++; } rcu_read_unlock(); ar->beacon_enabled = i; } if (changed & BSS_CHANGED_BEACON) { err = carl9170_update_beacon(ar, false); if (err) goto out; } if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_INT)) { if (main_vif != vif) { bss_conf->beacon_int = main_vif->bss_conf.beacon_int; bss_conf->dtim_period = main_vif->bss_conf.dtim_period; } /* * Therefore a hard limit for the broadcast traffic should * prevent false alarms. */ if (vif->type != NL80211_IFTYPE_STATION && (bss_conf->beacon_int * bss_conf->dtim_period >= (CARL9170_QUEUE_STUCK_TIMEOUT / 2))) { err = -EINVAL; goto out; } err = carl9170_set_beacon_timers(ar); if (err) goto out; } if (changed & BSS_CHANGED_HT) { /* TODO */ err = 0; if (err) goto out; } if (main_vif != vif) goto out; /* * The following settings can only be changed by the * master interface. */ if (changed & BSS_CHANGED_BSSID) { memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN); err = carl9170_set_operating_mode(ar); if (err) goto out; } if (changed & BSS_CHANGED_ASSOC) { ar->common.curaid = bss_conf->aid; err = carl9170_set_beacon_timers(ar); if (err) goto out; } if (changed & BSS_CHANGED_ERP_SLOT) { err = carl9170_set_slot_time(ar); if (err) goto out; } if (changed & BSS_CHANGED_BASIC_RATES) { err = carl9170_set_mac_rates(ar); if (err) goto out; } out: WARN_ON_ONCE(err && IS_STARTED(ar)); mutex_unlock(&ar->mutex); } static u64 carl9170_op_get_tsf(struct ieee80211_hw *hw) { struct ar9170 *ar = hw->priv; struct carl9170_tsf_rsp tsf; int err; mutex_lock(&ar->mutex); err = carl9170_exec_cmd(ar, CARL9170_CMD_READ_TSF, 0, NULL, sizeof(tsf), &tsf); mutex_unlock(&ar->mutex); if (WARN_ON(err)) return 0; return le64_to_cpu(tsf.tsf_64); } static int carl9170_op_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct ar9170 *ar = hw->priv; int err = 0, i; u8 ktype; if (ar->disable_offload || !vif) return -EOPNOTSUPP; /* * We have to fall back to software encryption, whenever * the user choose to participates in an IBSS or is connected * to more than one network. * * This is very unfortunate, because some machines cannot handle * the high througput speed in 802.11n networks. */ if (!is_main_vif(ar, vif)) goto err_softw; /* * While the hardware supports *catch-all* key, for offloading * group-key en-/de-cryption. The way of how the hardware * decides which keyId maps to which key, remains a mystery... */ if ((vif->type != NL80211_IFTYPE_STATION && vif->type != NL80211_IFTYPE_ADHOC) && !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) return -EOPNOTSUPP; switch (key->cipher) { case WLAN_CIPHER_SUITE_WEP40: ktype = AR9170_ENC_ALG_WEP64; break; case WLAN_CIPHER_SUITE_WEP104: ktype = AR9170_ENC_ALG_WEP128; break; case WLAN_CIPHER_SUITE_TKIP: ktype = AR9170_ENC_ALG_TKIP; break; case WLAN_CIPHER_SUITE_CCMP: ktype = AR9170_ENC_ALG_AESCCMP; break; default: return -EOPNOTSUPP; } mutex_lock(&ar->mutex); if (cmd == SET_KEY) { if (!IS_STARTED(ar)) { err = -EOPNOTSUPP; goto out; } if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) { sta = NULL; i = 64 + key->keyidx; } else { for (i = 0; i < 64; i++) if (!