/* * Atheros AR9170 driver * * mac80211 interaction code * * Copyright 2008, Johannes Berg * Copyright 2009, Christian Lamparter * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, see * http://www.gnu.org/licenses/. * * This file incorporates work covered by the following copyright and * permission notice: * Copyright (c) 2007-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include "ar9170.h" #include "hw.h" #include "cmd.h" static int modparam_nohwcrypt; module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); static int modparam_ht; module_param_named(ht, modparam_ht, bool, S_IRUGO); MODULE_PARM_DESC(ht, "enable MPDU aggregation."); #define RATE(_bitrate, _hw_rate, _txpidx, _flags) { \ .bitrate = (_bitrate), \ .flags = (_flags), \ .hw_value = (_hw_rate) | (_txpidx) << 4, \ } static struct ieee80211_rate __ar9170_ratetable[] = { RATE(10, 0, 0, 0), RATE(20, 1, 1, IEEE80211_RATE_SHORT_PREAMBLE), RATE(55, 2, 2, IEEE80211_RATE_SHORT_PREAMBLE), RATE(110, 3, 3, IEEE80211_RATE_SHORT_PREAMBLE), RATE(60, 0xb, 0, 0), RATE(90, 0xf, 0, 0), RATE(120, 0xa, 0, 0), RATE(180, 0xe, 0, 0), RATE(240, 0x9, 0, 0), RATE(360, 0xd, 1, 0), RATE(480, 0x8, 2, 0), RATE(540, 0xc, 3, 0), }; #undef RATE #define ar9170_g_ratetable (__ar9170_ratetable + 0) #define ar9170_g_ratetable_size 12 #define ar9170_a_ratetable (__ar9170_ratetable + 4) #define ar9170_a_ratetable_size 8 /* * NB: The hw_value is used as an index into the ar9170_phy_freq_params * array in phy.c so that we don't have to do frequency lookups! */ #define CHAN(_freq, _idx) { \ .center_freq = (_freq), \ .hw_value = (_idx), \ .max_power = 18, /* XXX */ \ } static struct ieee80211_channel ar9170_2ghz_chantable[] = { CHAN(2412, 0), CHAN(2417, 1), CHAN(2422, 2), CHAN(2427, 3), CHAN(2432, 4), CHAN(2437, 5), CHAN(2442, 6), CHAN(2447, 7), CHAN(2452, 8), CHAN(2457, 9), CHAN(2462, 10), CHAN(2467, 11), CHAN(2472, 12), CHAN(2484, 13), }; static struct ieee80211_channel ar9170_5ghz_chantable[] = { CHAN(4920, 14), CHAN(4940, 15), CHAN(4960, 16), CHAN(4980, 17), CHAN(5040, 18), CHAN(5060, 19), CHAN(5080, 20), CHAN(5180, 21), CHAN(5200, 22), CHAN(5220, 23), CHAN(5240, 24), CHAN(5260, 25), CHAN(5280, 26), CHAN(5300, 27), CHAN(5320, 28), CHAN(5500, 29), CHAN(5520, 30), CHAN(5540, 31), CHAN(5560, 32), CHAN(5580, 33), CHAN(5600, 34), CHAN(5620, 35), CHAN(5640, 36), CHAN(5660, 37), CHAN(5680, 38), CHAN(5700, 39), CHAN(5745, 40), CHAN(5765, 41), CHAN(5785, 42), CHAN(5805, 43), CHAN(5825, 44), CHAN(5170, 45), CHAN(5190, 46), CHAN(5210, 47), CHAN(5230, 48), }; #undef CHAN #define AR9170_HT_CAP \ { \ .ht_supported = true, \ .cap = IEEE80211_HT_CAP_MAX_AMSDU | \ IEEE80211_HT_CAP_SUP_WIDTH_20_40 | \ IEEE80211_HT_CAP_SGI_40 | \ IEEE80211_HT_CAP_GRN_FLD | \ IEEE80211_HT_CAP_DSSSCCK40 | \ IEEE80211_HT_CAP_SM_PS, \ .ampdu_factor = 3, \ .ampdu_density = 6, \ .mcs = { \ .rx_mask = { 0xff, 0xff, 0, 0, 0x1, 0, 0, 0, 0, 0, }, \ .rx_highest = cpu_to_le16(300), \ .tx_params = IEEE80211_HT_MCS_TX_DEFINED, \ }, \ } static struct ieee80211_supported_band ar9170_band_2GHz = { .channels = ar9170_2ghz_chantable, .n_channels = ARRAY_SIZE(ar9170_2ghz_chantable), .bitrates = ar9170_g_ratetable, .n_bitrates = ar9170_g_ratetable_size, .ht_cap = AR9170_HT_CAP, }; static struct ieee80211_supported_band ar9170_band_5GHz = { .channels = ar9170_5ghz_chantable, .n_channels = ARRAY_SIZE(ar9170_5ghz_chantable), .bitrates = ar9170_a_ratetable, .n_bitrates = ar9170_a_ratetable_size, .ht_cap = AR9170_HT_CAP, }; static void ar9170_tx(struct ar9170 *ar); static bool ar9170_tx_ampdu(struct ar9170 *ar); static inline u16 ar9170_get_seq_h(struct ieee80211_hdr *hdr) { return le16_to_cpu(hdr->seq_ctrl) >> 4; } static inline u16 ar9170_get_seq(struct sk_buff *skb) { struct ar9170_tx_control *txc = (void *) skb->data; return ar9170_get_seq_h((void *) txc->frame_data); } static inline u16 ar9170_get_tid_h(struct ieee80211_hdr *hdr) { return (ieee80211_get_qos_ctl(hdr))[0] & IEEE80211_QOS_CTL_TID_MASK; } static inline u16 ar9170_get_tid(struct sk_buff *skb) { struct ar9170_tx_control *txc = (void *) skb->data; return ar9170_get_tid_h((struct ieee80211_hdr *) txc->frame_data); } #define GET_NEXT_SEQ(seq) ((seq + 1) & 0x0fff) #define GET_NEXT_SEQ_FROM_SKB(skb) (GET_NEXT_SEQ(ar9170_get_seq(skb))) #if (defined AR9170_QUEUE_DEBUG) || (defined AR9170_TXAGG_DEBUG) static void ar9170_print_txheader(struct ar9170 *ar, struct sk_buff *skb) { struct ar9170_tx_control *txc = (void *) skb->data; struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb); struct ar9170_tx_info *arinfo = (void *) txinfo->rate_driver_data; struct ieee80211_hdr *hdr = (void *) txc->frame_data; printk(KERN_DEBUG "%s: => FRAME [skb:%p, q:%d, DA:[%pM] s:%d " "mac_ctrl:%04x, phy_ctrl:%08x, timeout:[%d ms]]\n", wiphy_name(ar->hw->wiphy), skb, skb_get_queue_mapping(skb), ieee80211_get_DA(hdr), ar9170_get_seq_h(hdr), le16_to_cpu(txc->mac_control), le32_to_cpu(txc->phy_control), jiffies_to_msecs(arinfo->timeout - jiffies)); } static void __ar9170_dump_txqueue(struct ar9170 *ar, struct sk_buff_head *queue) { struct sk_buff *skb; int i = 0; printk(KERN_DEBUG "---[ cut here ]---\n"); printk(KERN_DEBUG "%s: %d entries in queue.\n", wiphy_name(ar->hw->wiphy), skb_queue_len(queue)); skb_queue_walk(queue, skb) { printk(KERN_DEBUG "index:%d =>\n", i++); ar9170_print_txheader(ar, skb); } if (i != skb_queue_len(queue)) printk(KERN_DEBUG "WARNING: queue frame counter " "mismatch %d != %d\n", skb_queue_len(queue), i); printk(KERN_DEBUG "---[ end ]---\n"); } #endif /* AR9170_QUEUE_DEBUG || AR9170_TXAGG_DEBUG */ #ifdef AR9170_QUEUE_DEBUG static void ar9170_dump_txqueue(struct ar9170 *ar, struct sk_buff_head *queue) { unsigned long flags; spin_lock_irqsave(&queue->lock, flags); __ar9170_dump_txqueue(ar, queue); spin_unlock_irqrestore(&queue->lock, flags); } #endif /* AR9170_QUEUE_DEBUG */ #ifdef AR9170_QUEUE_STOP_DEBUG static void __ar9170_dump_txstats(struct ar9170 *ar) { int i; printk(KERN_DEBUG "%s: QoS queue stats\n", wiphy_name(ar->hw->wiphy)); for (i = 0; i < __AR9170_NUM_TXQ; i++) printk(KERN_DEBUG "%s: queue:%d limit:%d len:%d waitack:%d " " stopped:%d\n", wiphy_name(ar->hw->wiphy), i, ar->tx_stats[i].limit, ar->tx_stats[i].len, skb_queue_len(&ar->tx_status[i]), ieee80211_queue_stopped(ar->hw, i)); } #endif /* AR9170_QUEUE_STOP_DEBUG */ #ifdef AR9170_TXAGG_DEBUG static void ar9170_dump_tx_status_ampdu(struct ar9170 *ar) { unsigned long flags; spin_lock_irqsave(&ar->tx_status_ampdu.lock, flags); printk(KERN_DEBUG "%s: A-MPDU tx_status queue =>\n", wiphy_name(ar->hw->wiphy)); __ar9170_dump_txqueue(ar, &ar->tx_status_ampdu); spin_unlock_irqrestore(&ar->tx_status_ampdu.lock, flags); } #endif /* AR9170_TXAGG_DEBUG */ /* caller must guarantee exclusive access for _bin_ queue. */ static void ar9170_recycle_expired(struct ar9170 *ar, struct sk_buff_head *queue, struct sk_buff_head *bin) { struct sk_buff *skb, *old = NULL; unsigned long flags; spin_lock_irqsave(&queue->lock, flags); while ((skb = skb_peek(queue))) { struct ieee80211_tx_info *txinfo; struct ar9170_tx_info *arinfo; txinfo = IEEE80211_SKB_CB(skb); arinfo = (void *) txinfo->rate_driver_data; if (time_is_before_jiffies(arinfo->timeout)) { #ifdef AR9170_QUEUE_DEBUG printk(KERN_DEBUG "%s: [%ld > %ld] frame expired => " "recycle\n", wiphy_name(ar->hw->wiphy), jiffies, arinfo->timeout); ar9170_print_txheader(ar, skb); #endif /* AR9170_QUEUE_DEBUG */ __skb_unlink(skb, queue); __skb_queue_tail(bin, skb); } else { break; } if (unlikely(old == skb)) { /* bail out - queue is shot. */ WARN_ON(1); break; } old = skb; } spin_unlock_irqrestore(&queue->lock, flags); } static void ar9170_tx_status(struct ar9170 *ar, struct sk_buff *skb, u16 tx_status) { struct ieee80211_tx_info *txinfo; unsigned int retries = 0; txinfo = IEEE80211_SKB_CB(skb); ieee80211_tx_info_clear_status(txinfo); switch (tx_status) { case AR9170_TX_STATUS_RETRY: retries = 2; case AR9170_TX_STATUS_COMPLETE: txinfo->flags |= IEEE80211_TX_STAT_ACK; break; case AR9170_TX_STATUS_FAILED: retries = ar->hw->conf.long_frame_max_tx_count; break; default: printk(KERN_ERR "%s: invalid tx_status response (%x).