/* * Copyright (c) 2004-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "core.h" #include "hif-ops.h" #include "cfg80211.h" #include "target.h" #include "debug.h" struct ath6kl_sta *ath6kl_find_sta(struct ath6kl *ar, u8 *node_addr) { struct ath6kl_sta *conn = NULL; u8 i, max_conn; max_conn = (ar->nw_type == AP_NETWORK) ? AP_MAX_NUM_STA : 0; for (i = 0; i < max_conn; i++) { if (memcmp(node_addr, ar->sta_list[i].mac, ETH_ALEN) == 0) { conn = &ar->sta_list[i]; break; } } return conn; } struct ath6kl_sta *ath6kl_find_sta_by_aid(struct ath6kl *ar, u8 aid) { struct ath6kl_sta *conn = NULL; u8 ctr; for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) { if (ar->sta_list[ctr].aid == aid) { conn = &ar->sta_list[ctr]; break; } } return conn; } static void ath6kl_add_new_sta(struct ath6kl *ar, u8 *mac, u16 aid, u8 *wpaie, u8 ielen, u8 keymgmt, u8 ucipher, u8 auth) { struct ath6kl_sta *sta; u8 free_slot; free_slot = aid - 1; sta = &ar->sta_list[free_slot]; memcpy(sta->mac, mac, ETH_ALEN); memcpy(sta->wpa_ie, wpaie, ielen); sta->aid = aid; sta->keymgmt = keymgmt; sta->ucipher = ucipher; sta->auth = auth; ar->sta_list_index = ar->sta_list_index | (1 << free_slot); ar->ap_stats.sta[free_slot].aid = cpu_to_le32(aid); } static void ath6kl_sta_cleanup(struct ath6kl *ar, u8 i) { struct ath6kl_sta *sta = &ar->sta_list[i]; /* empty the queued pkts in the PS queue if any */ spin_lock_bh(&sta->psq_lock); skb_queue_purge(&sta->psq); spin_unlock_bh(&sta->psq_lock); memset(&ar->ap_stats.sta[sta->aid - 1], 0, sizeof(struct wmi_per_sta_stat)); memset(sta->mac, 0, ETH_ALEN); memset(sta->wpa_ie, 0, ATH6KL_MAX_IE); sta->aid = 0; sta->sta_flags = 0; ar->sta_list_index = ar->sta_list_index & ~(1 << i); } static u8 ath6kl_remove_sta(struct ath6kl *ar, u8 *mac, u16 reason) { u8 i, removed = 0; if (is_zero_ether_addr(mac)) return removed; if (is_broadcast_ether_addr(mac)) { ath6kl_dbg(ATH6KL_DBG_TRC, "deleting all station\n"); for (i = 0; i < AP_MAX_NUM_STA; i++) { if (!is_zero_ether_addr(ar->sta_list[i].mac)) { ath6kl_sta_cleanup(ar, i); removed = 1; } } } else { for (i = 0; i < AP_MAX_NUM_STA; i++) { if (memcmp(ar->sta_list[i].mac, mac, ETH_ALEN) == 0) { ath6kl_dbg(ATH6KL_DBG_TRC, "deleting station %pM aid=%d reason=%d\n", mac, ar->sta_list[i].aid, reason); ath6kl_sta_cleanup(ar, i); removed = 1; break; } } } return removed; } enum htc_endpoint_id ath6kl_ac2_endpoint_id(void *devt, u8 ac) { struct ath6kl *ar = devt; return ar->ac2ep_map[ac]; } struct ath6kl_cookie *ath6kl_alloc_cookie(struct ath6kl *ar) { struct ath6kl_cookie *cookie; cookie = ar->cookie_list; if (cookie != NULL) { ar->cookie_list = cookie->arc_list_next; ar->cookie_count--; } return cookie; } void ath6kl_cookie_init(struct ath6kl *ar) { u32 i; ar->cookie_list = NULL; ar->cookie_count = 0; memset(ar->cookie_mem, 0, sizeof(ar->cookie_mem)); for (i = 0; i < MAX_COOKIE_NUM; i++) ath6kl_free_cookie(ar, &ar->cookie_mem[i]); } void ath6kl_cookie_cleanup(struct ath6kl *ar) { ar->cookie_list = NULL; ar->cookie_count = 0; } void ath6kl_free_cookie(struct ath6kl *ar, struct ath6kl_cookie *cookie) { /* Insert first */ if (!ar || !cookie) return; cookie->arc_list_next = ar->cookie_list; ar->cookie_list = cookie; ar->cookie_count++; } /* set the window address register (using 4-byte register access ). */ static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr) { int status; u8 addr_val[4]; s32 i; /* * Write bytes 1,2,3 of the register to set the upper address bytes, * the LSB is written last to initiate the access cycle */ for (i = 1; i <= 3; i++) { /* * Fill the buffer with the address byte value we want to * hit 4 times. */ memset(addr_val, ((u8 *)&addr)[i], 4); /* * Hit each byte of the register address with a 4-byte * write operation to the same address, this is a harmless * operation. */ status = hif_read_write_sync(ar, reg_addr + i, addr_val, 4, HIF_WR_SYNC_BYTE_FIX); if (status) break; } if (status) { ath6kl_err("failed to write initial bytes of 0x%x to window reg: 0x%X\n", addr, reg_addr); return status; } /* * Write the address register again, this time write the