(ar->usedkeys & BIT(i))) break; if (i == 64) goto err_softw; } key->hw_key_idx = i; err = carl9170_upload_key(ar, i, sta ? sta->addr : NULL, ktype, 0, key->key, min_t(u8, 16, key->keylen)); if (err) goto out; if (key->cipher == WLAN_CIPHER_SUITE_TKIP) { err = carl9170_upload_key(ar, i, sta ? sta->addr : NULL, ktype, 1, key->key + 16, 16); if (err) goto out; /* * hardware is not capable generating MMIC * of fragmented frames! */ key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC; } if (i < 64) ar->usedkeys |= BIT(i); key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; } else { if (!IS_STARTED(ar)) { /* The device is gone... together with the key ;-) */ err = 0; goto out; } if (key->hw_key_idx < 64) { ar->usedkeys &= ~BIT(key->hw_key_idx); } else { err = carl9170_upload_key(ar, key->hw_key_idx, NULL, AR9170_ENC_ALG_NONE, 0, NULL, 0); if (err) goto out; if (key->cipher == WLAN_CIPHER_SUITE_TKIP) { err = carl9170_upload_key(ar, key->hw_key_idx, NULL, AR9170_ENC_ALG_NONE, 1, NULL, 0); if (err) goto out; } } err = carl9170_disable_key(ar, key->hw_key_idx); if (err) goto out; } out: mutex_unlock(&ar->mutex); return err; err_softw: if (!ar->rx_software_decryption) { ar->rx_software_decryption = true; carl9170_set_operating_mode(ar); } mutex_unlock(&ar->mutex); return -ENOSPC; } static int carl9170_op_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct carl9170_sta_info *sta_info = (void *) sta->drv_priv; unsigned int i; if (sta->ht_cap.ht_supported) { if (sta->ht_cap.ampdu_density > 6) { /* * HW does support 16us AMPDU density. * No HT-Xmit for station. */ return 0; } for (i = 0; i < CARL9170_NUM_TID; i++) rcu_assign_pointer(sta_info->agg[i], NULL); sta_info->ampdu_max_len = 1 << (3 + sta->ht_cap.ampdu_factor); sta_info->ht_sta = true; } return 0; } static int carl9170_op_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct ar9170 *ar = hw->priv; struct carl9170_sta_info *sta_info = (void *) sta->drv_priv; unsigned int i; bool cleanup = false; if (sta->ht_cap.ht_supported) { sta_info->ht_sta = false; rcu_read_lock(); for (i = 0; i < CARL9170_NUM_TID; i++) { struct carl9170_sta_tid *tid_info; tid_info = rcu_dereference(sta_info->agg[i]); rcu_assign_pointer(sta_info->agg[i], NULL); if (!tid_info) continue; spin_lock_bh(&ar->tx_ampdu_list_lock); if (tid_info->state > CARL9170_TID_STATE_SHUTDOWN) tid_info->state = CARL9170_TID_STATE_SHUTDOWN; spin_unlock_bh(&ar->tx_ampdu_list_lock); cleanup = true; } rcu_read_unlock(); if (cleanup) carl9170_ampdu_gc(ar); } return 0; } static int carl9170_op_conf_tx(struct ieee80211_hw *hw, u16 queue, const struct ieee80211_tx_queue_params *param) { struct ar9170 *ar = hw->priv; int ret; mutex_lock(&ar->mutex); if (queue < ar->hw->queues) { memcpy(&ar->edcf[ar9170_qmap[queue]], param, sizeof(*param)); ret = carl9170_set_qos(ar); } else { ret = -EINVAL; } mutex_unlock(&ar->mutex); return ret; } static void carl9170_ampdu_work(struct work_struct *work) { struct ar9170 *ar = container_of(work, struct ar9170, ampdu_work); if (!IS_STARTED(ar)) return; mutex_lock(&ar->mutex); carl9170_ampdu_gc(ar); mutex_unlock(&ar->mutex); } static int carl9170_op_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum ieee80211_ampdu_mlme_action action, struct ieee80211_sta *sta, u16 tid, u16 *ssn) { struct ar9170 *ar = hw->priv; struct carl9170_sta_info *sta_info = (void *) sta->drv_priv; struct carl9170_sta_tid *tid_info; if (modparam_noht) return -EOPNOTSUPP; switch (action) { case IEEE80211_AMPDU_TX_START: if (!sta_info->ht_sta) return -EOPNOTSUPP; rcu_read_lock(); if (rcu_dereference(sta_info->agg[tid])) { rcu_read_unlock(); return -EBUSY; } tid_info = kzalloc(sizeof(struct carl9170_sta_tid), GFP_ATOMIC); if (!tid_info) { rcu_read_unlock(); return -ENOMEM; } tid_info->hsn = tid_info->bsn = tid_info->snx = (*ssn); tid_info->state = CARL9170_TID_STATE_PROGRESS; tid_info->tid = tid; tid_info->max = sta_info->ampdu_max_len; INIT_LIST_HEAD(&tid_info->list); INIT_LIST_HEAD(&tid_info->tmp_list); skb_queue_head_init(&tid_info->queue); spin_lock_init(&tid_info->lock); spin_lock_bh(&ar->tx_ampdu_list_lock); ar->tx_ampdu_list_len++; list_add_tail_rcu(&tid_info->list, &ar->tx_ampdu_list); rcu_assign_pointer(sta_info->agg[tid], tid_info); spin_unlock_bh(&ar->tx_ampdu_list_lock); rcu_read_unlock(); ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid); break; case IEEE80211_AMPDU_TX_STOP: rcu_read_lock(); tid_info = rcu_dereference(sta_info->agg[tid]); if (tid_info) { spin_lock_bh(&ar->tx_ampdu_list_lock); if (tid_info->state > CARL9170_TID_STATE_SHUTDOWN) tid_info->state = CARL9170_TID_STATE_SHUTDOWN; spin_unlock_bh(&ar->tx_ampdu_list_lock); } rcu_assign_pointer(sta_info->agg[tid], NULL); rcu_read_unlock(); ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); ieee80211_queue_work(ar->hw, &ar->ampdu_work); break; case IEEE80211_AMPDU_TX_OPERATIONAL: rcu_read_lock(); tid_info = rcu_dereference(sta_info->agg[tid]); sta_info->stats[tid].clear = true; if (tid_info) { bitmap_zero(tid_info->bitmap, CARL9170_BAW_SIZE); tid_info->state = CARL9170_TID_STATE_IDLE; } rcu_read_unlock(); if (WARN_ON_ONCE(!tid_info)) return -EFAULT; break; case IEEE80211_AMPDU_RX_START: case IEEE80211_AMPDU_RX_STOP: /* Handled by hardware */ break; default: return -EOPNOTSUPP; } return 0; } #ifdef CONFIG_CARL9170_WPC static int carl9170_register_wps_button(struct ar9170 *ar) { struct input_dev *input; int err; if (!(ar->features & CARL9170_WPS_BUTTON)) return 0; input = input_allocate_device(); if (!input) return -ENOMEM; snprintf(ar->wps.name, sizeof(ar->wps.name), "%s WPS Button", wiphy_name(ar->hw->wiphy)); snprintf(ar->wps.phys, sizeof(ar->wps.phys), "ieee80211/%s/input0", wiphy_name(ar->hw->wiphy)); input->name = ar->wps.name; input->phys = ar->wps.phys; input->id.bustype = BUS_USB; input->dev.parent = &ar->hw->wiphy->dev; input_set_capability(input, EV_KEY, KEY_WPS_BUTTON); err = input_register_device(input); if (err) { input_free_device(input); return err; } ar->wps.pbc = input; return 0; } #endif /* CONFIG_CARL9170_WPC */ static int carl9170_op_get_survey(struct ieee80211_hw *hw, int idx, struct survey_info *survey) { struct ar9170 *ar = hw->priv; int err; if (idx != 0) return -ENOENT; mutex_lock(&ar->mutex); err = carl9170_get_noisefloor(ar); mutex_unlock(&ar->mutex); if (err) return err; survey->channel = ar->channel; survey->filled = SURVEY_INFO_NOISE_DBM; survey->noise = ar->noise[0]; return 0; } static void carl9170_op_flush(struct ieee80211_hw *hw, bool drop) { struct ar9170 *ar = hw->priv; unsigned int vid; mutex_lock(&ar->mutex); for_each_set_bit(vid, &ar->vif_bitmap, ar->fw.vif_num) carl9170_flush_cab(ar, vid); carl9170_flush(ar, drop); mutex_unlock(&ar->mutex); } static int carl9170_op_get_stats(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats) { struct ar9170 *ar = hw->priv; memset(stats, 0, sizeof(*stats)); stats->dot11ACKFailureCount = ar->tx_ack_failures; stats->dot11FCSErrorCount = ar->tx_fcs_errors; return 0; } static void carl9170_op_sta_notify(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum sta_notify_cmd cmd, struct ieee80211_sta *sta) { struct ar9170 *ar = hw->priv; struct carl9170_sta_info *sta_info = (void *) sta->drv_priv; struct