/* * ispvideo.c * * TI OMAP3 ISP - Generic video node * * Copyright (C) 2009-2010 Nokia Corporation * * Contacts: Laurent Pinchart * Sakari Ailus * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA * 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ispvideo.h" #include "isp.h" /* ----------------------------------------------------------------------------- * Helper functions */ static struct isp_format_info formats[] = { { V4L2_MBUS_FMT_Y8_1X8, V4L2_MBUS_FMT_Y8_1X8, V4L2_MBUS_FMT_Y8_1X8, V4L2_MBUS_FMT_Y8_1X8, V4L2_PIX_FMT_GREY, 8, }, { V4L2_MBUS_FMT_Y10_1X10, V4L2_MBUS_FMT_Y10_1X10, V4L2_MBUS_FMT_Y10_1X10, V4L2_MBUS_FMT_Y8_1X8, V4L2_PIX_FMT_Y10, 10, }, { V4L2_MBUS_FMT_Y12_1X12, V4L2_MBUS_FMT_Y10_1X10, V4L2_MBUS_FMT_Y12_1X12, V4L2_MBUS_FMT_Y8_1X8, V4L2_PIX_FMT_Y12, 12, }, { V4L2_MBUS_FMT_SBGGR8_1X8, V4L2_MBUS_FMT_SBGGR8_1X8, V4L2_MBUS_FMT_SBGGR8_1X8, V4L2_MBUS_FMT_SBGGR8_1X8, V4L2_PIX_FMT_SBGGR8, 8, }, { V4L2_MBUS_FMT_SGBRG8_1X8, V4L2_MBUS_FMT_SGBRG8_1X8, V4L2_MBUS_FMT_SGBRG8_1X8, V4L2_MBUS_FMT_SGBRG8_1X8, V4L2_PIX_FMT_SGBRG8, 8, }, { V4L2_MBUS_FMT_SGRBG8_1X8, V4L2_MBUS_FMT_SGRBG8_1X8, V4L2_MBUS_FMT_SGRBG8_1X8, V4L2_MBUS_FMT_SGRBG8_1X8, V4L2_PIX_FMT_SGRBG8, 8, }, { V4L2_MBUS_FMT_SRGGB8_1X8, V4L2_MBUS_FMT_SRGGB8_1X8, V4L2_MBUS_FMT_SRGGB8_1X8, V4L2_MBUS_FMT_SRGGB8_1X8, V4L2_PIX_FMT_SRGGB8, 8, }, { V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8, V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8, V4L2_MBUS_FMT_SGRBG10_1X10, 0, V4L2_PIX_FMT_SGRBG10DPCM8, 8, }, { V4L2_MBUS_FMT_SBGGR10_1X10, V4L2_MBUS_FMT_SBGGR10_1X10, V4L2_MBUS_FMT_SBGGR10_1X10, V4L2_MBUS_FMT_SBGGR8_1X8, V4L2_PIX_FMT_SBGGR10, 10, }, { V4L2_MBUS_FMT_SGBRG10_1X10, V4L2_MBUS_FMT_SGBRG10_1X10, V4L2_MBUS_FMT_SGBRG10_1X10, V4L2_MBUS_FMT_SGBRG8_1X8, V4L2_PIX_FMT_SGBRG10, 10, }, { V4L2_MBUS_FMT_SGRBG10_1X10, V4L2_MBUS_FMT_SGRBG10_1X10, V4L2_MBUS_FMT_SGRBG10_1X10, V4L2_MBUS_FMT_SGRBG8_1X8, V4L2_PIX_FMT_SGRBG10, 10, }, { V4L2_MBUS_FMT_SRGGB10_1X10, V4L2_MBUS_FMT_SRGGB10_1X10, V4L2_MBUS_FMT_SRGGB10_1X10, V4L2_MBUS_FMT_SRGGB8_1X8, V4L2_PIX_FMT_SRGGB10, 10, }, { V4L2_MBUS_FMT_SBGGR12_1X12, V4L2_MBUS_FMT_SBGGR10_1X10, V4L2_MBUS_FMT_SBGGR12_1X12, V4L2_MBUS_FMT_SBGGR8_1X8, V4L2_PIX_FMT_SBGGR12, 12, }, { V4L2_MBUS_FMT_SGBRG12_1X12, V4L2_MBUS_FMT_SGBRG10_1X10, V4L2_MBUS_FMT_SGBRG12_1X12, V4L2_MBUS_FMT_SGBRG8_1X8, V4L2_PIX_FMT_SGBRG12, 12, }, { V4L2_MBUS_FMT_SGRBG12_1X12, V4L2_MBUS_FMT_SGRBG10_1X10, V4L2_MBUS_FMT_SGRBG12_1X12, V4L2_MBUS_FMT_SGRBG8_1X8, V4L2_PIX_FMT_SGRBG12, 12, }, { V4L2_MBUS_FMT_SRGGB12_1X12, V4L2_MBUS_FMT_SRGGB10_1X10, V4L2_MBUS_FMT_SRGGB12_1X12, V4L2_MBUS_FMT_SRGGB8_1X8, V4L2_PIX_FMT_SRGGB12, 12, }, { V4L2_MBUS_FMT_UYVY8_1X16, V4L2_MBUS_FMT_UYVY8_1X16, V4L2_MBUS_FMT_UYVY8_1X16, 0, V4L2_PIX_FMT_UYVY, 16, }, { V4L2_MBUS_FMT_YUYV8_1X16, V4L2_MBUS_FMT_YUYV8_1X16, V4L2_MBUS_FMT_YUYV8_1X16, 0, V4L2_PIX_FMT_YUYV, 16, }, }; const struct isp_format_info * omap3isp_video_format_info(enum v4l2_mbus_pixelcode code) { unsigned int i; for (i = 0; i < ARRAY_SIZE(formats); ++i) { if (formats[i].code == code) return &formats[i]; } return NULL; } /* * Decide whether desired output pixel code can be obtained with * the lane shifter by shifting the input pixel code. * @in: input pixelcode to shifter * @out: output pixelcode from shifter * @additional_shift: # of bits the sensor's LSB is offset from CAMEXT[0] * * return