whole * 4-byte value. The effect here is that the LSB write causes the * cycle to start, the extra 3 byte write to bytes 1,2,3 has no * effect since we are writing the same values again */ status = hif_read_write_sync(ar, reg_addr, (u8 *)(&addr), 4, HIF_WR_SYNC_BYTE_INC); if (status) { ath6kl_err("failed to write 0x%x to window reg: 0x%X\n", addr, reg_addr); return status; } return 0; } /* * Read from the ATH6KL through its diagnostic window. No cooperation from * the Target is required for this. */ int ath6kl_read_reg_diag(struct ath6kl *ar, u32 *address, u32 *data) { int status; /* set window register to start read cycle */ status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS, *address); if (status) return status; /* read the data */ status = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC); if (status) { ath6kl_err("failed to read from window data addr\n"); return status; } return status; } /* * Write to the ATH6KL through its diagnostic window. No cooperation from * the Target is required for this. */ static int ath6kl_write_reg_diag(struct ath6kl *ar, u32 *address, u32 *data) { int status; /* set write data */ status = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *)data, sizeof(u32), HIF_WR_SYNC_BYTE_INC); if (status) { ath6kl_err("failed to write 0x%x to window data addr\n", *data); return status; } /* set window register, which starts the write cycle */ return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS, *address); } int ath6kl_access_datadiag(struct ath6kl *ar, u32 address, u8 *data, u32 length, bool read) { u32 count; int status = 0; for (count = 0; count < length; count += 4, address += 4) { if (read) { status = ath6kl_read_reg_diag(ar, &address, (u32 *) &data[count]); if (status) break; } else { status = ath6kl_write_reg_diag(ar, &address, (u32 *) &data[count]); if (status) break; } } return status; } static void ath6kl_reset_device(struct ath6kl *ar, u32 target_type, bool wait_fot_compltn, bool cold_reset) { int status = 0; u32 address; u32 data; if (target_type != TARGET_TYPE_AR6003) return; data = cold_reset ? RESET_CONTROL_COLD_RST : RESET_CONTROL_MBOX_RST; address = RTC_BASE_ADDRESS; status = ath6kl_write_reg_diag(ar, &address, &data); if (status) ath6kl_err("failed to reset target\n"); } void ath6kl_stop_endpoint(struct net_device *dev, bool keep_profile, bool get_dbglogs) { struct ath6kl *ar = ath6kl_priv(dev); static u8 bcast_mac[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; bool discon_issued; netif_stop_queue(dev); /* disable the target and the interrupts associated with it */ if (test_bit(WMI_READY, &ar->flag)) { discon_issued = (test_bit(CONNECTED, &ar->flag) || test_bit(CONNECT_PEND, &ar->flag)); ath6kl_disconnect(ar); if (!keep_profile) ath6kl_init_profile_info(ar); del_timer(&ar->disconnect_timer); clear_bit(WMI_READY, &ar->flag); ath6kl_wmi_shutdown(ar->wmi); clear_bit(WMI_ENABLED, &ar->flag); ar->wmi = NULL; /* * After wmi_shudown all WMI events will be dropped. We * need to cleanup the buffers allocated in AP mode and * give disconnect notification to stack, which usually * happens in the disconnect_event. Simulate the disconnect * event by calling the function directly. Sometimes * disconnect_event will be received when the debug logs * are collected. */ if (discon_issued) ath6kl_disconnect_event(ar, DISCONNECT_CMD, (ar->nw_type & AP_NETWORK) ? bcast_mac : ar->bssid, 0, NULL, 0); ar->user_key_ctrl = 0; } else { ath6kl_dbg(ATH6KL_DBG_TRC, "%s: wmi is not ready 0x%p 0x%p\n", __func__, ar, ar->wmi); /* Shut down WMI if we have started it */ if (test_bit(WMI_ENABLED, &ar->flag)) { ath6kl_dbg(ATH6KL_DBG_TRC, "%s: shut down wmi\n", __func__); ath6kl_wmi_shutdown(ar->wmi); clear_bit(WMI_ENABLED, &ar->flag); ar->wmi = NULL; } } if (ar->htc_target) { ath6kl_dbg(ATH6KL_DBG_TRC, "%s: shut down htc\n", __func__); htc_stop(ar->htc_target); } /* * Try to reset the device if we can. The driver may have been * configure NOT to reset the target during a debug session. */ ath6kl_dbg(ATH6KL_DBG_TRC, "attempting to reset target on instance