sk_buff *skb, *tmp; struct sk_buff_head free; int i; switch (cmd) { case STA_NOTIFY_SLEEP: /* * Since the peer is no longer listening, we have to return * as many SKBs as possible back to the mac80211 stack. * It will deal with the retry procedure, once the peer * has become available again. * * NB: Ideally, the driver should return the all frames in * the correct, ascending order. However, I think that this * functionality should be implemented in the stack and not * here... */ __skb_queue_head_init(&free); if (sta->ht_cap.ht_supported) { rcu_read_lock(); for (i = 0; i < CARL9170_NUM_TID; i++) { struct carl9170_sta_tid *tid_info; tid_info = rcu_dereference(sta_info->agg[i]); if (!tid_info) continue; spin_lock_bh(&ar->tx_ampdu_list_lock); if (tid_info->state > CARL9170_TID_STATE_SUSPEND) tid_info->state = CARL9170_TID_STATE_SUSPEND; spin_unlock_bh(&ar->tx_ampdu_list_lock); spin_lock_bh(&tid_info->lock); while ((skb = __skb_dequeue(&tid_info->queue))) __skb_queue_tail(&free, skb); spin_unlock_bh(&tid_info->lock); } rcu_read_unlock(); } for (i = 0; i < ar->hw->queues; i++) { spin_lock_bh(&ar->tx_pending[i].lock); skb_queue_walk_safe(&ar->tx_pending[i], skb, tmp) { struct _carl9170_tx_superframe *super; struct ieee80211_hdr *hdr; struct ieee80211_tx_info *info; super = (void *) skb->data; hdr = (void *) super->frame_data; if (compare_ether_addr(hdr->addr1, sta->addr)) continue; __skb_unlink(skb, &ar->tx_pending[i]); info = IEEE80211_SKB_CB(skb); if (info->flags & IEEE80211_TX_CTL_AMPDU) atomic_dec(&ar->tx_ampdu_upload); carl9170_tx_status(ar, skb, false); } spin_unlock_bh(&ar->tx_pending[i].lock); } while ((skb = __skb_dequeue(&free))) carl9170_tx_status(ar, skb, false); break; case STA_NOTIFY_AWAKE: if (!sta->ht_cap.ht_supported) return; rcu_read_lock(); for (i = 0; i < CARL9170_NUM_TID; i++) { struct carl9170_sta_tid *tid_info; tid_info = rcu_dereference(sta_info->agg[i]); if (!tid_info) continue; if ((tid_info->state == CARL9170_TID_STATE_SUSPEND)) tid_info->state = CARL9170_TID_STATE_IDLE; } rcu_read_unlock(); break; } } static const struct ieee80211_ops carl9170_ops = { .start = carl9170_op_start, .stop = carl9170_op_stop, .tx = carl9170_op_tx, .flush = carl9170_op_flush, .add_interface = carl9170_op_add_interface, .remove_interface = carl9170_op_remove_interface, .config = carl9170_op_config, .prepare_multicast = carl9170_op_prepare_multicast, .configure_filter = carl9170_op_configure_filter, .conf_tx = carl9170_op_conf_tx, .bss_info_changed = carl9170_op_bss_info_changed, .get_tsf = carl9170_op_get_tsf, .set_key = carl9170_op_set_key, .sta_add = carl9170_op_sta_add, .sta_remove = carl9170_op_sta_remove, .sta_notify = carl9170_op_sta_notify, .get_survey = carl9170_op_get_survey, .get_stats = carl9170_op_get_stats, .ampdu_action = carl9170_op_ampdu_action, }; void *carl9170_alloc(size_t priv_size) { struct ieee80211_hw *hw; struct ar9170 *ar; struct sk_buff *skb; int i; /* * this buffer is used for rx stream reconstruction. * Under heavy load this device (or the transport layer?) * tends to split the streams into separate rx descriptors. */ skb = __dev_alloc_skb(AR9170_RX_STREAM_MAX_SIZE, GFP_KERNEL); if (!skb) goto err_nomem; hw = ieee80211_alloc_hw(priv_size, &carl9170_ops); if (!hw) goto err_nomem; ar = hw->priv; ar->hw = hw; ar->rx_failover = skb; memset(&ar->rx_plcp, 0, sizeof(struct ar9170_rx_head)); ar->rx_has_plcp = false; /* * Here's a hidden