\n", wiphy_name(ar->hw->wiphy), tx_status); break; } txinfo->status.rates[0].count = retries + 1; skb_pull(skb, sizeof(struct ar9170_tx_control)); ieee80211_tx_status_irqsafe(ar->hw, skb); } static void ar9170_tx_fake_ampdu_status(struct ar9170 *ar) { struct sk_buff_head success; struct sk_buff *skb; unsigned int i; unsigned long queue_bitmap = 0; skb_queue_head_init(&success); while (skb_queue_len(&ar->tx_status_ampdu) > AR9170_NUM_TX_STATUS) __skb_queue_tail(&success, skb_dequeue(&ar->tx_status_ampdu)); ar9170_recycle_expired(ar, &ar->tx_status_ampdu, &success); #ifdef AR9170_TXAGG_DEBUG printk(KERN_DEBUG "%s: collected %d A-MPDU frames.\n", wiphy_name(ar->hw->wiphy), skb_queue_len(&success)); __ar9170_dump_txqueue(ar, &success); #endif /* AR9170_TXAGG_DEBUG */ while ((skb = __skb_dequeue(&success))) { struct ieee80211_tx_info *txinfo; queue_bitmap |= BIT(skb_get_queue_mapping(skb)); txinfo = IEEE80211_SKB_CB(skb); ieee80211_tx_info_clear_status(txinfo); txinfo->flags |= IEEE80211_TX_STAT_ACK; txinfo->status.rates[0].count = 1; skb_pull(skb, sizeof(struct ar9170_tx_control)); ieee80211_tx_status_irqsafe(ar->hw, skb); } for_each_bit(i, &queue_bitmap, BITS_PER_BYTE) { #ifdef AR9170_QUEUE_STOP_DEBUG printk(KERN_DEBUG "%s: wake queue %d\n", wiphy_name(ar->hw->wiphy), i); __ar9170_dump_txstats(ar); #endif /* AR9170_QUEUE_STOP_DEBUG */ ieee80211_wake_queue(ar->hw, i); } if (queue_bitmap) ar9170_tx(ar); } static void ar9170_tx_ampdu_callback(struct ar9170 *ar, struct sk_buff *skb) { struct ieee80211_tx_info *txinfo = IEEE80211_SKB_CB(skb); struct ar9170_tx_info *arinfo = (void *) txinfo->rate_driver_data; arinfo->timeout = jiffies + msecs_to_jiffies(AR9170_BA_TIMEOUT); skb_queue_tail(&ar->tx_status_ampdu, skb); ar9170_tx_fake_ampdu_status(ar); if (atomic_dec_and_test(&ar->tx_ampdu_pending) && !list_empty(&ar->tx_ampdu_list)) ar9170_tx_ampdu(ar); } void ar9170_tx_callback(struct ar9170 *ar, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ar9170_tx_info *arinfo = (void *) info->rate_driver_data; unsigned int queue = skb_get_queue_mapping(skb); unsigned long flags; spin_lock_irqsave(&ar->tx_stats_lock, flags); ar->tx_stats[queue].len--; if (ar->tx_stats[queue].len < AR9170_NUM_TX_LIMIT_SOFT) { #ifdef AR9170_QUEUE_STOP_DEBUG printk(KERN_DEBUG "%s: wake queue %d\n", wiphy_name(ar->hw->wiphy), queue); __ar9170_dump_txstats(ar); #endif /* AR9170_QUEUE_STOP_DEBUG */ ieee80211_wake_queue(ar->hw, queue); } spin_unlock_irqrestore(&ar->tx_stats_lock, flags); if (info->flags & IEEE80211_TX_CTL_NO_ACK) { ar9170_tx_status(ar, skb, AR9170_TX_STATUS_FAILED); } else { if (info->flags & IEEE80211_TX_CTL_AMPDU) { ar9170_tx_ampdu_callback(ar, skb); } else { arinfo->timeout = jiffies + msecs_to_jiffies(AR9170_TX_TIMEOUT); skb_queue_tail(&ar->tx_status[queue], skb); } } if (!ar->tx_stats[queue].len && !skb_queue_empty(&ar->tx_pending[queue])) { ar9170_tx(ar); } } static struct sk_buff *ar9170_get_queued_skb(struct ar9170 *ar, const u8 *mac, struct sk_buff_head *queue, const u32 rate) { unsigned long flags; struct sk_buff *skb; /* * Unfortunately, the firmware does not tell to which (queued) frame * this transmission status report belongs to. * * So we have to make risky guesses - with the scarce information * the firmware provided (-> destination MAC, and phy_control) - * and hope that we picked the right one... */ spin_lock_irqsave(&queue->lock, flags); skb_queue_walk(queue, skb) { struct ar9170_tx_control *txc = (void *) skb->data; struct ieee80211_hdr *hdr = (void *) txc->frame_data; u32 r; if (mac && compare_ether_addr(ieee80211_get_DA(hdr), mac)) { #ifdef AR9170_QUEUE_DEBUG printk(KERN_DEBUG "%s: skip frame => DA %pM != %pM\n", wiphy_name(ar->hw->wiphy), mac, ieee80211_get_DA(hdr)); ar9170_print_txheader(ar, skb); #endif /* AR9170_QUEUE_DEBUG */ continue; } r = (le32_to_cpu(txc->phy_control) & AR9170_TX_PHY_MCS_MASK) >> AR9170_TX_PHY_MCS_SHIFT; if ((rate != AR9170_TX_INVALID_RATE) && (r != rate)) { #ifdef AR9170_QUEUE_DEBUG printk(KERN_DEBUG "%s: skip frame => rate %d != %d\n", wiphy_name(ar->hw->wiphy), rate, r); ar9170_print_txheader(ar, skb); #endif /* AR9170_QUEUE_DEBUG */ continue; } __skb_unlink(skb, queue); spin_unlock_irqrestore(&queue->lock, flags); return skb; } #ifdef AR9170_QUEUE_DEBUG printk(KERN_ERR "%s: ESS:[%pM] does not have any " "outstanding frames in queue.\n", wiphy_name(ar->hw->wiphy), mac); __ar9170_dump_txqueue(ar, queue); #endif /* AR9170_QUEUE_DEBUG */ spin_unlock_irqrestore(&queue->lock, flags); return NULL; } static void ar9170_handle_block_ack(struct ar9170 *ar, u16 count, u16 r) { struct sk_buff *skb; struct ieee80211_tx_info *txinfo; while (count) { skb = ar9170_get_queued_skb(ar, NULL, &ar->tx_status_ampdu, r); if (!skb) break; txinfo = IEEE80211_SKB_CB(skb); ieee80211_tx_info_clear_status(txinfo); /* FIXME: maybe more ? */ txinfo->status.rates[0].count = 1; skb_pull(skb, sizeof(struct ar9170_tx_control)); ieee80211_tx_status_irqsafe(ar->hw, skb); count--; } #ifdef AR9170_TXAGG_DEBUG if (count) { printk(KERN_DEBUG "%s: got %d more failed mpdus, but no more " "suitable frames left in tx_status queue.\n", wiphy_name(ar->hw->wiphy), count); ar9170_dump_tx_status_ampdu(ar); } #endif /* AR9170_TXAGG_DEBUG */ } /* * This worker tries to keeps an maintain tx_status queues. * So we can guarantee that incoming tx_status reports are * actually for a pending frame. */ static void ar9170_tx_janitor(struct work_struct *work) { struct ar9170 *ar = container_of(work, struct ar9170, tx_janitor.work); struct sk_buff_head waste; unsigned int i; bool resched = false; if (unlikely(!IS_STARTED(ar))) return ; skb_queue_head_init(&waste); for (i = 0; i < __AR9170_NUM_TXQ; i++) { #ifdef AR9170_QUEUE_DEBUG printk(KERN_DEBUG "%s: garbage collector scans queue:%d\n", wiphy_name(ar->hw->wiphy), i); ar9170_dump_txqueue(ar, &ar->tx_pending[i]); ar9170_dump_txqueue(ar, &ar->tx_status[i]); #endif /* AR9170_QUEUE_DEBUG */ ar9170_recycle_expired(ar, &ar->tx_status[i], &waste); ar9170_recycle_expired(ar, &ar->tx_pending[i], &waste); skb_queue_purge(&waste); if (!skb_queue_empty(&ar->tx_status[i]) || !skb_queue_empty(&ar->tx_pending[i])) resched = true; } ar9170_tx_fake_ampdu_status(ar); if (!resched) return; ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, msecs_to_jiffies(AR9170_JANITOR_DELAY)); } void ar9170_handle_command_response(struct ar9170 *ar, void *buf, u32 len) { struct ar9170_cmd_response *cmd = (void *) buf; if ((cmd->type & 0xc0) != 0xc0) { ar->callback_cmd(ar, len, buf); return; } /* hardware event handlers */ switch (cmd->type) { case 0xc1: { /* * TX status notification: * bytes: 0c c1 XX YY M1 M2 M3 M4 M5 M6 R4 R3 R2 R1 S2 S1 * * XX always 81 * YY always 00 * M1-M6 is the MAC address * R1-R4 is the transmit rate * S1-S2 is the transmit status */ struct sk_buff *skb; u32 phy = le32_to_cpu(cmd->tx_status.rate); u32 q = (phy & AR9170_TX_PHY_QOS_MASK) >> AR9170_TX_PHY_QOS_SHIFT; #ifdef AR9170_QUEUE_DEBUG printk(KERN_DEBUG "%s: recv tx_status for %pM, p:%08x, q:%d\n", wiphy_name(ar->hw->wiphy), cmd->tx_status.dst, phy, q); #endif /* AR9170_QUEUE_DEBUG */ skb = ar9170_get_queued_skb(ar, cmd->tx_status.dst, &ar->tx_status[q], AR9170_TX_INVALID_RATE); if (unlikely(!skb)) return ; ar9170_tx_status(ar, skb, le16_to_cpu(cmd->tx_status.status)); break; } case 0xc0: /* * pre-TBTT event */ if (ar->vif && ar->vif->type == NL80211_IFTYPE_AP) ieee80211_queue_work(ar->hw, &ar->beacon_work); break; case 0xc2: /* * (IBSS) beacon send notification * bytes: 04 c2 XX YY B4 B3 B2 B1 * * XX always 80 * YY always 00 * B1-B4 "should" be the number of send out beacons. */ break; case 0xc3: /* End of Atim Window */ break; case 0xc4: /* BlockACK bitmap */ break; case 0xc5: /* BlockACK events */ ar9170_handle_block_ack(ar, le16_to_cpu(cmd->ba_fail_cnt.failed), le16_to_cpu(cmd->ba_fail_cnt.rate)); ar9170_tx_fake_ampdu_status(ar); break; case 0xc6: /* Watchdog Interrupt */ break; case 0xc9: /* retransmission issue / SIFS/EIFS collision ?! */ break; /* firmware debug */ case 0xca: printk(KERN_DEBUG "ar9170 FW: %.