destroy\n"); ath6kl_reset_device(ar, ar->target_type, true, true); } static void ath6kl_install_static_wep_keys(struct ath6kl *ar) { u8 index; u8 keyusage; for (index = WMI_MIN_KEY_INDEX; index <= WMI_MAX_KEY_INDEX; index++) { if (ar->wep_key_list[index].key_len) { keyusage = GROUP_USAGE; if (index == ar->def_txkey_index) keyusage |= TX_USAGE; ath6kl_wmi_addkey_cmd(ar->wmi, index, WEP_CRYPT, keyusage, ar->wep_key_list[index].key_len, NULL, ar->wep_key_list[index].key, KEY_OP_INIT_VAL, NULL, NO_SYNC_WMIFLAG); } } } static void ath6kl_connect_ap_mode(struct ath6kl *ar, u16 channel, u8 *bssid, u16 listen_int, u16 beacon_int, u8 assoc_resp_len, u8 *assoc_info) { struct net_device *dev = ar->net_dev; struct station_info sinfo; struct ath6kl_req_key *ik; enum crypto_type keyType = NONE_CRYPT; if (memcmp(dev->dev_addr, bssid, ETH_ALEN) == 0) { ik = &ar->ap_mode_bkey; switch (ar->auth_mode) { case NONE_AUTH: if (ar->prwise_crypto == WEP_CRYPT) ath6kl_install_static_wep_keys(ar); break; case WPA_PSK_AUTH: case WPA2_PSK_AUTH: case (WPA_PSK_AUTH|WPA2_PSK_AUTH): switch (ik->ik_type) { case ATH6KL_CIPHER_TKIP: keyType = TKIP_CRYPT; break; case ATH6KL_CIPHER_AES_CCM: keyType = AES_CRYPT; break; default: goto skip_key; } ath6kl_wmi_addkey_cmd(ar->wmi, ik->ik_keyix, keyType, GROUP_USAGE, ik->ik_keylen, (u8 *)&ik->ik_keyrsc, ik->ik_keydata, KEY_OP_INIT_VAL, ik->ik_macaddr, SYNC_BOTH_WMIFLAG); break; } skip_key: set_bit(CONNECTED, &ar->flag); return; } ath6kl_dbg(ATH6KL_DBG_TRC, "new station %pM aid=%d\n", bssid, channel); ath6kl_add_new_sta(ar, bssid, channel, assoc_info, assoc_resp_len, listen_int & 0xFF, beacon_int, (listen_int >> 8) & 0xFF); /* send event to application */ memset(&sinfo, 0, sizeof(sinfo)); /* TODO: sinfo.generation */ /* TODO: need to deliver (Re)AssocReq IEs somehow.. change in * cfg80211 needed, e.g., by adding those into sinfo */ cfg80211_new_sta(ar->net_dev, bssid, &sinfo, GFP_KERNEL); netif_wake_queue(ar->net_dev); return; } /* Functions for Tx credit handling */ void ath6k_credit_init(struct htc_credit_state_info *cred_info, struct list_head *ep_list, int tot_credits) { struct htc_endpoint_credit_dist *cur_ep_dist; int count; cred_info->cur_free_credits = tot_credits; cred_info->total_avail_credits = tot_credits; list_for_each_entry(cur_ep_dist, ep_list, list) { if (cur_ep_dist->endpoint == ENDPOINT_0) continue; cur_ep_dist->cred_min = cur_ep_dist->cred_per_msg; if (tot_credits > 4) if ((cur_ep_dist->svc_id == WMI_DATA_BK_SVC) || (cur_ep_dist->svc_id == WMI_DATA_BE_SVC)) { ath6kl_deposit_credit_to_ep(cred_info, cur_ep_dist, cur_ep_dist->cred_min); cur_ep_dist->dist_flags |= HTC_EP_ACTIVE; } if (cur_ep_dist->svc_id == WMI_CONTROL_SVC) { ath6kl_deposit_credit_to_ep(cred_info, cur_ep_dist, cur_ep_dist->cred_min); /* * Control service is always marked active, it * never goes inactive EVER. */ cur_ep_dist->dist_flags |= HTC_EP_ACTIVE; } else if (cur_ep_dist->svc_id == WMI_DATA_BK_SVC) /* this is the lowest priority data endpoint */ cred_info->lowestpri_ep_dist = cur_ep_dist->list; /* * Streams have to be created (explicit | implicit) for all * kinds of traffic. BE endpoints are also inactive in the * beginning. When BE traffic starts it creates implicit * streams that redistributes credits. * * Note: all other endpoints have minimums set but are * initially given NO credits. credits will be distributed * as traffic activity demands */ } WARN_ON(cred_info->cur_free_credits <= 0); list_for_each_entry(cur_ep_dist, ep_list, list) { if (cur_ep_dist->endpoint == ENDPOINT_0) continue; if (cur_ep_dist->svc_id == WMI_CONTROL_SVC) cur_ep_dist->cred_norm = cur_ep_dist->cred_per_msg; else { /* * For the remaining data endpoints, we assume that * each cred_per_msg are the same. We use a simple * calculation here, we take the remaining credits * and determine how many max messages this can * cover and then set each endpoint's normal value * equal to 3/4 this amount. */ count = (cred_info->cur_free_credits / cur_ep_dist->cred_per_msg) * cur_ep_dist->cred_per_msg; count = (count * 3) >> 2; count = max(count, cur_ep_dist->cred_per_msg); cur_ep_dist->cred_norm = count; } } } /* initialize and setup credit distribution */ int ath6k_setup_credit_dist(void *htc_handle, struct htc_credit_state_info *cred_info) { u16 servicepriority[5]; memset(cred_info, 0, sizeof(struct htc_credit_state_info)); servicepriority[0] = WMI_CONTROL_SVC; /* highest */ servicepriority[1] = WMI_DATA_VO_SVC; servicepriority[2] = WMI_DATA_VI_SVC; servicepriority[3] = WMI_DATA_BE_SVC; servicepriority[4] = WMI_DATA_BK_SVC; /* lowest */ /* set priority list */ htc_set_credit_dist(htc_handle, cred_info, servicepriority, 5); return 0; } /* reduce an ep's credits back to a set limit */ static void ath6k_reduce_credits(struct htc_credit_state_info *cred_info, struct htc_endpoint_credit_dist *ep_dist, int limit) { int credits; ep_dist->cred_assngd = limit; if (ep_dist->credits <= limit) return; credits = ep_dist->credits - limit; ep_dist->credits -= credits; cred_info->cur_free_credits += credits; } static void ath6k_credit_update(struct htc_credit_state_info *cred_info, struct list_head *epdist_list) { struct htc_endpoint_credit_dist *cur_dist_list; list_for_each_entry(cur_dist_list, epdist_list, list) { if (cur_dist_list->endpoint == ENDPOINT_0) continue; if (cur_dist_list->cred_to_dist > 0) { cur_dist_list->credits += cur_dist_list->cred_to_dist; cur_dist_list->cred_to_dist = 0; if (cur_dist_list->credits > cur_dist_list->cred_assngd) ath6k_reduce_credits(cred_info, cur_dist_list, cur_dist_list->cred_assngd); if (cur_dist_list->credits > cur_dist_list->cred_norm) ath6k_reduce_credits(cred_info, cur_dist_list, cur_dist_list->cred_norm); if (!(cur_dist_list->dist_flags & HTC_EP_ACTIVE)) { if (cur_dist_list->txq_depth == 0) ath6k_reduce_credits(cred_info, cur_dist_list, 0); } } } } /* * HTC has an endpoint that needs credits, ep_dist is the endpoint in * question. */ void ath6k_seek_credits(struct htc_credit_state_info *cred_info, struct htc_endpoint_credit_dist *ep_dist) { struct htc_endpoint_credit_dist *curdist_list; int credits = 0; int need; if (ep_dist->svc_id == WMI_CONTROL_SVC) goto out; if ((ep_dist->svc_id == WMI_DATA_VI_SVC) || (ep_dist->svc_id == WMI_DATA_VO_SVC)) if ((ep_dist->cred_assngd >= ep_dist->cred_norm)) goto out; /* * For all other services, we follow a simple algorithm of: * * 1. checking the free pool for credits * 2. checking lower priority endpoints for credits to take */ credits = min(cred_info->cur_free_credits, ep_dist->seek_cred); if (credits >= ep_dist->seek_cred) goto out; /* * We don't have enough in the free pool, try taking away from * lower priority services The rule for taking away credits: * * 1. Only take from lower priority endpoints * 2. Only take what is allocated above the minimum (never * starve an endpoint completely) * 3. Only take what you need. */ list_for_each_entry_reverse(curdist_list, &cred_info->lowestpri_ep_dist, list) { if (curdist_list == ep_dist) break; need = ep_dist->seek_cred - cred_info->cur_free_credits; if ((curdist_list->cred_assngd - need) >= curdist_list->cred_min) { /* * The current one has been allocated more than * it's minimum and it has enough credits assigned * above it's minimum to fulfill our need try to * take away just enough to fulfill our need. */ ath6k_reduce_credits(cred_info, curdist_list, curdist_list->cred_assngd - need); if (cred_info->cur_free_credits >= ep_dist->seek_cred) break; } if (curdist_list->endpoint == ENDPOINT_0) break; } credits = min(cred_info->cur_free_credits, ep_dist->seek_cred); out: /* did we find some credits? */ if (credits) ath6kl_deposit_credit_to_ep(cred_info, ep_dist, credits); ep_dist->seek_cred = 0; } /* redistribute credits based on activity change */ static void ath6k_redistribute_credits(struct htc_credit_state_info *info, struct list_head *ep_dist_list) { struct htc_endpoint_credit_dist *curdist_list; list_for_each_entry(curdist_list, ep_dist_list, list) { if (curdist_list->endpoint == ENDPOINT_0) continue; if ((curdist_list->svc_id == WMI_DATA_BK_SVC) || (curdist_list->svc_id == WMI_DATA_BE_SVC)) curdist_list->dist_flags |= HTC_EP_ACTIVE; if ((curdist_list->svc_id != WMI_CONTROL_SVC) && !