pitfall! * * All 4 AC queues work perfectly well under _legacy_ operation. * However as soon as aggregation is enabled, the traffic flow * gets very bumpy. Therefore we have to _switch_ to a * software AC with a single HW queue. */ hw->queues = __AR9170_NUM_TXQ; mutex_init(&ar->mutex); spin_lock_init(&ar->beacon_lock); spin_lock_init(&ar->cmd_lock); spin_lock_init(&ar->tx_stats_lock); spin_lock_init(&ar->tx_ampdu_list_lock); spin_lock_init(&ar->mem_lock); spin_lock_init(&ar->state_lock); atomic_set(&ar->pending_restarts, 0); ar->vifs = 0; for (i = 0; i < ar->hw->queues; i++) { skb_queue_head_init(&ar->tx_status[i]); skb_queue_head_init(&ar->tx_pending[i]); } INIT_WORK(&ar->ps_work, carl9170_ps_work); INIT_WORK(&ar->restart_work, carl9170_restart_work); INIT_WORK(&ar->ampdu_work, carl9170_ampdu_work); INIT_DELAYED_WORK(&ar->tx_janitor, carl9170_tx_janitor); INIT_LIST_HEAD(&ar->tx_ampdu_list); rcu_assign_pointer(ar->tx_ampdu_iter, (struct carl9170_sta_tid *) &ar->tx_ampdu_list); bitmap_zero(&ar->vif_bitmap, ar->fw.vif_num); INIT_LIST_HEAD(&ar->vif_list); init_completion(&ar->tx_flush); /* * Note: * IBSS/ADHOC and AP mode are only enabled, if the firmware * supports these modes. The code which will add the * additional interface_modes is in fw.c. */ hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); hw->flags |= IEEE80211_HW_RX_INCLUDES_FCS | IEEE80211_HW_REPORTS_TX_ACK_STATUS | IEEE80211_HW_SUPPORTS_PS | IEEE80211_HW_PS_NULLFUNC_STACK | IEEE80211_HW_SIGNAL_DBM; if (!modparam_noht) { /* * see the comment above, why we allow the user * to disable HT by a module parameter. */ hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION; } hw->extra_tx_headroom = sizeof(struct _carl9170_tx_superframe); hw->sta_data_size = sizeof(struct carl9170_sta_info); hw->vif_data_size = sizeof(struct carl9170_vif_info); hw->max_rates = CARL9170_TX_MAX_RATES; hw->max_rate_tries = CARL9170_TX_USER_RATE_TRIES; for (i = 0; i < ARRAY_SIZE(ar->noise); i++) ar->noise[i] = -95; /* ATH_DEFAULT_NOISE_FLOOR */ hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; return ar; err_nomem: kfree_skb(skb); return ERR_PTR(-ENOMEM); } static int carl9170_read_eeprom(struct ar9170 *ar) { #define RW 8 /* number of words to read at once */ #define RB (sizeof(u32) * RW) u8 *eeprom = (void *)&ar->eeprom; __le32 offsets[RW]; int i, j, err; BUILD_BUG_ON(sizeof(ar->eeprom) & 3); BUILD_BUG_ON(RB > CARL9170_MAX_CMD_LEN - 4); #ifndef __CHECKER__ /* don't want to handle trailing remains */ BUILD_BUG_ON(sizeof(ar->eeprom) % RB); #endif for (i = 0; i < sizeof(ar->eeprom)/RB; i++) { for (j = 0; j < RW; j++) offsets[j] = cpu_to_le32(AR9170_EEPROM_START + RB * i + 4 * j); err = carl9170_exec_cmd(ar, CARL9170_CMD_RREG, RB, (u8 *) &offsets, RB, eeprom + RB * i); if (err) return err; } #undef RW #undef RB return 0; } static int carl9170_parse_eeprom(struct ar9170 *ar) { struct ath_regulatory *regulatory = &ar->common.regulatory; unsigned int rx_streams, tx_streams, tx_params = 0; int bands = 0; if (ar->eeprom.length == cpu_to_le16(0xffff)) return -ENODATA; rx_streams = hweight8(ar->eeprom.rx_mask); tx_streams = hweight8(ar->eeprom.tx_mask); if (rx_streams != tx_streams) { tx_params = IEEE80211_HT_MCS_TX_RX_DIFF; WARN_ON(!