*s\n", len - 4, (char *)buf + 4); break; case 0xcb: len -= 4; switch (len) { case 1: printk(KERN_DEBUG "ar9170 FW: u8: %#.2x\n", *((char *)buf + 4)); break; case 2: printk(KERN_DEBUG "ar9170 FW: u8: %#.4x\n", le16_to_cpup((__le16 *)((char *)buf + 4))); break; case 4: printk(KERN_DEBUG "ar9170 FW: u8: %#.8x\n", le32_to_cpup((__le32 *)((char *)buf + 4))); break; case 8: printk(KERN_DEBUG "ar9170 FW: u8: %#.16lx\n", (unsigned long)le64_to_cpup( (__le64 *)((char *)buf + 4))); break; } break; case 0xcc: print_hex_dump_bytes("ar9170 FW:", DUMP_PREFIX_NONE, (char *)buf + 4, len - 4); break; default: printk(KERN_INFO "received unhandled event %x\n", cmd->type); print_hex_dump_bytes("dump:", DUMP_PREFIX_NONE, buf, len); break; } } static void ar9170_rx_reset_rx_mpdu(struct ar9170 *ar) { memset(&ar->rx_mpdu.plcp, 0, sizeof(struct ar9170_rx_head)); ar->rx_mpdu.has_plcp = false; } int ar9170_nag_limiter(struct ar9170 *ar) { bool print_message; /* * we expect all sorts of errors in promiscuous mode. * don't bother with it, it's OK! */ if (ar->sniffer_enabled) return false; /* * only go for frequent errors! The hardware tends to * do some stupid thing once in a while under load, in * noisy environments or just for fun! */ if (time_before(jiffies, ar->bad_hw_nagger) && net_ratelimit()) print_message = true; else print_message = false; /* reset threshold for "once in a while" */ ar->bad_hw_nagger = jiffies + HZ / 4; return print_message; } static int ar9170_rx_mac_status(struct ar9170 *ar, struct ar9170_rx_head *head, struct ar9170_rx_macstatus *mac, struct ieee80211_rx_status *status) { u8 error, decrypt; BUILD_BUG_ON(sizeof(struct ar9170_rx_head) != 12); BUILD_BUG_ON(sizeof(struct ar9170_rx_macstatus) != 4); error = mac->error; if (error & AR9170_RX_ERROR_MMIC) { status->flag |= RX_FLAG_MMIC_ERROR; error &= ~AR9170_RX_ERROR_MMIC; } if (error & AR9170_RX_ERROR_PLCP) { status->flag |= RX_FLAG_FAILED_PLCP_CRC; error &= ~AR9170_RX_ERROR_PLCP; if (!(ar->filter_state & FIF_PLCPFAIL)) return -EINVAL; } if (error & AR9170_RX_ERROR_FCS) { status->flag |= RX_FLAG_FAILED_FCS_CRC; error &= ~AR9170_RX_ERROR_FCS; if (!(ar->filter_state & FIF_FCSFAIL)) return -EINVAL; } decrypt = ar9170_get_decrypt_type(mac); if (!(decrypt & AR9170_RX_ENC_SOFTWARE) && decrypt != AR9170_ENC_ALG_NONE) status->flag |= RX_FLAG_DECRYPTED; /* ignore wrong RA errors */ error &= ~AR9170_RX_ERROR_WRONG_RA; if (error & AR9170_RX_ERROR_DECRYPT) { error &= ~AR9170_RX_ERROR_DECRYPT; /* * Rx decryption is done in place, * the original data is lost anyway. */ return -EINVAL; } /* drop any other error frames */ if (unlikely(error)) { /* TODO: update netdevice's RX dropped/errors statistics */ if (ar9170_nag_limiter(ar)) printk(KERN_DEBUG "%s: received frame with " "suspicious error code (%#x).\n", wiphy_name(ar->hw->wiphy), error); return -EINVAL; } status->band = ar->channel->band; status->freq = ar->channel->center_freq; switch (mac->status & AR9170_RX_STATUS_MODULATION_MASK) { case AR9170_RX_STATUS_MODULATION_CCK: if (mac->status & AR9170_RX_STATUS_SHORT_PREAMBLE) status->flag |= RX_FLAG_SHORTPRE; switch (head->plcp[0]) { case 0x0a: status->rate_idx = 0; break; case 0x14: status->rate_idx = 1; break; case 0x37: status->rate_idx = 2; break; case 0x6e: status->rate_idx = 3; break; default: if (ar9170_nag_limiter(ar)) printk(KERN_ERR "%s: invalid plcp cck rate " "(%x).\n", wiphy_name(ar->hw->wiphy), head->plcp[0]); return -EINVAL; } break; case AR9170_RX_STATUS_MODULATION_DUPOFDM: case AR9170_RX_STATUS_MODULATION_OFDM: switch (head->plcp[0] & 0xf) { case 0xb: status->rate_idx = 0; break; case 0xf: status->rate_idx = 1; break; case 0xa: status->rate_idx = 2; break; case 0xe: status->rate_idx = 3; break; case 0x9: status->rate_idx = 4; break; case 0xd: status->rate_idx = 5; break; case 0x8: status->rate_idx = 6; break; case 0xc: status->rate_idx = 7; break; default: if (ar9170_nag_limiter(ar)) printk(KERN_ERR "%s: invalid plcp ofdm rate " "(%x).\n", wiphy_name(ar->hw->wiphy), head->plcp[0]); return -EINVAL; } if (status->band == IEEE80211_BAND_2GHZ) status->rate_idx += 4; break; case AR9170_RX_STATUS_MODULATION_HT: if (head->plcp[3] & 0x80) status->flag |= RX_FLAG_40MHZ; if (head->plcp[6] & 0x80) status->flag |= RX_FLAG_SHORT_GI; status->rate_idx = clamp(0, 75, head->plcp[6] & 0x7f); status->flag |= RX_FLAG_HT; break; default: if (ar9170_nag_limiter(ar)) printk(KERN_ERR "%s: invalid modulation\n", wiphy_name(ar->hw->wiphy)); return -EINVAL; } return 0; } static void ar9170_rx_phy_status(struct ar9170 *ar, struct ar9170_rx_phystatus *phy, struct ieee80211_rx_status *status) { int i; BUILD_BUG_ON(sizeof(struct ar9170_rx_phystatus) != 20); for (i = 0; i < 3; i++) if (phy->rssi[i] != 0x80) status->antenna |= BIT(i); /* post-process RSSI */ for (i = 0; i < 7; i++) if (phy->rssi[i] & 0x80) phy->rssi[i] = ((phy->rssi[i] & 0x7f) + 1) & 0x7f; /* TODO: we could do something with phy_errors */ status->signal = ar->noise[0] + phy->rssi_combined; status->noise = ar->noise[0]; } static struct sk_buff *ar9170_rx_copy_data(u8 *buf, int len) { struct sk_buff *skb; int reserved = 0; struct ieee80211_hdr *hdr = (void *) buf; if (ieee80211_is_data_qos(hdr->frame_control)) { u8 *qc = ieee80211_get_qos_ctl(hdr); reserved += NET_IP_ALIGN; if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT) reserved += NET_IP_ALIGN; } if (ieee80211_has_a4(hdr->frame_control)) reserved += NET_IP_ALIGN; reserved = 32 + (reserved & NET_IP_ALIGN); skb = dev_alloc_skb(len + reserved); if (likely(skb)) { skb_reserve(skb, reserved); memcpy(skb_put(skb, len), buf, len); } return skb; } /* * If the frame alignment is right (or the kernel has * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS), and there * is only a single MPDU in the USB frame, then we could * submit to mac80211 the SKB directly. However, since * there may be multiple packets in one SKB in stream * mode, and we need to observe the proper ordering, * this is non-trivial. */ static void ar9170_handle_mpdu(struct ar9170 *ar, u8 *buf, int len) { struct ar9170_rx_head *head; struct ar9170_rx_macstatus *mac; struct ar9170_rx_phystatus *phy = NULL; struct ieee80211_rx_status status; struct sk_buff *skb; int mpdu_len; if (unlikely(!IS_STARTED(ar) || len < (sizeof(*mac)))) return ; /* Received MPDU */ mpdu_len = len - sizeof(*mac); mac = (void *)(buf + mpdu_len); if (unlikely(mac->error & AR9170_RX_ERROR_FATAL)) { /* this frame is too damaged and can't be used - drop it */ return ; } switch (mac->status & AR9170_RX_STATUS_MPDU_MASK) { case AR9170_RX_STATUS_MPDU_FIRST: /* first mpdu packet has the plcp header */ if (likely(mpdu_len >= sizeof(struct ar9170_rx_head))) { head = (void *) buf; memcpy(&ar->rx_mpdu.plcp, (void *) buf, sizeof(struct ar9170_rx_head)); mpdu_len -= sizeof(struct ar9170_rx_head); buf += sizeof(struct ar9170_rx_head); ar->rx_mpdu.has_plcp = true; } else { if (ar9170_nag_limiter(ar)) printk(KERN_ERR "%s: plcp info is clipped.