true if the combination is possible * return false otherwise */ static bool isp_video_is_shiftable(enum v4l2_mbus_pixelcode in, enum v4l2_mbus_pixelcode out, unsigned int additional_shift) { const struct isp_format_info *in_info, *out_info; if (in == out) return true; in_info = omap3isp_video_format_info(in); out_info = omap3isp_video_format_info(out); if ((in_info->flavor == 0) || (out_info->flavor == 0)) return false; if (in_info->flavor != out_info->flavor) return false; return in_info->bpp - out_info->bpp + additional_shift <= 6; } /* * isp_video_mbus_to_pix - Convert v4l2_mbus_framefmt to v4l2_pix_format * @video: ISP video instance * @mbus: v4l2_mbus_framefmt format (input) * @pix: v4l2_pix_format format (output) * * Fill the output pix structure with information from the input mbus format. * The bytesperline and sizeimage fields are computed from the requested bytes * per line value in the pix format and information from the video instance. * * Return the number of padding bytes at end of line. */ static unsigned int isp_video_mbus_to_pix(const struct isp_video *video, const struct v4l2_mbus_framefmt *mbus, struct v4l2_pix_format *pix) { unsigned int bpl = pix->bytesperline; unsigned int min_bpl; unsigned int i; memset(pix, 0, sizeof(*pix)); pix->width = mbus->width; pix->height = mbus->height; for (i = 0; i < ARRAY_SIZE(formats); ++i) { if (formats[i].code == mbus->code) break; } if (WARN_ON(i == ARRAY_SIZE(formats))) return 0; min_bpl = pix->width * ALIGN(formats[i].bpp, 8) / 8; /* Clamp the requested bytes per line value. If the maximum bytes per * line value is zero, the module doesn't support user configurable line * sizes. Override the requested value with the minimum in that case. */ if (video->bpl_max) bpl = clamp(bpl, min_bpl, video->bpl_max); else bpl = min_bpl; if (!video->bpl_zero_padding || bpl != min_bpl) bpl = ALIGN(bpl, video->bpl_alignment); pix->pixelformat = formats[i].pixelformat; pix->bytesperline = bpl; pix->sizeimage = pix->bytesperline * pix->height; pix->colorspace = mbus->colorspace; pix->field = mbus->field; return bpl - min_bpl; } static void isp_video_pix_to_mbus(const struct v4l2_pix_format *pix, struct v4l2_mbus_framefmt *mbus) { unsigned int i; memset(mbus, 0, sizeof(*mbus)); mbus->width = pix->width; mbus->height = pix->height; for (i = 0; i < ARRAY_SIZE(formats); ++i) { if (formats[i].pixelformat == pix->pixelformat) break; } if (WARN_ON(i == ARRAY_SIZE(formats))) return; mbus->code = formats[i].code; mbus->colorspace = pix->colorspace; mbus->field = pix->field; } static struct v4l2_subdev * isp_video_remote_subdev(struct isp_video *video, u32 *pad) { struct media_pad *remote; remote = media_entity_remote_source(&video->pad); if (remote == NULL || media_entity_type(remote->entity) != MEDIA_ENT_T_V4L2_SUBDEV) return NULL; if (pad) *pad = remote->index; return media_entity_to_v4l2_subdev(remote->entity); } /* Return a pointer to the ISP video instance at the far end of the pipeline. */ static struct isp_video * isp_video_far_end(struct isp_video *video) { struct media_entity_graph graph; struct media_entity *entity = &video->video.entity; struct media_device *mdev = entity->parent; struct isp_video *far_end = NULL; mutex_lock(&mdev->graph_mutex); media_entity_graph_walk_start(&graph, entity); while ((entity = media_entity_graph_walk_next(&graph))) { if (entity == &video->video.entity) continue; if (media_entity_type(entity) != MEDIA_ENT_T_DEVNODE) continue; far_end = to_isp_video(media_entity_to_video_device(entity)); if (far_end->type != video->type) break; far_end = NULL; } mutex_unlock(&mdev->graph_mutex); return far_end; } /* * Validate a pipeline by checking both ends of all links for format * discrepancies. * * Compute the minimum time per frame value as the maximum of time per frame * limits reported by every block in the pipeline. * * Return 0 if all formats match, or -EPIPE if at least one link is found with * different formats on its two ends. */ static int isp_video_validate_pipeline(struct isp_pipeline *pipe) { struct isp_device *isp = pipe->output->isp; struct v4l2_subdev_format fmt_source; struct v4l2_subdev_format fmt_sink; struct media_pad *pad; struct v4l2_subdev *subdev; int ret; pipe->max_rate = pipe->l3_ick; subdev = isp_video_remote_subdev(pipe->output, NULL); if (subdev == NULL) return -EPIPE; while (1) { unsigned int shifter_link; /* Retrieve the sink format */ pad = &subdev->entity.pads[0]; if (!(pad->flags & MEDIA_PAD_FL_SINK)) break; fmt_sink.pad = pad->index; fmt_sink.which = V4L2_SUBDEV_FORMAT_ACTIVE; ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt_sink); if (ret < 0 && ret != -ENOIOCTLCMD) return -EPIPE; /* Update the maximum frame rate */ if (subdev == &isp->isp_res.subdev) omap3isp_resizer_max_rate(&isp->isp_res, &pipe->max_rate); /* Check ccdc maximum data rate when data comes from sensor * TODO: Include ccdc rate in pipe->max_rate and compare the * total pipe rate with the input data rate from sensor. */ if (subdev == &isp->isp_ccdc.subdev && pipe->input == NULL) { unsigned int rate = UINT_MAX; omap3isp_ccdc_max_rate(&isp->isp_ccdc, &rate); if (isp->isp_ccdc.vpcfg.pixelclk > rate) return -ENOSPC; } /* If sink pad is on CCDC, the link has the lane shifter * in the middle of it. */ shifter_link = subdev == &isp->isp_ccdc.subdev; /* Retrieve the source format */ pad = media_entity_remote_source(pad); if (pad == NULL || media_entity_type(pad->entity) != MEDIA_ENT_T_V4L2_SUBDEV) break; subdev = media_entity_to_v4l2_subdev(pad->entity); fmt_source.pad = pad->index; fmt_source.which = V4L2_SUBDEV_FORMAT_ACTIVE; ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt_source); if (ret < 0 && ret != -ENOIOCTLCMD) return -EPIPE; /* Check if the two ends match */ if (fmt_source.format.width != fmt_sink.format.width || fmt_source.format.height != fmt_sink.format.height) return -EPIPE; if (shifter_link) { unsigned int parallel_shift = 0; if (isp->isp_ccdc.input == CCDC_INPUT_PARALLEL) { struct isp_parallel_platform_data *pdata = &((struct isp_v4l2_subdevs_group *) subdev->host_priv)->bus.parallel; parallel_shift = pdata->data_lane_shift * 2; } if (!isp_video_is_shiftable(fmt_source.format.code, fmt_sink.format.code, parallel_shift)) return -EPIPE; } else if (fmt_source.format.code != fmt_sink.format.code) return -EPIPE; } return 0; } static int __isp_video_get_format(struct isp_video *video, struct v4l2_format *format) { struct v4l2_subdev_format fmt; struct v4l2_subdev *subdev; u32 pad; int ret; subdev = isp_video_remote_subdev(video, &pad); if (subdev == NULL) return -EINVAL; mutex_lock(&video->mutex); fmt.pad = pad; fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE; ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt); if (ret == -ENOIOCTLCMD) ret = -EINVAL; mutex_unlock(&video->mutex); if (ret) return ret; format->type = video->type; return isp_video_mbus_to_pix(video, &fmt.format, &format->fmt.pix); } static int isp_video_check_format(struct isp_video *video, struct isp_video_fh *vfh) { struct v4l2_format format; int ret; memcpy(&format, &vfh->format, sizeof(format)); ret = __isp_video_get_format(video, &format); if (ret < 0) return ret; if (vfh->format.fmt.pix.pixelformat != format.fmt.pix.pixelformat || vfh->format.fmt.pix.height != format.fmt.pix.height || vfh->format.fmt.pix.width != format.fmt.pix.width || vfh->format.fmt.pix.bytesperline != format.fmt.pix.bytesperline || vfh->format.fmt.pix.sizeimage != format.fmt.pix.sizeimage) return -EINVAL; return ret; } /* ----------------------------------------------------------------------------- * IOMMU management */ #define IOMMU_FLAG (IOVMF_ENDIAN_LITTLE | IOVMF_ELSZ_8) /* * ispmmu_vmap - Wrapper for Virtual memory mapping of a scatter gather list * @dev: Device pointer specific to the OMAP3 ISP. * @sglist: Pointer to source Scatter gather list to allocate. * @sglen: Number of elements of the scatter-gatter list. * * Returns a resulting mapped device address by the ISP MMU, or -ENOMEM if * we ran out of memory. */ static dma_addr_t ispmmu_vmap(struct isp_device *isp, const struct scatterlist *sglist, int sglen) { struct sg_table *sgt; u32 da; sgt = kmalloc(sizeof(*sgt), GFP_KERNEL); if (sgt == NULL) return -ENOMEM; sgt->sgl = (struct scatterlist *)sglist; sgt->nents = sglen; sgt->orig_nents = sglen; da = iommu_vmap(isp->iommu, 0, sgt, IOMMU_FLAG); if (IS_ERR_VALUE(da)) kfree(sgt); return da; } /* * ispmmu_vunmap - Unmap a device address from the ISP MMU * @dev: Device pointer specific to the OMAP3 ISP. * @da: Device address generated from a ispmmu_vmap call. */ static void ispmmu_vunmap(struct isp_device *isp, dma_addr_t da) { struct sg_table *sgt; sgt = iommu_vunmap(isp->iommu, (u32)da); kfree(sgt); } /* ----------------------------------------------------------------------------- * Video queue operations */ static void isp_video_queue_prepare(struct isp_video_queue *queue, unsigned int *nbuffers, unsigned int *size) { struct isp_video_fh *vfh = container_of(queue, struct isp_video_fh, queue); struct isp_video *video = vfh->video; *size = vfh->format.fmt.pix.sizeimage; if (*size == 0) return; *nbuffers = min(*nbuffers, video->capture_mem / PAGE_ALIGN(*size)); } static void isp_video_buffer_cleanup(struct isp_video_buffer *buf) { struct isp_video_fh *vfh = isp_video_queue_to_isp_video_fh(buf->queue); struct isp_buffer *buffer = to_isp_buffer(buf); struct isp_video *video = vfh->video; if (buffer->isp_addr) { ispmmu_vunmap(video->isp, buffer->isp_addr); buffer->isp_addr = 0; } } static int isp_video_buffer_prepare(struct isp_video_buffer *buf) { struct isp_video_fh *vfh = isp_video_queue_to_isp_video_fh(buf->queue); struct isp_buffer *buffer = to_isp_buffer(buf); struct isp_video *video = vfh->video; unsigned long addr; addr = ispmmu_vmap(video->isp, buf->sglist, buf->sglen); if (IS_ERR_VALUE(addr)) return -EIO; if (!IS_ALIGNED(addr, 32)) { dev_dbg(video->isp->dev, "Buffer address must be " "aligned to 32 bytes boundary.