(curdist_list->dist_flags & HTC_EP_ACTIVE)) { if (curdist_list->txq_depth == 0) ath6k_reduce_credits(info, curdist_list, 0); else ath6k_reduce_credits(info, curdist_list, curdist_list->cred_min); } } } /* * * This function is invoked whenever endpoints require credit * distributions. A lock is held while this function is invoked, this * function shall NOT block. The ep_dist_list is a list of distribution * structures in prioritized order as defined by the call to the * htc_set_credit_dist() api. */ void ath6k_credit_distribute(struct htc_credit_state_info *cred_info, struct list_head *ep_dist_list, enum htc_credit_dist_reason reason) { switch (reason) { case HTC_CREDIT_DIST_SEND_COMPLETE: ath6k_credit_update(cred_info, ep_dist_list); break; case HTC_CREDIT_DIST_ACTIVITY_CHANGE: ath6k_redistribute_credits(cred_info, ep_dist_list); break; default: break; } WARN_ON(cred_info->cur_free_credits > cred_info->total_avail_credits); WARN_ON(cred_info->cur_free_credits < 0); } void disconnect_timer_handler(unsigned long ptr) { struct net_device *dev = (struct net_device *)ptr; struct ath6kl *ar = ath6kl_priv(dev); ath6kl_init_profile_info(ar); ath6kl_disconnect(ar); } void ath6kl_disconnect(struct ath6kl *ar) { if (test_bit(CONNECTED, &ar->flag) || test_bit(CONNECT_PEND, &ar->flag)) { ath6kl_wmi_disconnect_cmd(ar->wmi); /* * Disconnect command is issued, clear the connect pending * flag. The connected flag will be cleared in * disconnect event notification. */ clear_bit(CONNECT_PEND, &ar->flag); } } /* WMI Event handlers */ static const char *get_hw_id_string(u32 id) { switch (id) { case AR6003_REV1_VERSION: return "1.0"; case AR6003_REV2_VERSION: return "2.0"; case AR6003_REV3_VERSION: return "2.1.1"; default: return "unknown"; } } void ath6kl_ready_event(void *devt, u8 *datap, u32 sw_ver, u32 abi_ver) { struct ath6kl *ar = devt; struct net_device *dev = ar->net_dev; memcpy(dev->dev_addr, datap, ETH_ALEN); ath6kl_dbg(ATH6KL_DBG_TRC, "%s: mac addr = %pM\n", __func__, dev->dev_addr); ar->version.wlan_ver = sw_ver; ar->version.abi_ver = abi_ver; snprintf(ar->wdev->wiphy->fw_version, sizeof(ar->wdev->wiphy->fw_version), "%u.%u.%u.%u", (ar->version.wlan_ver & 0xf0000000) >> 28, (ar->version.wlan_ver & 0x0f000000) >> 24, (ar->version.wlan_ver & 0x00ff0000) >> 16, (ar->version.wlan_ver & 0x0000ffff)); /* indicate to the waiting thread that the ready event was received */ set_bit(WMI_READY, &ar->flag); wake_up(&ar->event_wq); ath6kl_info("hw %s fw %s\n", get_hw_id_string(ar->wdev->wiphy->hw_version), ar->wdev->wiphy->fw_version); } void ath6kl_scan_complete_evt(struct ath6kl *ar, int status) { ath6kl_cfg80211_scan_complete_event(ar, status); if (!ar->usr_bss_filter) ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0); ath6kl_dbg(ATH6KL_DBG_WLAN_SCAN, "scan complete: %d\n", status); } void ath6kl_connect_event(struct ath6kl *ar, u16 channel, u8 *bssid, u16 listen_int, u16 beacon_int, enum network_type net_type, u8 beacon_ie_len, u8 assoc_req_len, u8 assoc_resp_len, u8 *assoc_info) { unsigned long flags; if (ar->nw_type == AP_NETWORK) { ath6kl_connect_ap_mode(ar, channel, bssid, listen_int, beacon_int, assoc_resp_len, assoc_info); return; } ath6kl_cfg80211_connect_event(ar, channel, bssid, listen_int, beacon_int, net_type, beacon_ie_len, assoc_req_len, assoc_resp_len, assoc_info); memcpy(ar->bssid, bssid, sizeof(ar->bssid)); ar->bss_ch = channel; if ((ar->nw_type == INFRA_NETWORK)) ath6kl_wmi_listeninterval_cmd(ar->wmi, ar->listen_intvl_t, ar->listen_intvl_b); netif_wake_queue(ar->net_dev); /* Update connect & link status atomically */ spin_lock_irqsave(&ar->lock, flags); set_bit(CONNECTED, &ar->flag); clear_bit(CONNECT_PEND, &ar->flag); netif_carrier_on(ar->net_dev); spin_unlock_irqrestore(&ar->lock, flags); aggr_reset_state(ar->aggr_cntxt); ar->reconnect_flag = 0; if ((ar->nw_type == ADHOC_NETWORK) && ar->ibss_ps_enable) { memset(ar->node_map, 0, sizeof(ar->node_map)); ar->node_num = 0; ar->next_ep_id = ENDPOINT_2; } if (!ar->usr_bss_filter) ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0); } void