\n", wiphy_name(ar->hw->wiphy)); return ; } break; case AR9170_RX_STATUS_MPDU_LAST: /* last mpdu has a extra tail with phy status information */ if (likely(mpdu_len >= sizeof(struct ar9170_rx_phystatus))) { mpdu_len -= sizeof(struct ar9170_rx_phystatus); phy = (void *)(buf + mpdu_len); } else { if (ar9170_nag_limiter(ar)) printk(KERN_ERR "%s: frame tail is clipped.\n", wiphy_name(ar->hw->wiphy)); return ; } case AR9170_RX_STATUS_MPDU_MIDDLE: /* middle mpdus are just data */ if (unlikely(!ar->rx_mpdu.has_plcp)) { if (!ar9170_nag_limiter(ar)) return ; printk(KERN_ERR "%s: rx stream did not start " "with a first_mpdu frame tag.\n", wiphy_name(ar->hw->wiphy)); return ; } head = &ar->rx_mpdu.plcp; break; case AR9170_RX_STATUS_MPDU_SINGLE: /* single mpdu - has plcp (head) and phy status (tail) */ head = (void *) buf; mpdu_len -= sizeof(struct ar9170_rx_head); mpdu_len -= sizeof(struct ar9170_rx_phystatus); buf += sizeof(struct ar9170_rx_head); phy = (void *)(buf + mpdu_len); break; default: BUG_ON(1); break; } if (unlikely(mpdu_len < FCS_LEN)) return ; memset(&status, 0, sizeof(status)); if (unlikely(ar9170_rx_mac_status(ar, head, mac, &status))) return ; if (phy) ar9170_rx_phy_status(ar, phy, &status); skb = ar9170_rx_copy_data(buf, mpdu_len); if (likely(skb)) { memcpy(IEEE80211_SKB_RXCB(skb), &status, sizeof(status)); ieee80211_rx_irqsafe(ar->hw, skb); } } void ar9170_rx(struct ar9170 *ar, struct sk_buff *skb) { unsigned int i, tlen, resplen, wlen = 0, clen = 0; u8 *tbuf, *respbuf; tbuf = skb->data; tlen = skb->len; while (tlen >= 4) { clen = tbuf[1] << 8 | tbuf[0]; wlen = ALIGN(clen, 4); /* check if this is stream has a valid tag.*/ if (tbuf[2] != 0 || tbuf[3] != 0x4e) { /* * TODO: handle the highly unlikely event that the * corrupted stream has the TAG at the right position. */ /* check if the frame can be repaired. */ if (!ar->rx_failover_missing) { /* this is no "short read". */ if (ar9170_nag_limiter(ar)) { printk(KERN_ERR "%s: missing tag!\n", wiphy_name(ar->hw->wiphy)); goto err_telluser; } else goto err_silent; } if (ar->rx_failover_missing > tlen) { if (ar9170_nag_limiter(ar)) { printk(KERN_ERR "%s: possible multi " "stream corruption!\n", wiphy_name(ar->hw->wiphy)); goto err_telluser; } else goto err_silent; } memcpy(skb_put(ar->rx_failover, tlen), tbuf, tlen); ar->rx_failover_missing -= tlen; if (ar->rx_failover_missing <= 0) { /* * nested ar9170_rx call! * termination is guranteed, even when the * combined frame also have a element with * a bad tag. */ ar->rx_failover_missing = 0; ar9170_rx(ar, ar->rx_failover); skb_reset_tail_pointer(ar->rx_failover); skb_trim(ar->rx_failover, 0); } return ; } /* check if stream is clipped */ if (wlen > tlen - 4) { if (ar->rx_failover_missing) { /* TODO: handle double stream corruption. */ if (ar9170_nag_limiter(ar)) { printk(KERN_ERR "%s: double rx stream " "corruption!\n", wiphy_name(ar->hw->wiphy)); goto err_telluser; } else goto err_silent; } /* * save incomplete data set. * the firmware will resend the missing bits when * the rx - descriptor comes round again. */ memcpy(skb_put(ar->rx_failover, tlen), tbuf, tlen); ar->rx_failover_missing = clen - tlen; return ; } resplen = clen; respbuf = tbuf + 4; tbuf += wlen + 4; tlen -= wlen + 4; i = 0; /* weird thing, but this is the same in the original driver */ while (resplen > 2 && i < 12 && respbuf[0] == 0xff && respbuf[1] == 0xff) { i += 2; resplen -= 2; respbuf += 2; } if (resplen < 4) continue; /* found the 6 * 0xffff marker? */ if (i == 12) ar9170_handle_command_response(ar, respbuf, resplen); else ar9170_handle_mpdu(ar, respbuf, clen); } if (tlen) { if (net_ratelimit()) printk(KERN_ERR "%s: %d bytes of unprocessed " "data left in rx stream!\n", wiphy_name(ar->hw->wiphy), tlen); goto err_telluser; } return ; err_telluser: printk(KERN_ERR "%s: damaged RX stream data [want:%d, " "data:%d, rx:%d, pending:%d ]\n", wiphy_name(ar->hw->wiphy), clen, wlen, tlen, ar->rx_failover_missing); if (ar->rx_failover_missing) print_hex_dump_bytes("rxbuf:", DUMP_PREFIX_OFFSET, ar->rx_failover->data, ar->rx_failover->len); print_hex_dump_bytes("stream:", DUMP_PREFIX_OFFSET, skb->data, skb->len); printk(KERN_ERR "%s: please check your hardware and cables, if " "you see this message frequently.\n", wiphy_name(ar->hw->wiphy)); err_silent: if (ar->rx_failover_missing) { skb_reset_tail_pointer(ar->rx_failover); skb_trim(ar->rx_failover, 0); ar->rx_failover_missing = 0; } } #define AR9170_FILL_QUEUE(queue, ai_fs, cwmin, cwmax, _txop) \ do { \ queue.aifs = ai_fs; \ queue.cw_min = cwmin; \ queue.cw_max = cwmax; \ queue.txop = _txop; \ } while (0) static int ar9170_op_start(struct ieee80211_hw *hw) { struct ar9170 *ar = hw->priv; int err, i; mutex_lock(&ar->mutex); /* reinitialize queues statistics */ memset(&ar->tx_stats, 0, sizeof(ar->tx_stats)); for (i = 0; i < __AR9170_NUM_TXQ; i++) ar->tx_stats[i].limit = AR9170_TXQ_DEPTH; /* reset QoS defaults */ AR9170_FILL_QUEUE(ar->edcf[0], 3, 15, 1023, 0); /* BEST EFFORT*/ AR9170_FILL_QUEUE(ar->edcf[1], 7, 15, 1023, 0); /* BACKGROUND */ AR9170_FILL_QUEUE(ar->edcf[2], 2, 7, 15, 94); /* VIDEO */ AR9170_FILL_QUEUE(ar->edcf[3], 2, 3, 7, 47); /* VOICE */ AR9170_FILL_QUEUE(ar->edcf[4], 2, 3, 7, 0); /* SPECIAL */ /* set sane AMPDU defaults */ ar->global_ampdu_density = 6; ar->global_ampdu_factor = 3; atomic_set(&ar->tx_ampdu_pending, 0); ar->bad_hw_nagger = jiffies; err = ar->open(ar); if (err) goto out; err = ar9170_init_mac(ar); if (err) goto out; err = ar9170_set_qos(ar); if (err) goto out; err = ar9170_init_phy(ar, IEEE80211_BAND_2GHZ); if (err) goto out; err = ar9170_init_rf(ar); if (err) goto out; /* start DMA */ err = ar9170_write_reg(ar, 0x1c3d30, 0x100); if (err) goto out; ar->state = AR9170_STARTED; out: mutex_unlock(&ar->mutex); return err; } static void ar9170_op_stop(struct ieee80211_hw *hw) { struct ar9170 *ar = hw->priv; unsigned int i; if (IS_STARTED(ar)) ar->state = AR9170_IDLE; cancel_delayed_work_sync(&ar->tx_janitor); #ifdef CONFIG_AR9170_LEDS cancel_delayed_work_sync(&ar->led_work); #endif cancel_work_sync(&ar->beacon_work); mutex_lock(&ar->mutex); if (IS_ACCEPTING_CMD(ar)) { ar9170_set_leds_state(ar, 0); /* stop DMA */ ar9170_write_reg(ar, 0x1c3d30, 0); ar->stop(ar); } for (i = 0; i < __AR9170_NUM_TXQ; i++) { skb_queue_purge(&ar->tx_pending[i]); skb_queue_purge(&ar->tx_status[i]); } skb_queue_purge(&ar->tx_status_ampdu); mutex_unlock(&ar->mutex); } static void ar9170_tx_indicate_immba(struct ar9170 *ar, struct sk_buff *skb) { struct ar9170_tx_control *txc = (void *) skb->data; txc->mac_control |= cpu_to_le16(AR9170_TX_MAC_IMM_AMPDU); } static void ar9170_tx_copy_phy(struct ar9170 *ar, struct sk_buff *dst, struct sk_buff *src) { struct ar9170_tx_control *dst_txc, *src_txc; struct ieee80211_tx_info *dst_info, *src_info; struct ar9170_tx_info *dst_arinfo, *src_arinfo; src_txc = (void *) src->data; src_info = IEEE80211_SKB_CB(src); src_arinfo = (void *) src_info->rate_driver_data; dst_txc = (void *) dst->data; dst_info = IEEE80211_SKB_CB(dst); dst_arinfo = (void *) dst_info->rate_driver_data; dst_txc->phy_control = src_txc->phy_control; /* same MCS for the whole aggregate */ memcpy(dst_info->driver_rates, src_info->driver_rates, sizeof(dst_info->driver_rates)); } static int ar9170_tx_prepare(struct ar9170 *ar, struct sk_buff *skb) { struct ieee80211_hdr *hdr; struct ar9170_tx_control *txc; struct ieee80211_tx_info *info; struct ieee80211_tx_rate *txrate; struct ar9170_tx_info *arinfo; unsigned int queue = skb_get_queue_mapping(skb); u16 keytype = 0; u16 len, icv = 0; BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); hdr = (void *)skb->data; info = IEEE80211_SKB_CB(skb); len = skb->len; txc = (void *)skb_push(skb, sizeof(*txc)); if (info->control.hw_key) { icv = info->control.hw_key->icv_len; switch (info->control.hw_key->alg) { case ALG_WEP: keytype = AR9170_TX_MAC_ENCR_RC4; break; case ALG_TKIP: keytype = AR9170_TX_MAC_ENCR_RC4; break; case ALG_CCMP: keytype = AR9170_TX_MAC_ENCR_AES; break; default: WARN_ON(1); goto err_out; } } /* Length */ txc->length = cpu_to_le16(len + icv + 4); txc->mac_control = cpu_to_le16(AR9170_TX_MAC_HW_DURATION | AR9170_TX_MAC_BACKOFF); txc->mac_control |= cpu_to_le16(ar9170_qos_hwmap[queue] << AR9170_TX_MAC_QOS_SHIFT); txc->mac_control |= cpu_to_le16(keytype); txc->phy_control = cpu_to_le32(0); if (info->flags & IEEE80211_TX_CTL_NO_ACK) txc->mac_control |= cpu_to_le16(AR9170_TX_MAC_NO_ACK); txrate = &info->control.rates[0]; if (txrate->flags & IEEE80211_TX_RC_USE_CTS_PROTECT) txc->mac_control |= cpu_to_le16(AR9170_TX_MAC_PROT_CTS); else if (txrate->flags & IEEE80211_TX_RC_USE_RTS_CTS) txc->mac_control |= cpu_to_le16(AR9170_TX_MAC_PROT_RTS); arinfo = (void *)info->rate_driver_data; arinfo->timeout = jiffies + msecs_to_jiffies(AR9170_QUEUE_TIMEOUT); if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) && (is_valid_ether_addr(ieee80211_get_DA(hdr)))) { /* * WARNING: * Putting the QoS queue bits into an unexplored territory is * certainly not elegant. * * In my defense: This idea provides a reasonable way to * smuggle valuable information to the tx_status callback. * Also, the idea behind this bit-abuse came straight from * the original driver code. */ txc->phy_control |= cpu_to_le32(queue << AR9170_TX_PHY_QOS_SHIFT); if (info->flags & IEEE80211_TX_CTL_AMPDU) { if (unlikely(!info->control.sta)) goto err_out; txc->mac_control |= cpu_to_le16(AR9170_TX_MAC_AGGR); } else { txc->mac_control |= cpu_to_le16(AR9170_TX_MAC_RATE_PROBE); } } return 0; err_out: skb_pull(skb, sizeof(*txc)); return -EINVAL; } static void ar9170_tx_prepare_phy(struct ar9170 *ar, struct sk_buff *skb) { struct ar9170_tx_control *txc; struct ieee80211_tx_info *info; struct ieee80211_rate *rate = NULL; struct ieee80211_tx_rate *txrate; u32 power, chains; txc = (void *) skb->data; info = IEEE80211_SKB_CB(skb); txrate = &info->control.rates[0]; if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD) txc->phy_control |= cpu_to_le32(AR9170_TX_PHY_GREENFIELD); if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) txc->phy_control |= cpu_to_le32(AR9170_TX_PHY_SHORT_PREAMBLE); if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) txc->phy_control |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ); /* this works because 40 MHz is 2 and dup is 3 */ if (txrate->flags & IEEE80211_TX_RC_DUP_DATA) txc->phy_control |= cpu_to_le32(AR9170_TX_PHY_BW_40MHZ_DUP); if (txrate->flags & IEEE80211_TX_RC_SHORT_GI) txc->phy_control |= cpu_to_le32(AR9170_TX_PHY_SHORT_GI); if (txrate->flags & IEEE80211_TX_RC_MCS) { u32 r = txrate->idx; u8 *txpower; /* heavy clip control */ txc->phy_control |= cpu_to_le32((r & 0x7) << 7); r <<= AR9170_TX_PHY_MCS_SHIFT; BUG_ON(r & ~AR9170_TX_PHY_MCS_MASK); txc->phy_control |= cpu_to_le32(r & AR9170_TX_PHY_MCS_MASK); txc->phy_control |= cpu_to_le32(AR9170_TX_PHY_MOD_HT); if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) { if (info->band == IEEE80211_BAND_5GHZ) txpower = ar->power_5G_ht40; else txpower = ar->power_2G_ht40; } else { if (info->band == IEEE80211_BAND_5GHZ) txpower = ar->power_5G_ht20; else txpower = ar->power_2G_ht20; } power = txpower[(txrate->idx) & 7]; } else { u8 *txpower; u32 mod; u32 phyrate; u8 idx = txrate->idx; if (info->band != IEEE80211_BAND_2GHZ) { idx += 4; txpower = ar->power_5G_leg; mod = AR9170_TX_PHY_MOD_OFDM; } else { if (idx < 4) { txpower = ar->power_2G_cck; mod = AR9170_TX_PHY_MOD_CCK; } else { mod = AR9170_TX_PHY_MOD_OFDM; txpower = ar->power_2G_ofdm; } } rate = &__ar9170_ratetable[idx]; phyrate = rate->hw_value & 0xF; power = txpower[(rate->hw_value & 0x30) >> 4]; phyrate <<= AR9170_TX_PHY_MCS_SHIFT; txc->phy_control |= cpu_to_le32(mod); txc->phy_control |= cpu_to_le32(phyrate); } power <<= AR9170_TX_PHY_TX_PWR_SHIFT; power &= AR9170_TX_PHY_TX_PWR_MASK; txc->phy_control |= cpu_to_le32(power); /* set TX chains */ if (ar->eeprom.tx_mask == 1) { chains = AR9170_TX_PHY_TXCHAIN_1; } else { chains = AR9170_TX_PHY_TXCHAIN_2; /* >= 36M legacy OFDM - use only one chain */ if (rate && rate->bitrate >= 360) chains = AR9170_TX_PHY_TXCHAIN_1; } txc->phy_control |= cpu_to_le32(chains << AR9170_TX_PHY_TXCHAIN_SHIFT); } static bool ar9170_tx_ampdu(struct ar9170 *ar) { struct sk_buff_head agg; struct ar9170_sta_tid *tid_info = NULL, *tmp; struct sk_buff *skb, *first = NULL; unsigned long flags, f2; unsigned int i = 0; u16 seq, queue, tmpssn; bool run = false; skb_queue_head_init(&agg); spin_lock_irqsave(&ar->tx_ampdu_list_lock, flags); if (list_empty(&ar->tx_ampdu_list)) { #ifdef AR9170_TXAGG_DEBUG printk(KERN_DEBUG "%s: aggregation list is empty.\n", wiphy_name(ar->hw->wiphy)); #endif /* AR9170_TXAGG_DEBUG */ goto out_unlock; } list_for_each_entry_safe(tid_info, tmp, &ar->tx_ampdu_list, list) { if (tid_info->state != AR9170_TID_STATE_COMPLETE) { #ifdef AR9170_TXAGG_DEBUG printk(KERN_DEBUG "%s: dangling aggregation entry!\n", wiphy_name(ar->hw->wiphy)); #endif /* AR9170_TXAGG_DEBUG */ continue; } if (++i > 64) { #ifdef AR9170_TXAGG_DEBUG printk(KERN_DEBUG "%s: enough frames aggregated.\n", wiphy_name(ar->hw->wiphy)); #endif /* AR9170_TXAGG_DEBUG */ break; } queue = TID_TO_WME_AC(tid_info->tid); if (skb_queue_len(&ar->tx_pending[queue]) >= AR9170_NUM_TX_AGG_MAX) { #ifdef AR9170_TXAGG_DEBUG printk(KERN_DEBUG "%s: queue %d full.\n", wiphy_name(ar->hw->wiphy), queue); #endif /* AR9170_TXAGG_DEBUG */ continue; } list_del_init(&tid_info->list); spin_lock_irqsave(&tid_info->queue.lock, f2); tmpssn = seq = tid_info->ssn; first = skb_peek(&tid_info->queue); if (likely(first)) tmpssn = ar9170_get_seq(first); if (unlikely(tmpssn != seq)) { #ifdef AR9170_TXAGG_DEBUG printk(KERN_DEBUG "%s: ssn mismatch [%d != %d]\n.", wiphy_name(ar->hw->wiphy), seq, tmpssn); #endif /* AR9170_TXAGG_DEBUG */ tid_info->ssn = tmpssn; } #ifdef AR9170_TXAGG_DEBUG printk(KERN_DEBUG "%s: generate A-MPDU for tid:%d ssn:%d with " "%d queued frames.\n", wiphy_name(ar->hw->wiphy), tid_info->tid, tid_info->ssn, skb_queue_len(&tid_info->queue)); __ar9170_dump_txqueue(ar, &tid_info->queue); #endif /* AR9170_TXAGG_DEBUG */ while ((skb = skb_peek(&tid_info->queue))) { if (unlikely(ar9170_get_seq(skb) != seq)) break; __skb_unlink(skb, &tid_info->queue); tid_info->ssn = seq = GET_NEXT_SEQ(seq); if (unlikely(skb_get_queue_mapping(skb) != queue)) { #ifdef AR9170_TXAGG_DEBUG printk(KERN_DEBUG "%s: tid:%d(q:%d) queue:%d " "!match.\n", wiphy_name(ar->hw->wiphy), tid_info->tid, TID_TO_WME_AC(tid_info->tid), skb_get_queue_mapping(skb)); #endif /* AR9170_TXAGG_DEBUG */ dev_kfree_skb_any(skb); continue; } if (unlikely(first == skb)) { ar9170_tx_prepare_phy(ar, skb); __skb_queue_tail(&agg, skb); first = skb; } else { ar9170_tx_copy_phy(ar, skb, first); __skb_queue_tail(&agg, skb); } if (unlikely(skb_queue_len(&agg) == AR9170_NUM_TX_AGG_MAX)) break; } if (skb_queue_empty(&tid_info->queue)) tid_info->active = false; else list_add_tail(&tid_info->list, &ar->tx_ampdu_list); spin_unlock_irqrestore(&tid_info->queue.lock, f2); if (unlikely(skb_queue_empty(&agg))) { #ifdef AR9170_TXAGG_DEBUG printk(KERN_DEBUG "%s: queued empty list!