/* * Intel Wireless WiMAX Connection 2400m * SDIO RX handling * * * Copyright (C) 2007-2008 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * * Intel Corporation * Dirk Brandewie * - Initial implementation * * * This handles the RX path on SDIO. * * The SDIO bus driver calls the "irq" routine when data is available. * This is not a traditional interrupt routine since the SDIO bus * driver calls us from its irq thread context. Because of this * sleeping in the SDIO RX IRQ routine is okay. * * From there on, we obtain the size of the data that is available, * allocate an skb, copy it and then pass it to the generic driver's * RX routine [i2400m_rx()]. * * ROADMAP * * i2400ms_irq() * i2400ms_rx() * __i2400ms_rx_get_size() * i2400m_is_boot_barker() * i2400m_rx() * * i2400ms_rx_setup() * * i2400ms_rx_release() */ #include #include #include #include #include #include "i2400m-sdio.h" #define D_SUBMODULE rx #include "sdio-debug-levels.h" static const __le32 i2400m_ACK_BARKER[4] = { __constant_cpu_to_le32(I2400M_ACK_BARKER), __constant_cpu_to_le32(I2400M_ACK_BARKER), __constant_cpu_to_le32(I2400M_ACK_BARKER), __constant_cpu_to_le32(I2400M_ACK_BARKER) }; /* * Read and return the amount of bytes available for RX * * The RX size has to be read like this: byte reads of three * sequential locations; then glue'em together. * * sdio_readl() doesn't work. */ ssize_t __i2400ms_rx_get_size(struct i2400ms *i2400ms) { int ret, cnt, val; ssize_t rx_size; unsigned xfer_size_addr; struct sdio_func *func = i2400ms->func; struct device *dev = &i2400ms->func->dev; d_fnstart(7, dev, "(i2400ms %p)\n", i2400ms); xfer_size_addr = I2400MS_INTR_GET_SIZE_ADDR; rx_size = 0; for (cnt = 0; cnt < 3; cnt++) { val = sdio_readb(func, xfer_size_addr + cnt, &ret); if (ret < 0) { dev_err(dev, "RX: Can't read byte %d of RX size from " "0x%08x: %d\n", cnt, xfer_size_addr + cnt, ret); rx_size = ret; goto error_read; } rx_size = rx_size << 8 | (val & 0xff); } d_printf(6, dev, "RX: rx_size is %ld\n", (long) rx_size); error_read: d_fnend(7, dev, "(i2400ms %p) = %ld\n", i2400ms, (long) rx_size); return rx_size; } /* * Read data from the device (when in normal) * * Allocate an SKB of the right size, read the data in and then * deliver it to the generic layer. * * We also check for a reboot barker. That means the device died and * we have to reboot it. */ static void i2400ms_rx(struct i2400ms *i2400ms) { int ret; struct sdio_func *func = i2400ms->func; struct device *dev = &func->dev; struct i2400m *i2400m = &i2400ms->i2400m; struct sk_buff *skb; ssize_t rx_size; d_fnstart(7, dev, "(i2400ms %p)\n", i2400ms); rx_size = __i2400ms_rx_get_size(i2400ms); if (rx_size < 0) { ret = rx_size; goto error_get_size; } /* * Hardware quirk: make sure to clear the INTR status register * AFTER getting the data transfer size. */ sdio_writeb(func, 1, I2400MS_INTR_CLEAR_ADDR, &ret); ret = -ENOMEM; skb = alloc_skb(rx_size, GFP_ATOMIC); if (NULL == skb) { dev_err(dev, "RX: unable to alloc skb\n"); goto error_alloc_skb; } ret = sdio_memcpy_fromio(func, skb->data, I2400MS_DATA_ADDR, rx_size); if (ret < 0) { dev_err(dev, "RX: SDIO data read failed: %d\n", ret); goto error_memcpy_fromio; } rmb(); /* make sure we get boot_mode from dev_reset_handle */ if (unlikely(i2400m->boot_mode == 1)) { spin_lock(&i2400m->rx_lock); i2400ms->bm_ack_size = rx_size; spin_unlock(&i2400m->rx_lock); memcpy(i2400m->bm_ack_buf, skb->data, rx_size); wake_up(&i2400ms->bm_wfa_wq); dev_err(dev, "RX: SDIO boot mode message\n"); kfree_skb(skb); goto out; } ret = -EIO; if (unlikely(rx_size < sizeof(__le32))) { dev_err(dev, "HW BUG? only %zu bytes received\n", rx_size); goto error_bad_size; } if (likely(i2400m_is_d2h_barker(skb->data))) { skb_put(skb, rx_size); i2400m_rx(i2400m, skb); } else if (unlikely(i2400m_is_boot_barker(i2400m, skb->data, rx_size))) { ret = i2400m_dev_reset_handle(i2400m); dev_err(dev, "RX: SDIO reboot barker\n"); kfree_skb(skb); } else { i2400m_unknown_barker(i2400m, skb->data, rx_size); kfree_skb(skb); } out: d_fnend(7, dev, "(i2400ms %p) = void\n", i2400ms); return; error_memcpy_fromio: kfree_skb(skb); error_alloc_skb: error_get_size: error_bad_size: d_fnend(7, dev, "(i2400ms %p) = %d\n", i2400ms, ret); return; } /* * Process an interrupt from the SDIO card * * FIXME: need to process other events that are not just ready-to-read * * Checks there is data ready and then proceeds to read it. */ static void i2400ms_irq(struct sdio_func *func) { int ret; struct i2400ms *i2400ms = sdio_get_drvdata(func); struct device *dev = &func->dev; int val; d_fnstart(6, dev, "(i2400ms %p)\n", i2400ms); val = sdio_readb(func, I2400MS_INTR_STATUS_ADDR, &ret); if (ret < 0) { dev_err(dev, "RX: Can't read interrupt status: %d\n", ret); goto error_no_irq; } if (!val) { dev_err(dev, "RX: BUG? got IRQ but no interrupt ready?\n"); goto error_no_irq; } i2400ms_rx(i2400ms); error_no_irq: d_fnend(6, dev, "(i2400ms %p) = void\n", i2400ms); return; } /* * Setup SDIO RX * * Hooks up the IRQ handler and then enables IRQs. */ int i2400ms_rx_setup(struct i2400ms *i2400ms) { int result; struct sdio_func *func = i2400ms->func; struct device *dev = &func->dev; struct i2400m *i2400m = &i2400ms->i2400m; d_fnstart(5, dev, "(i2400ms %p)\n", i2400ms); init_waitqueue_head(&i2400ms->bm_wfa_wq); spin_lock(&i2400m->rx_lock); i2400ms->bm_wait_result = -EINPROGRESS; /* * Before we are about to enable the RX interrupt, make sure * bm_ack_size is cleared to -EINPROGRESS which indicates * no RX interrupt happened yet or the previous interrupt * has been handled, we are ready to take the new interrupt */ i2400ms->bm_ack_size = -EINPROGRESS; spin_unlock(&i2400m->rx_lock); sdio_claim_host(func); result = sdio_claim_irq(func, i2400ms_irq); if (result < 0) { dev_err(dev, "Cannot claim IRQ: %d\n", result); goto error_irq_claim; } result = 0; sdio_writeb(func, 1, I2400MS_INTR_ENABLE_ADDR, &result); if (result < 0) { sdio_release_irq(func); dev_err(dev, "Failed to enable interrupts %d\n", result); } error_irq_claim: sdio_release_host(func); d_fnend(5, dev, "(i2400ms %p) = %d\n", i2400ms, result); return result; } /* * Tear down SDIO RX * * Disables IRQs in the device and removes the IRQ handler. */ void i2400ms_rx_release(struct i2400ms *i2400ms) { int result; struct sdio_func *func = i2400ms->func; struct device *dev = &func->dev; struct i2400m *i2400m = &i2400ms->i2400m; d_fnstart(5, dev, "(i2400ms %p)\n", i2400ms); spin_lock(&i2400m->rx_lock); i2400ms->bm_ack_size = -EINTR; spin_unlock(&i2400m->rx_lock); wake_up_all(&i2400ms->bm_wfa_wq); sdio_claim_host(func); sdio_writeb(func, 0, I2400MS_INTR_ENABLE_ADDR, &result); sdio_release_irq(func); sdio_release_host(func); d_fnend(5, dev, "(i2400ms %p) = %d\n", i2400ms, result); }