ath6kl_tkip_micerr_event(struct ath6kl *ar, u8 keyid, bool ismcast) { struct ath6kl_sta *sta; u8 tsc[6]; /* * For AP case, keyid will have aid of STA which sent pkt with * MIC error. Use this aid to get MAC & send it to hostapd. */ if (ar->nw_type == AP_NETWORK) { sta = ath6kl_find_sta_by_aid(ar, (keyid >> 2)); if (!sta) return; ath6kl_dbg(ATH6KL_DBG_TRC, "ap tkip mic error received from aid=%d\n", keyid); memset(tsc, 0, sizeof(tsc)); /* FIX: get correct TSC */ cfg80211_michael_mic_failure(ar->net_dev, sta->mac, NL80211_KEYTYPE_PAIRWISE, keyid, tsc, GFP_KERNEL); } else ath6kl_cfg80211_tkip_micerr_event(ar, keyid, ismcast); } static void ath6kl_update_target_stats(struct ath6kl *ar, u8 *ptr, u32 len) { struct wmi_target_stats *tgt_stats = (struct wmi_target_stats *) ptr; struct target_stats *stats = &ar->target_stats; struct tkip_ccmp_stats *ccmp_stats; struct bss *conn_bss = NULL; struct cserv_stats *c_stats; u8 ac; if (len < sizeof(*tgt_stats)) return; /* update the RSSI of the connected bss */ if (test_bit(CONNECTED, &ar->flag)) { conn_bss = ath6kl_wmi_find_node(ar->wmi, ar->bssid); if (conn_bss) { c_stats = &tgt_stats->cserv_stats; conn_bss->ni_rssi = a_sle16_to_cpu(c_stats->cs_ave_beacon_rssi); conn_bss->ni_snr = tgt_stats->cserv_stats.cs_ave_beacon_snr; ath6kl_wmi_node_return(ar->wmi, conn_bss); } } ath6kl_dbg(ATH6KL_DBG_TRC, "updating target stats\n"); stats->tx_pkt += le32_to_cpu(tgt_stats->stats.tx.pkt); stats->tx_byte += le32_to_cpu(tgt_stats->stats.tx.byte); stats->tx_ucast_pkt += le32_to_cpu(tgt_stats->stats.tx.ucast_pkt); stats->tx_ucast_byte += le32_to_cpu(tgt_stats->stats.tx.ucast_byte); stats->tx_mcast_pkt += le32_to_cpu(tgt_stats->stats.tx.mcast_pkt); stats->tx_mcast_byte += le32_to_cpu(tgt_stats->stats.tx.mcast_byte); stats->tx_bcast_pkt += le32_to_cpu(tgt_stats->stats.tx.bcast_pkt); stats->tx_bcast_byte += le32_to_cpu(tgt_stats->stats.tx.bcast_byte); stats->tx_rts_success_cnt += le32_to_cpu(tgt_stats->stats.tx.rts_success_cnt); for (ac = 0; ac < WMM_NUM_AC; ac++) stats->tx_pkt_per_ac[ac] += le32_to_cpu(tgt_stats->stats.tx.pkt_per_ac[ac]); stats->tx_err += le32_to_cpu(tgt_stats->stats.tx.err); stats->tx_fail_cnt += le32_to_cpu(tgt_stats->stats.tx.fail_cnt); stats->tx_retry_cnt += le32_to_cpu(tgt_stats->stats.tx.retry_cnt); stats->tx_mult_retry_cnt += le32_to_cpu(tgt_stats->stats.tx.mult_retry_cnt); stats->tx_rts_fail_cnt += le32_to_cpu(tgt_stats->stats.tx.rts_fail_cnt); stats->tx_ucast_rate = ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.tx.ucast_rate)); stats->rx_pkt += le32_to_cpu(tgt_stats->stats.rx.pkt); stats->rx_byte += le32_to_cpu(tgt_stats->stats.rx.byte); stats->rx_ucast_pkt += le32_to_cpu(tgt_stats->stats.rx.ucast_pkt); stats->rx_ucast_byte += le32_to_cpu(tgt_stats->stats.rx.ucast_byte); stats->rx_mcast_pkt += le32_to_cpu(tgt_stats->stats.rx.mcast_pkt); stats->rx_mcast_byte += le32_to_cpu(tgt_stats->stats.rx.mcast_byte); stats->rx_bcast_pkt += le32_to_cpu(tgt_stats->stats.rx.bcast_pkt); stats->rx_bcast_byte += le32_to_cpu(tgt_stats->stats.rx.bcast_byte); stats->rx_frgment_pkt += le32_to_cpu(tgt_stats->stats.rx.frgment_pkt); stats->rx_err += le32_to_cpu(tgt_stats->stats.rx.err); stats->rx_crc_err += le32_to_cpu(tgt_stats->stats.rx.crc_err); stats->rx_key_cache_miss += le32_to_cpu(tgt_stats->stats.rx.key_cache_miss); stats->rx_decrypt_err += le32_to_cpu(tgt_stats->stats.rx.decrypt_err); stats->rx_dupl_frame += le32_to_cpu(tgt_stats->stats.rx.dupl_frame); stats->rx_ucast_rate = ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.rx.ucast_rate)); ccmp_stats = &tgt_stats->stats.tkip_ccmp_stats; stats->tkip_local_mic_fail += le32_to_cpu(ccmp_stats->tkip_local_mic_fail); stats->tkip_cnter_measures_invoked += le32_to_cpu(ccmp_stats->tkip_cnter_measures_invoked); stats->tkip_fmt_err += le32_to_cpu(ccmp_stats->tkip_fmt_err); stats->ccmp_fmt_err += le32_to_cpu(ccmp_stats->ccmp_fmt_err); stats->ccmp_replays += le32_to_cpu(ccmp_stats->ccmp_replays); stats->pwr_save_fail_cnt += le32_to_cpu(tgt_stats->pm_stats.pwr_save_failure_cnt); stats->noise_floor_calib = a_sle32_to_cpu(tgt_stats->noise_floor_calib); stats->cs_bmiss_cnt += le32_to_cpu(tgt_stats->cserv_stats.cs_bmiss_cnt); stats->cs_low_rssi_cnt += le32_to_cpu(tgt_stats->cserv_stats.cs_low_rssi_cnt); stats->cs_connect_cnt += le16_to_cpu(tgt_stats->cserv_stats.cs_connect_cnt); stats->cs_discon_cnt += le16_to_cpu(tgt_stats->cserv_stats.cs_discon_cnt); stats->cs_ave_beacon_rssi = a_sle16_to_cpu(tgt_stats->cserv_stats.cs_ave_beacon_rssi); stats->cs_last_roam_msec = tgt_stats->cserv_stats.cs_last_roam_msec; stats->cs_snr = tgt_stats->cserv_stats.cs_snr; stats->cs_rssi = a_sle16_to_cpu(tgt_stats->cserv_stats.cs_rssi); stats->lq_val = le32_to_cpu(tgt_stats->lq_val); stats->wow_pkt_dropped += le32_to_cpu(tgt_stats->wow_stats.wow_pkt_dropped); stats->wow_host_pkt_wakeups += tgt_stats->wow_stats.wow_host_pkt_wakeups; stats->wow_host_evt_wakeups += tgt_stats->wow_stats.wow_host_evt_wakeups; stats->wow_evt_discarded += le16_to_cpu(tgt_stats->wow_stats.wow_evt_discarded); if (test_bit(STATS_UPDATE_PEND, &ar->flag)) { clear_bit(STATS_UPDATE_PEND, &ar->flag); wake_up(&ar->event_wq); } } static void ath6kl_add_le32(__le32 *var, __le32 val) { *var = cpu_to_le32(le32_to_cpu(*var) + le32_to_cpu(val)); } void ath6kl_tgt_stats_event(struct ath6kl *ar, u8 *ptr, u32 len) { struct wmi_ap_mode_stat *p = (struct wmi_ap_mode_stat *) ptr; struct wmi_ap_mode_stat *ap = &ar->ap_stats; struct wmi_per_sta_stat *st_ap, *st_p; u8 ac; if (ar->nw_type == AP_NETWORK) { if (len < sizeof(*p)) return; for (ac = 0; ac < AP_MAX_NUM_STA; ac++) { st_ap = &ap->sta[ac]; st_p = &p->sta[ac]; ath6kl_add_le32(&st_ap->tx_bytes, st_p->tx_bytes); ath6kl_add_le32(&st_ap->tx_pkts, st_p->tx_pkts); ath6kl_add_le32(&st_ap->tx_error, st_p->tx_error); ath6kl_add_le32(&st_ap->tx_discard, st_p->tx_discard); ath6kl_add_le32(&st_ap->rx_bytes, st_p->rx_bytes); ath6kl_add_le32(&st_ap->rx_pkts, st_p->rx_pkts); ath6kl_add_le32(&st_ap->rx_error, st_p->rx_error); ath6kl_add_le32(&st_ap->rx_discard, st_p->rx_discard); } } else { ath6kl_update_target_stats(ar, ptr, len); } } void ath6kl_wakeup_event(void *dev) { struct ath6kl *ar = (struct ath6kl *) dev; wake_up(&ar->event_wq); } void ath6kl_txpwr_rx_evt(void *devt, u8 tx_pwr) { struct ath6kl *ar = (struct ath6kl *) devt; ar->tx_pwr = tx_pwr; wake_up(&ar->event_wq); } void ath6kl_pspoll_event(struct ath6kl *ar, u8 aid) { struct ath6kl_sta *conn; struct sk_buff *skb; bool psq_empty = false; conn = ath6kl_find_sta_by_aid(ar, aid); if (!conn) return; /* * Send out a packet queued on ps queue. When the ps queue * becomes empty update the PVB for this station. */ spin_lock_bh(&conn->psq_lock); psq_empty = skb_queue_empty(&conn->psq); spin_unlock_bh(&conn->psq_lock); if (psq_empty) /* TODO: Send out a NULL data frame */ return; spin_lock_bh(&conn->psq_lock); skb = skb_dequeue(&conn->psq); spin_unlock_bh(&conn->psq_lock); conn->sta_flags |= STA_PS_POLLED; ath6kl_data_tx(skb, ar->net_dev); conn->sta_flags &= ~STA_PS_POLLED; spin_lock_bh(&conn->psq_lock); psq_empty = skb_queue_empty(&conn->psq); spin_unlock_bh(&conn->psq_lock); if (psq_empty) ath6kl_wmi_set_pvb_cmd(ar->wmi, conn->aid, 0); } void ath6kl_dtimexpiry_event(struct ath6kl *ar) { bool mcastq_empty = false; struct sk_buff *skb; /* * If there are no associated STAs, ignore the DTIM expiry event. * There can be potential race conditions where the last associated * STA may disconnect & before the host could clear the 'Indicate * DTIM' request to the firmware, the firmware would have just * indicated a DTIM expiry event. The race is between 'clear DTIM * expiry cmd' going from the host to the firmware & the DTIM * expiry event happening from the firmware to the host. */ if (!ar->sta_list_index) return; spin_lock_bh(&ar->mcastpsq_lock); mcastq_empty = skb_queue_empty(&ar->mcastpsq); spin_unlock_bh(&ar->mcastpsq_lock); if (mcastq_empty) return; /* set the STA flag to dtim_expired for the frame to go out */ set_bit(DTIM_EXPIRED, &ar->flag); spin_lock_bh(&ar->mcastpsq_lock); while ((skb = skb_dequeue(&ar->mcastpsq)) != NULL) { spin_unlock_bh(&ar->mcastpsq_lock); ath6kl_data_tx(skb, ar->net_dev); spin_lock_bh(&ar->mcastpsq_lock); } spin_unlock_bh(&ar->mcastpsq_lock); clear_bit(DTIM_EXPIRED, &ar->flag); /* clear