\n", wiphy_name(ar->hw->wiphy)); #endif /* AR9170_TXAGG_DEBUG */ continue; } /* * tell the FW/HW that this is the last frame, * that way it will wait for the immediate block ack. */ ar9170_tx_indicate_immba(ar, skb_peek_tail(&agg)); #ifdef AR9170_TXAGG_DEBUG printk(KERN_DEBUG "%s: generated A-MPDU looks like this:\n", wiphy_name(ar->hw->wiphy)); __ar9170_dump_txqueue(ar, &agg); #endif /* AR9170_TXAGG_DEBUG */ spin_unlock_irqrestore(&ar->tx_ampdu_list_lock, flags); spin_lock_irqsave(&ar->tx_pending[queue].lock, flags); skb_queue_splice_tail_init(&agg, &ar->tx_pending[queue]); spin_unlock_irqrestore(&ar->tx_pending[queue].lock, flags); run = true; spin_lock_irqsave(&ar->tx_ampdu_list_lock, flags); } out_unlock: spin_unlock_irqrestore(&ar->tx_ampdu_list_lock, flags); __skb_queue_purge(&agg); return run; } static void ar9170_tx(struct ar9170 *ar) { struct sk_buff *skb; unsigned long flags; struct ieee80211_tx_info *info; struct ar9170_tx_info *arinfo; unsigned int i, frames, frames_failed, remaining_space; int err; bool schedule_garbagecollector = false; BUILD_BUG_ON(sizeof(*arinfo) > sizeof(info->rate_driver_data)); if (unlikely(!IS_STARTED(ar))) return ; remaining_space = AR9170_TX_MAX_PENDING; for (i = 0; i < __AR9170_NUM_TXQ; i++) { spin_lock_irqsave(&ar->tx_stats_lock, flags); frames = min(ar->tx_stats[i].limit - ar->tx_stats[i].len, skb_queue_len(&ar->tx_pending[i])); if (remaining_space < frames) { #ifdef AR9170_QUEUE_DEBUG printk(KERN_DEBUG "%s: tx quota reached queue:%d, " "remaining slots:%d, needed:%d\n", wiphy_name(ar->hw->wiphy), i, remaining_space, frames); #endif /* AR9170_QUEUE_DEBUG */ frames = remaining_space; } ar->tx_stats[i].len += frames; ar->tx_stats[i].count += frames; if (ar->tx_stats[i].len >= ar->tx_stats[i].limit) { #ifdef AR9170_QUEUE_DEBUG printk(KERN_DEBUG "%s: queue %d full\n", wiphy_name(ar->hw->wiphy), i); printk(KERN_DEBUG "%s: stuck frames: ===>\n", wiphy_name(ar->hw->wiphy)); ar9170_dump_txqueue(ar, &ar->tx_pending[i]); ar9170_dump_txqueue(ar, &ar->tx_status[i]); #endif /* AR9170_QUEUE_DEBUG */ #ifdef AR9170_QUEUE_STOP_DEBUG printk(KERN_DEBUG "%s: stop queue %d\n", wiphy_name(ar->hw->wiphy), i); __ar9170_dump_txstats(ar); #endif /* AR9170_QUEUE_STOP_DEBUG */ ieee80211_stop_queue(ar->hw, i); } spin_unlock_irqrestore(&ar->tx_stats_lock, flags); if (!frames) continue; frames_failed = 0; while (frames) { skb = skb_dequeue(&ar->tx_pending[i]); if (unlikely(!skb)) { frames_failed += frames; frames = 0; break; } info = IEEE80211_SKB_CB(skb); arinfo = (void *) info->rate_driver_data; /* TODO: cancel stuck frames */ arinfo->timeout = jiffies + msecs_to_jiffies(AR9170_TX_TIMEOUT); if (info->flags & IEEE80211_TX_CTL_AMPDU) atomic_inc(&ar->tx_ampdu_pending); #ifdef AR9170_QUEUE_DEBUG printk(KERN_DEBUG "%s: send frame q:%d =>\n", wiphy_name(ar->hw->wiphy), i); ar9170_print_txheader(ar, skb); #endif /* AR9170_QUEUE_DEBUG */ err = ar->tx(ar, skb); if (unlikely(err)) { if (info->flags & IEEE80211_TX_CTL_AMPDU) atomic_dec(&ar->tx_ampdu_pending); frames_failed++; dev_kfree_skb_any(skb); } else { remaining_space--; schedule_garbagecollector = true; } frames--; } #ifdef AR9170_QUEUE_DEBUG printk(KERN_DEBUG "%s: ar9170_tx report for queue %d\n", wiphy_name(ar->hw->wiphy), i); printk(KERN_DEBUG "%s: unprocessed pending frames left:\n", wiphy_name(ar->hw->wiphy)); ar9170_dump_txqueue(ar, &ar->tx_pending[i]); #endif /* AR9170_QUEUE_DEBUG */ if (unlikely(frames_failed)) { #ifdef AR9170_QUEUE_DEBUG printk(KERN_DEBUG "%s: frames failed %d =>\n", wiphy_name(ar->hw->wiphy), frames_failed); #endif /* AR9170_QUEUE_DEBUG */ spin_lock_irqsave(&ar->tx_stats_lock, flags); ar->tx_stats[i].len -= frames_failed; ar->tx_stats[i].count -= frames_failed; #ifdef AR9170_QUEUE_STOP_DEBUG printk(KERN_DEBUG "%s: wake queue %d\n", wiphy_name(ar->hw->wiphy), i); __ar9170_dump_txstats(ar); #endif /* AR9170_QUEUE_STOP_DEBUG */ ieee80211_wake_queue(ar->hw, i); spin_unlock_irqrestore(&ar->tx_stats_lock, flags); } } if (!schedule_garbagecollector) return; ieee80211_queue_delayed_work(ar->hw, &ar->tx_janitor, msecs_to_jiffies(AR9170_JANITOR_DELAY)); } static bool ar9170_tx_ampdu_queue(struct ar9170 *ar, struct sk_buff *skb) { struct ieee80211_tx_info *txinfo; struct ar9170_sta_info *sta_info; struct ar9170_sta_tid *agg; struct sk_buff *iter; unsigned long flags, f2; unsigned int max; u16 tid, seq, qseq; bool run = false, queue = false; tid = ar9170_get_tid(skb); seq = ar9170_get_seq(skb); txinfo = IEEE80211_SKB_CB(skb); sta_info = (void *) txinfo->control.sta->drv_priv; agg = &sta_info->agg[tid]; max = sta_info->ampdu_max_len; spin_lock_irqsave(&ar->tx_ampdu_list_lock, flags); if (unlikely(agg->state != AR9170_TID_STATE_COMPLETE)) { #ifdef AR9170_TXAGG_DEBUG printk(KERN_DEBUG "%s: BlockACK session not fully initialized " "for ESS:%pM tid:%d state:%d.\n", wiphy_name(ar->hw->wiphy), agg->addr, agg->tid, agg->state); #endif /* AR9170_TXAGG_DEBUG */ goto err_unlock; } if (!agg->active) { agg->active = true; agg->ssn = seq; queue = true; } /* check if seq is within the BA window */ if (unlikely(!BAW_WITHIN(agg->ssn, max, seq))) { #ifdef AR9170_TXAGG_DEBUG printk(KERN_DEBUG "%s: frame with tid:%d seq:%d does not " "fit into BA window (%d - %d)\n", wiphy_name(ar->hw->wiphy), tid, seq, agg->ssn, (agg->ssn + max) & 0xfff); #endif /* AR9170_TXAGG_DEBUG */ goto err_unlock; } spin_lock_irqsave(&agg->queue.lock, f2); skb_queue_reverse_walk(&agg->queue, iter) { qseq = ar9170_get_seq(iter); if (GET_NEXT_SEQ(qseq) == seq) { __skb_queue_after(&agg->queue, iter, skb); goto queued; } } __skb_queue_head(&agg->queue, skb); queued: spin_unlock_irqrestore(&agg->queue.lock, f2); #ifdef AR9170_TXAGG_DEBUG printk(KERN_DEBUG "%s: new aggregate %p queued.\n", wiphy_name(ar->hw->wiphy), skb); __ar9170_dump_txqueue(ar, &agg->queue); #endif /* AR9170_TXAGG_DEBUG */ if (skb_queue_len(&agg->queue) >= AR9170_NUM_TX_AGG_MAX) run = true; if (queue) list_add_tail(&agg->list, &ar->tx_ampdu_list); spin_unlock_irqrestore(&ar->tx_ampdu_list_lock, flags); return run; err_unlock: spin_unlock_irqrestore(&ar->tx_ampdu_list_lock, flags); dev_kfree_skb_irq(skb); return false; } int ar9170_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb) { struct ar9170 *ar = hw->priv; struct ieee80211_tx_info *info; if (unlikely(!IS_STARTED(ar))) goto err_free; if (unlikely(ar9170_tx_prepare(ar, skb))) goto err_free; info = IEEE80211_SKB_CB(skb); if (info->flags & IEEE80211_TX_CTL_AMPDU) { bool run = ar9170_tx_ampdu_queue(ar, skb); if (run || !atomic_read(&ar->tx_ampdu_pending)) ar9170_tx_ampdu(ar); } else { unsigned int queue = skb_get_queue_mapping(skb); ar9170_tx_prepare_phy(ar, skb); skb_queue_tail(&ar->tx_pending[queue], skb); } ar9170_tx(ar); return NETDEV_TX_OK; err_free: dev_kfree_skb_any(skb); return NETDEV_TX_OK; } static int ar9170_op_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ar9170 *ar = hw->priv; struct ath_common *common = &ar->common; int err = 0; mutex_lock(&ar->mutex); if (ar->vif) { err = -EBUSY; goto unlock; } ar->vif = vif; memcpy(common->macaddr, vif->addr, ETH_ALEN); if (modparam_nohwcrypt || (ar->vif->type != NL80211_IFTYPE_STATION)) { ar->rx_software_decryption = true; ar->disable_offload = true; } ar->cur_filter = 0; err = ar9170_update_frame_filter(ar, AR9170_MAC_REG_FTF_DEFAULTS); if (err) goto unlock; err = ar9170_set_operating_mode(ar); unlock: mutex_unlock(&ar->mutex); return err; } static void ar9170_op_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ar9170 *ar = hw->priv; mutex_lock(&ar->mutex); ar->vif = NULL; ar9170_update_frame_filter(ar, 0); ar9170_set_beacon_timers(ar); dev_kfree_skb(ar->beacon); ar->beacon = NULL; ar->sniffer_enabled = false; ar->rx_software_decryption = false; ar9170_set_operating_mode(ar); mutex_unlock(&ar->mutex); } static int ar9170_op_config(struct ieee80211_hw *hw, u32 changed) { struct ar9170 *ar = hw->priv; int err = 0; mutex_lock(&ar->mutex); if (changed & IEEE80211_CONF_CHANGE_LISTEN_INTERVAL) { /* TODO */ err = 0; } if (changed & IEEE80211_CONF_CHANGE_PS) { /* TODO */ err = 0; } if (changed & IEEE80211_CONF_CHANGE_POWER) { /* TODO */ err = 0; } if (changed & IEEE80211_CONF_CHANGE_RETRY_LIMITS) { /* * is it long_frame_max_tx_count or short_frame_max_tx_count? */ err = ar9170_set_hwretry_limit(ar, ar->hw->conf.long_frame_max_tx_count); if (err) goto out; } if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { /* adjust slot time for 5 GHz */ err = ar9170_set_slot_time(ar); if (err) goto out; err = ar9170_set_dyn_sifs_ack(ar); if (err) goto out; err = ar9170_set_channel(ar, hw->conf.channel, AR9170_RFI_NONE, nl80211_to_ar9170(hw->conf.channel_type)); if (err) goto out; } out: mutex_unlock(&ar->mutex); return err; } static u64 ar9170_op_prepare_multicast(struct ieee80211_hw *hw, int mc_count, struct dev_addr_list *mclist) { u64 mchash; int i; /* always get broadcast frames */ mchash = 1ULL << (0xff >> 2); for (i = 0; i < mc_count; i++) { if (WARN_ON(!mclist)) break; mchash |= 1ULL << (mclist->dmi_addr[5] >> 2); mclist = mclist->next; } return mchash; } static void ar9170_op_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *new_flags, u64 multicast) { struct ar9170 *ar = hw->priv; if (unlikely(!IS_ACCEPTING_CMD(ar))) return ; mutex_lock(&ar->mutex); /* mask supported flags */ *new_flags &= FIF_ALLMULTI | FIF_CONTROL | FIF_BCN_PRBRESP_PROMISC | FIF_PROMISC_IN_BSS | FIF_FCSFAIL | FIF_PLCPFAIL; ar->filter_state = *new_flags; /* * We can support more by setting the sniffer bit and * then checking the error flags, later. */ if (changed_flags & FIF_ALLMULTI && *new_flags & FIF_ALLMULTI) multicast = ~0ULL; if (multicast != ar->cur_mc_hash) ar9170_update_multicast(ar, multicast); if (changed_flags & FIF_CONTROL) { u32 filter = AR9170_MAC_REG_FTF_PSPOLL | AR9170_MAC_REG_FTF_RTS | AR9170_MAC_REG_FTF_CTS | AR9170_MAC_REG_FTF_ACK | AR9170_MAC_REG_FTF_CFE | AR9170_MAC_REG_FTF_CFE_ACK; if (*new_flags & FIF_CONTROL) filter |= ar->cur_filter; else filter &= (~ar->cur_filter); ar9170_update_frame_filter(ar, filter); } if (changed_flags & FIF_PROMISC_IN_BSS) { ar->sniffer_enabled = ((*new_flags) & FIF_PROMISC_IN_BSS) != 0; ar9170_set_operating_mode(ar); } mutex_unlock(&ar->mutex); } static void ar9170_op_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf, u32 changed) { struct ar9170 *ar = hw->priv; struct ath_common *common = &ar->common; int err = 0; mutex_lock(&ar->mutex); if (changed & BSS_CHANGED_BSSID) { memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN); err = ar9170_set_operating_mode(ar); if (err) goto out; } if (changed & BSS_CHANGED_BEACON_ENABLED) ar->enable_beacon = bss_conf->enable_beacon; if (changed & BSS_CHANGED_BEACON) { err = ar9170_update_beacon(ar); if (err) goto out; } if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_INT)) { err = ar9170_set_beacon_timers(ar); if (err) goto out; } if (changed & BSS_CHANGED_ASSOC) { #ifndef CONFIG_AR9170_LEDS /* enable assoc LED. */ err = ar9170_set_leds_state(ar, bss_conf->assoc ? 2 : 0); #endif /* CONFIG_AR9170_LEDS */ } if (changed & BSS_CHANGED_HT) { /* TODO */ err = 0; } if (changed & BSS_CHANGED_ERP_SLOT) { err = ar9170_set_slot_time(ar); if (err) goto out; } if (changed & BSS_CHANGED_BASIC_RATES) { err = ar9170_set_basic_rates(ar); if (err) goto out; } out: mutex_unlock(&ar->mutex); } static u64 ar9170_op_get_tsf(struct ieee80211_hw *hw) { struct ar9170 *ar = hw->priv; int err; u64 tsf; #define NR 3 static const u32 addr[NR] = { AR9170_MAC_REG_TSF_H, AR9170_MAC_REG_TSF_L, AR9170_MAC_REG_TSF_H }; u32 val[NR]; int loops = 0; mutex_lock(&ar->mutex); while (loops++ < 10) { err = ar9170_read_mreg(ar, NR, addr, val); if (err || val[0] == val[2]) break; } mutex_unlock(&ar->mutex); if (WARN_ON(err)) return 0; tsf = val[0]; tsf = (tsf << 32) | val[1]; return tsf; #undef NR } static int ar9170_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct ar9170 *ar = hw->priv; int err = 0, i; u8 ktype; if ((!ar->vif) || (ar->disable_offload)) return -EOPNOTSUPP; switch (key->alg) { case ALG_WEP: if (key->keylen == WLAN_KEY_LEN_WEP40) ktype = AR9170_ENC_ALG_WEP64; else ktype = AR9170_ENC_ALG_WEP128; break; case ALG_TKIP: ktype = AR9170_ENC_ALG_TKIP; break; case ALG_CCMP: ktype = AR9170_ENC_ALG_AESCCMP; break; default: return -EOPNOTSUPP; } mutex_lock(&ar->mutex); if (cmd == SET_KEY) { if (unlikely(!IS_STARTED(ar))) { err = -EOPNOTSUPP; goto out; } /* group keys need all-zeroes address */ if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) sta = NULL; if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) { for (i = 0; i < 64; i++) if (!(ar->usedkeys & BIT(i))) break; if (i == 64) { ar->rx_software_decryption = true; ar9170_set_operating_mode(ar); err = -ENOSPC; goto out; } } else { i = 64 + key->keyidx; } key->hw_key_idx = i; err = ar9170_upload_key(ar, i, sta ? sta->addr : NULL, ktype, 0, key->key, min_t(u8, 16, key->keylen)); if (err) goto out; if (key->alg == ALG_TKIP) { err = ar9170_upload_key(ar, i, sta ? sta->addr : NULL, ktype, 1, key->key + 16, 16); if (err) goto out; /* * hardware is not capable generating the MMIC * for fragmented frames! */ key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC; } if (i < 64) ar->usedkeys |= BIT(i); key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; } else { if (unlikely(!IS_STARTED(ar))) { /* The device is gone... together with the key ;-) */ err = 0; goto out; } err = ar9170_disable_key(ar, key->hw_key_idx); if (err) goto out; if (key->hw_key_idx < 64) { ar->usedkeys &= ~BIT(key->hw_key_idx); } else { err = ar9170_upload_key(ar, key->hw_key_idx, NULL, AR9170_ENC_ALG_NONE, 0, NULL, 0); if (err) goto out; if (key->alg == ALG_TKIP) { err = ar9170_upload_key(ar, key->hw_key_idx, NULL, AR9170_ENC_ALG_NONE, 1, NULL, 0); if (err) goto out; } } } ar9170_regwrite_begin(ar); ar9170_regwrite(AR9170_MAC_REG_ROLL_CALL_TBL_L, ar->usedkeys); ar9170_regwrite(AR9170_MAC_REG_ROLL_CALL_TBL_H, ar->usedkeys >> 32); ar9170_regwrite_finish(); err = ar9170_regwrite_result(); out: mutex_unlock(&ar->mutex); return err; } static int ar9170_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct ar9170 *ar = hw->priv; struct ar9170_sta_info *sta_info = (void *) sta->drv_priv; unsigned int i; memset(sta_info, 0, sizeof(*sta_info)); if (!sta->ht_cap.ht_supported) return 0; if (sta->ht_cap.ampdu_density > ar->global_ampdu_density) ar->global_ampdu_density = sta->ht_cap.ampdu_density; if (sta->ht_cap.ampdu_factor < ar->global_ampdu_factor) ar->global_ampdu_factor = sta->ht_cap.ampdu_factor; for (i = 0; i < AR9170_NUM_TID; i++) { sta_info->agg[i].state = AR9170_TID_STATE_SHUTDOWN; sta_info->agg[i].active = false; sta_info->agg[i].ssn = 0; sta_info->agg[i].tid = i; INIT_LIST_HEAD(&sta_info->agg[i].list); skb_queue_head_init(&sta_info->agg[i].queue); } sta_info->ampdu_max_len = 1 << (3 + sta->ht_cap.ampdu_factor); return 0; } static int ar9170_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct ar9170_sta_info *sta_info = (void *) sta->drv_priv; unsigned int i; if (!sta->ht_cap.ht_supported) return 0; for (i = 0; i < AR9170_NUM_TID; i++) { sta_info->agg[i].state = AR9170_TID_STATE_INVALID; skb_queue_purge(&sta_info->agg[i].queue); } return 0; } static int ar9170_get_stats(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats) { struct ar9170 *ar = hw->priv; u32 val; int err; mutex_lock(&ar->mutex); err = ar9170_read_reg(ar, AR9170_MAC_REG_TX_RETRY, &val); ar->stats.dot11ACKFailureCount += val; memcpy(stats, &ar->stats, sizeof(*stats)); mutex_unlock(&ar->mutex); return 0; } static int ar9170_conf_tx(struct ieee80211_hw *hw, u16 queue, const struct ieee80211_tx_queue_params *param) { struct ar9170 *ar = hw->priv; int ret; mutex_lock(&ar->mutex); if (queue < __AR9170_NUM_TXQ) { memcpy(&ar->edcf[ar9170_qos_hwmap[queue]], param, sizeof(*param)); ret = ar9170_set_qos(ar); } else { ret = -EINVAL; } mutex_unlock(&ar->mutex); return ret; } static int ar9170_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum ieee80211_ampdu_mlme_action action, struct ieee80211_sta *sta, u16 tid, u16 *ssn) { struct ar9170 *ar = hw->priv; struct ar9170_sta_info *sta_info = (void *) sta->drv_priv; struct ar9170_sta_tid *tid_info = &sta_info->agg[tid]; unsigned long flags; if (!modparam_ht) return -EOPNOTSUPP; switch (action) { case IEEE80211_AMPDU_TX_START: spin_lock_irqsave(&ar->tx_ampdu_list_lock, flags); if (tid_info->state != AR9170_TID_STATE_SHUTDOWN || !list_empty(&tid_info->list)) { spin_unlock_irqrestore(&ar->tx_ampdu_list_lock, flags); #ifdef AR9170_TXAGG_DEBUG printk(KERN_INFO "%s: A-MPDU [ESS:[%pM] tid:[%d]] " "is in a very bad state!