(tx_streams >= 1 && tx_streams <= IEEE80211_HT_MCS_TX_MAX_STREAMS)); tx_params = (tx_streams - 1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT; carl9170_band_2GHz.ht_cap.mcs.tx_params |= tx_params; carl9170_band_5GHz.ht_cap.mcs.tx_params |= tx_params; } if (ar->eeprom.operating_flags & AR9170_OPFLAG_2GHZ) { ar->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &carl9170_band_2GHz; bands++; } if (ar->eeprom.operating_flags & AR9170_OPFLAG_5GHZ) { ar->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &carl9170_band_5GHz; bands++; } /* * I measured this, a bandswitch takes roughly * 135 ms and a frequency switch about 80. * * FIXME: measure these values again once EEPROM settings * are used, that will influence them! */ if (bands == 2) ar->hw->channel_change_time = 135 * 1000; else ar->hw->channel_change_time = 80 * 1000; regulatory->current_rd = le16_to_cpu(ar->eeprom.reg_domain[0]); regulatory->current_rd_ext = le16_to_cpu(ar->eeprom.reg_domain[1]); /* second part of wiphy init */ SET_IEEE80211_PERM_ADDR(ar->hw, ar->eeprom.mac_address); return bands ? 0 : -EINVAL; } static int carl9170_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct ar9170 *ar = hw->priv; return ath_reg_notifier_apply(wiphy, request, &ar->common.regulatory); } int carl9170_register(struct ar9170 *ar) { struct ath_regulatory *regulatory = &ar->common.regulatory; int err = 0, i; if (WARN_ON(ar->mem_bitmap)) return -EINVAL; ar->mem_bitmap = kzalloc(roundup(ar->fw.mem_blocks, BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL); if (!ar->mem_bitmap) return -ENOMEM; /* try to read EEPROM, init MAC addr */ err = carl9170_read_eeprom(ar); if (err) return err; err = carl9170_fw_fix_eeprom(ar); if (err) return err; err = carl9170_parse_eeprom(ar); if (err) return err; err = ath_regd_init(regulatory, ar->hw->wiphy, carl9170_reg_notifier); if (err) return err; if (modparam_noht) { carl9170_band_2GHz.ht_cap.ht_supported = false; carl9170_band_5GHz.ht_cap.ht_supported = false; } for (i = 0; i < ar->fw.vif_num; i++) { ar->vif_priv[i].id = i; ar->vif_priv[i].vif = NULL; } err = ieee80211_register_hw(ar->hw); if (err) return err; /* mac80211 interface is now registered */ ar->registered = true; if (!ath_is_world_regd(regulatory)) regulatory_hint(ar->hw->wiphy, regulatory->alpha2); #ifdef CONFIG_CARL9170_DEBUGFS carl9170_debugfs_register(ar); #endif /* CONFIG_CARL9170_DEBUGFS */ err = carl9170_led_init(ar); if (err) goto err_unreg; #ifdef CONFIG_CARL9170_LEDS err = carl9170_led_register(ar); if (err) goto err_unreg; #endif /* CONFIG_CARL9170_LEDS */ #ifdef CONFIG_CARL9170_WPC err = carl9170_register_wps_button(ar); if (err) goto err_unreg; #endif /* CONFIG_CARL9170_WPC */ dev_info(&ar->udev->dev, "Atheros AR9170 is registered as '%s'\n", wiphy_name(ar->hw->wiphy)); return 0; err_unreg: carl9170_unregister(ar); return err; } void carl9170_unregister(struct ar9170 *ar) { if (!ar->registered) return; ar->registered = false; #ifdef CONFIG_CARL9170_LEDS carl9170_led_unregister(ar); #endif /* CONFIG_CARL9170_LEDS */ #ifdef CONFIG_CARL9170_DEBUGFS carl9170_debugfs_unregister(ar); #endif /* CONFIG_CARL9170_DEBUGFS */ #ifdef CONFIG_CARL9170_WPC if (ar->wps.pbc) { input_unregister_device(ar->wps.pbc); ar->wps.pbc = NULL; } #endif /* CONFIG_CARL9170_WPC */ carl9170_cancel_worker(ar); cancel_work_sync(&ar->restart_work); ieee80211_unregister_hw(ar->hw); } void carl9170_free(struct ar9170 *ar) { WARN_ON(ar->registered); WARN_ON(IS_INITIALIZED(ar)); kfree_skb(ar->rx_failover); ar->rx_failover = NULL; kfree(ar->mem_bitmap); ar->mem_bitmap = NULL; mutex_destroy(&ar->mutex); ieee80211_free_hw(ar->hw); }