the LSB of the BitMapCtl field of the TIM IE */ ath6kl_wmi_set_pvb_cmd(ar->wmi, MCAST_AID, 0); } void ath6kl_disconnect_event(struct ath6kl *ar, u8 reason, u8 *bssid, u8 assoc_resp_len, u8 *assoc_info, u16 prot_reason_status) { struct bss *wmi_ssid_node = NULL; unsigned long flags; if (ar->nw_type == AP_NETWORK) { if (!ath6kl_remove_sta(ar, bssid, prot_reason_status)) return; /* if no more associated STAs, empty the mcast PS q */ if (ar->sta_list_index == 0) { spin_lock_bh(&ar->mcastpsq_lock); skb_queue_purge(&ar->mcastpsq); spin_unlock_bh(&ar->mcastpsq_lock); /* clear the LSB of the TIM IE's BitMapCtl field */ if (test_bit(WMI_READY, &ar->flag)) ath6kl_wmi_set_pvb_cmd(ar->wmi, MCAST_AID, 0); } if (!is_broadcast_ether_addr(bssid)) { /* send event to application */ cfg80211_del_sta(ar->net_dev, bssid, GFP_KERNEL); } clear_bit(CONNECTED, &ar->flag); return; } ath6kl_cfg80211_disconnect_event(ar, reason, bssid, assoc_resp_len, assoc_info, prot_reason_status); aggr_reset_state(ar->aggr_cntxt); del_timer(&ar->disconnect_timer); ath6kl_dbg(ATH6KL_DBG_WLAN_CONNECT, "disconnect reason is %d\n", reason); /* * If the event is due to disconnect cmd from the host, only they * the target would stop trying to connect. Under any other * condition, target would keep trying to connect. */ if (reason == DISCONNECT_CMD) { if (!ar->usr_bss_filter && test_bit(WMI_READY, &ar->flag)) ath6kl_wmi_bssfilter_cmd(ar->wmi, NONE_BSS_FILTER, 0); } else { set_bit(CONNECT_PEND, &ar->flag); if (((reason == ASSOC_FAILED) && (prot_reason_status == 0x11)) || ((reason == ASSOC_FAILED) && (prot_reason_status == 0x0) && (ar->reconnect_flag == 1))) { set_bit(CONNECTED, &ar->flag); return; } } if ((reason == NO_NETWORK_AVAIL) && test_bit(WMI_READY, &ar->flag)) { ath6kl_wmi_node_free(ar->wmi, bssid); /* * In case any other same SSID nodes are present remove it, * since those nodes also not available now. */ do { /* * Find the nodes based on SSID and remove it * * Note: This case will not work out for * Hidden-SSID */ wmi_ssid_node = ath6kl_wmi_find_ssid_node(ar->wmi, ar->ssid, ar->ssid_len, false, true); if (wmi_ssid_node) ath6kl_wmi_node_free(ar->wmi, wmi_ssid_node->ni_macaddr); } while (wmi_ssid_node); } /* update connect & link status atomically */ spin_lock_irqsave(&ar->lock, flags); clear_bit(CONNECTED, &ar->flag); netif_carrier_off(ar->net_dev); spin_unlock_irqrestore(&ar->lock, flags); if ((reason != CSERV_DISCONNECT) || (ar->reconnect_flag != 1)) ar->reconnect_flag = 0; if (reason != CSERV_DISCONNECT) ar->user_key_ctrl = 0; netif_stop_queue(ar->net_dev); memset(ar->bssid, 0, sizeof(ar->bssid)); ar->bss_ch = 0; ath6kl_tx_data_cleanup(ar); } static int ath6kl_open(struct net_device *dev) { struct ath6kl *ar = ath6kl_priv(dev); unsigned long flags; spin_lock_irqsave(&ar->lock, flags); set_bit(WLAN_ENABLED, &ar->flag); if (test_bit(CONNECTED, &ar->flag)) { netif_carrier_on(dev); netif_wake_queue(dev); } else netif_carrier_off(dev); spin_unlock_irqrestore(&ar->lock, flags); return 0; } static int ath6kl_close(struct net_device *dev) { struct ath6kl *ar = ath6kl_priv(dev); netif_stop_queue(dev); ath6kl_disconnect(ar); if (test_bit(WMI_READY, &ar->flag)) { if (ath6kl_wmi_scanparams_cmd(ar->wmi, 0xFFFF, 0, 0, 0, 0, 0, 0, 0, 0, 0)) return -EIO; clear_bit(WLAN_ENABLED, &ar->flag); } ath6kl_cfg80211_scan_complete_event(ar, -ECANCELED); return 0; } static struct net_device_stats *ath6kl_get_stats(struct net_device *dev) { struct ath6kl *ar = ath6kl_priv(dev); return &ar->net_stats; } static struct net_device_ops ath6kl_netdev_ops = { .ndo_open = ath6kl_open, .ndo_stop = ath6kl_close, .ndo_start_xmit = ath6kl_data_tx, .ndo_get_stats = ath6kl_get_stats, }; void init_netdev(struct net_device *dev) { dev->netdev_ops = &ath6kl_netdev_ops; dev->watchdog_timeo = ATH6KL_TX_TIMEOUT; dev->needed_headroom = ETH_HLEN; dev->needed_headroom += sizeof(struct ath6kl_llc_snap_hdr) + sizeof(struct wmi_data_hdr) + HTC_HDR_LENGTH + WMI_MAX_TX_META_SZ; return; }