\n", wiphy_name(hw->wiphy), sta->addr, tid); #endif /* AR9170_TXAGG_DEBUG */ return -EBUSY; } *ssn = tid_info->ssn; tid_info->state = AR9170_TID_STATE_PROGRESS; tid_info->active = false; spin_unlock_irqrestore(&ar->tx_ampdu_list_lock, flags); ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid); break; case IEEE80211_AMPDU_TX_STOP: spin_lock_irqsave(&ar->tx_ampdu_list_lock, flags); tid_info->state = AR9170_TID_STATE_SHUTDOWN; list_del_init(&tid_info->list); tid_info->active = false; skb_queue_purge(&tid_info->queue); spin_unlock_irqrestore(&ar->tx_ampdu_list_lock, flags); ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); break; case IEEE80211_AMPDU_TX_OPERATIONAL: #ifdef AR9170_TXAGG_DEBUG printk(KERN_INFO "%s: A-MPDU for %pM [tid:%d] Operational.\n", wiphy_name(hw->wiphy), sta->addr, tid); #endif /* AR9170_TXAGG_DEBUG */ spin_lock_irqsave(&ar->tx_ampdu_list_lock, flags); sta_info->agg[tid].state = AR9170_TID_STATE_COMPLETE; spin_unlock_irqrestore(&ar->tx_ampdu_list_lock, flags); break; case IEEE80211_AMPDU_RX_START: case IEEE80211_AMPDU_RX_STOP: /* Handled by firmware */ break; default: return -EOPNOTSUPP; } return 0; } static const struct ieee80211_ops ar9170_ops = { .start = ar9170_op_start, .stop = ar9170_op_stop, .tx = ar9170_op_tx, .add_interface = ar9170_op_add_interface, .remove_interface = ar9170_op_remove_interface, .config = ar9170_op_config, .prepare_multicast = ar9170_op_prepare_multicast, .configure_filter = ar9170_op_configure_filter, .conf_tx = ar9170_conf_tx, .bss_info_changed = ar9170_op_bss_info_changed, .get_tsf = ar9170_op_get_tsf, .set_key = ar9170_set_key, .sta_add = ar9170_sta_add, .sta_remove = ar9170_sta_remove, .get_stats = ar9170_get_stats, .ampdu_action = ar9170_ampdu_action, }; void *ar9170_alloc(size_t priv_size) { struct ieee80211_hw *hw; struct ar9170 *ar; struct sk_buff *skb; int i; /* * this buffer is used for rx stream reconstruction. * Under heavy load this device (or the transport layer?) * tends to split the streams into seperate rx descriptors. */ skb = __dev_alloc_skb(AR9170_RX_STREAM_MAX_SIZE, GFP_KERNEL); if (!skb) goto err_nomem; hw = ieee80211_alloc_hw(priv_size, &ar9170_ops); if (!hw) goto err_nomem; ar = hw->priv; ar->hw = hw; ar->rx_failover = skb; mutex_init(&ar->mutex); spin_lock_init(&ar->cmdlock); spin_lock_init(&ar->tx_stats_lock); spin_lock_init(&ar->tx_ampdu_list_lock); skb_queue_head_init(&ar->tx_status_ampdu); for (i = 0; i < __AR9170_NUM_TXQ; i++) { skb_queue_head_init(&ar->tx_status[i]); skb_queue_head_init(&ar->tx_pending[i]); } ar9170_rx_reset_rx_mpdu(ar); INIT_WORK(&ar->beacon_work, ar9170_new_beacon); INIT_DELAYED_WORK(&ar->tx_janitor, ar9170_tx_janitor); INIT_LIST_HEAD(&ar->tx_ampdu_list); /* all hw supports 2.4 GHz, so set channel to 1 by default */ ar->channel = &ar9170_2ghz_chantable[0]; /* first part of wiphy init */ ar->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_WDS) | BIT(NL80211_IFTYPE_ADHOC); ar->hw->flags |= IEEE80211_HW_RX_INCLUDES_FCS | IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_NOISE_DBM; if (modparam_ht) { ar->hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION; } else { ar9170_band_2GHz.ht_cap.ht_supported = false; ar9170_band_5GHz.ht_cap.ht_supported = false; } ar->hw->queues = __AR9170_NUM_TXQ; ar->hw->extra_tx_headroom = 8; ar->hw->sta_data_size = sizeof(struct ar9170_sta_info); ar->hw->max_rates = 1; ar->hw->max_rate_tries = 3; for (i = 0; i < ARRAY_SIZE(ar->noise); i++) ar->noise[i] = -95; /* ATH_DEFAULT_NOISE_FLOOR */ return ar; err_nomem: kfree_skb(skb); return ERR_PTR(-ENOMEM); } static int ar9170_read_eeprom(struct ar9170 *ar) { #define RW 8 /* number of words to read at once */ #define RB (sizeof(u32) * RW) struct ath_regulatory *regulatory = &ar->common.regulatory; u8 *eeprom = (void *)&ar->eeprom; u8 *addr = ar->eeprom.mac_address; __le32 offsets[RW]; unsigned int rx_streams, tx_streams, tx_params = 0; int i, j, err, bands = 0; BUILD_BUG_ON(sizeof(ar->eeprom) & 3); BUILD_BUG_ON(RB > AR9170_MAX_CMD_LEN - 4); #ifndef __CHECKER__ /* don't want to handle trailing remains */ BUILD_BUG_ON(sizeof(ar->eeprom) % RB); #endif for (i = 0; i < sizeof(ar->eeprom)/RB; i++) { for (j = 0; j < RW; j++) offsets[j] = cpu_to_le32(AR9170_EEPROM_START + RB * i + 4 * j); err = ar->exec_cmd(ar, AR9170_CMD_RREG, RB, (u8 *) &offsets, RB, eeprom + RB * i); if (err) return err; } #undef RW #undef RB if (ar->eeprom.length == cpu_to_le16(0xFFFF)) return -ENODATA; if (ar->eeprom.operating_flags & AR9170_OPFLAG_2GHZ) { ar->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &ar9170_band_2GHz; bands++; } if (ar->eeprom.operating_flags & AR9170_OPFLAG_5GHZ) { ar->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &ar9170_band_5GHz; bands++; } rx_streams = hweight8(ar->eeprom.rx_mask); tx_streams = hweight8(ar->eeprom.tx_mask); if (rx_streams != tx_streams) tx_params = IEEE80211_HT_MCS_TX_RX_DIFF; if (tx_streams >= 1 && tx_streams <= IEEE80211_HT_MCS_TX_MAX_STREAMS) tx_params = (tx_streams - 1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT; ar9170_band_2GHz.ht_cap.mcs.tx_params |= tx_params; ar9170_band_5GHz.ht_cap.mcs.tx_params |= tx_params; /* * I measured this, a bandswitch takes roughly * 135 ms and a frequency switch about 80. * * FIXME: measure these values again once EEPROM settings * are used, that will influence them! */ if (bands == 2) ar->hw->channel_change_time = 135 * 1000; else ar->hw->channel_change_time = 80 * 1000; regulatory->current_rd = le16_to_cpu(ar->eeprom.reg_domain[0]); regulatory->current_rd_ext = le16_to_cpu(ar->eeprom.reg_domain[1]); /* second part of wiphy init */ SET_IEEE80211_PERM_ADDR(ar->hw, addr); return bands ? 0 : -EINVAL; } static int ar9170_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct ar9170 *ar = hw->priv; return ath_reg_notifier_apply(wiphy, request, &ar->common.regulatory); } int ar9170_register(struct ar9170 *ar, struct device *pdev) { struct ath_regulatory *regulatory = &ar->common.regulatory; int err; /* try to read EEPROM, init MAC addr */ err = ar9170_read_eeprom(ar); if (err) goto err_out; err = ath_regd_init(regulatory, ar->hw->wiphy, ar9170_reg_notifier); if (err) goto err_out; err = ieee80211_register_hw(ar->hw); if (err) goto err_out; if (!ath_is_world_regd(regulatory)) regulatory_hint(ar->hw->wiphy, regulatory->alpha2); err = ar9170_init_leds(ar); if (err) goto err_unreg; #ifdef CONFIG_AR9170_LEDS err = ar9170_register_leds(ar); if (err) goto err_unreg; #endif /* CONFIG_AR9170_LEDS */ dev_info(pdev, "Atheros AR9170 is registered as '%s'\n", wiphy_name(ar->hw->wiphy)); ar->registered = true; return 0; err_unreg: ieee80211_unregister_hw(ar->hw); err_out: return err; } void ar9170_unregister(struct ar9170 *ar) { if (ar->registered) { #ifdef CONFIG_AR9170_LEDS ar9170_unregister_leds(ar); #endif /* CONFIG_AR9170_LEDS */ ieee80211_unregister_hw(ar->hw); } kfree_skb(ar->rx_failover); mutex_destroy(&ar->mutex); }