\n"); ispmmu_vunmap(video->isp, buffer->isp_addr); return -EINVAL; } buf->vbuf.bytesused = vfh->format.fmt.pix.sizeimage; buffer->isp_addr = addr; return 0; } /* * isp_video_buffer_queue - Add buffer to streaming queue * @buf: Video buffer * * In memory-to-memory mode, start streaming on the pipeline if buffers are * queued on both the input and the output, if the pipeline isn't already busy. * If the pipeline is busy, it will be restarted in the output module interrupt * handler. */ static void isp_video_buffer_queue(struct isp_video_buffer *buf) { struct isp_video_fh *vfh = isp_video_queue_to_isp_video_fh(buf->queue); struct isp_buffer *buffer = to_isp_buffer(buf); struct isp_video *video = vfh->video; struct isp_pipeline *pipe = to_isp_pipeline(&video->video.entity); enum isp_pipeline_state state; unsigned long flags; unsigned int empty; unsigned int start; empty = list_empty(&video->dmaqueue); list_add_tail(&buffer->buffer.irqlist, &video->dmaqueue); if (empty) { if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) state = ISP_PIPELINE_QUEUE_OUTPUT; else state = ISP_PIPELINE_QUEUE_INPUT; spin_lock_irqsave(&pipe->lock, flags); pipe->state |= state; video->ops->queue(video, buffer); video->dmaqueue_flags |= ISP_VIDEO_DMAQUEUE_QUEUED; start = isp_pipeline_ready(pipe); if (start) pipe->state |= ISP_PIPELINE_STREAM; spin_unlock_irqrestore(&pipe->lock, flags); if (start) omap3isp_pipeline_set_stream(pipe, ISP_PIPELINE_STREAM_SINGLESHOT); } } static const struct isp_video_queue_operations isp_video_queue_ops = { .queue_prepare = &isp_video_queue_prepare, .buffer_prepare = &isp_video_buffer_prepare, .buffer_queue = &isp_video_buffer_queue, .buffer_cleanup = &isp_video_buffer_cleanup, }; /* * omap3isp_video_buffer_next - Complete the current buffer and return the next * @video: ISP video object * @error: Whether an error occured during capture * * Remove the current video buffer from the DMA queue and fill its timestamp, * field count and state fields before waking up its completion handler. * * The buffer state is set to VIDEOBUF_DONE if no error occured (@error is 0) * or VIDEOBUF_ERROR otherwise (@error is non-zero). * * The DMA queue is expected to contain at least one buffer. * * Return a pointer to the next buffer in the DMA queue, or NULL if the queue is * empty. */ struct isp_buffer *omap3isp_video_buffer_next(struct isp_video *video, unsigned int error) { struct isp_pipeline *pipe = to_isp_pipeline(&video->video.entity); struct isp_video_queue *queue = video->queue; enum isp_pipeline_state state; struct isp_video_buffer *buf; unsigned long flags; struct timespec ts; spin_lock_irqsave(&queue->irqlock, flags); if (WARN_ON(list_empty(&video->dmaqueue))) { spin_unlock_irqrestore(&queue->irqlock, flags); return NULL; } buf = list_first_entry(&video->dmaqueue, struct isp_video_buffer, irqlist); list_del(&buf->irqlist); spin_unlock_irqrestore(&queue->irqlock, flags); ktime_get_ts(&ts); buf->vbuf.timestamp.tv_sec = ts.tv_sec; buf->vbuf.timestamp.tv_usec = ts.tv_nsec / NSEC_PER_USEC; /* Do frame number propagation only if this is the output video node. * Frame number either comes from the CSI receivers or it gets * incremented here if H3A is not active. * Note: There is no guarantee that the output buffer will finish * first, so the input number might lag behind by 1 in some cases. */ if (video == pipe->output && !pipe->do_propagation) buf->vbuf.sequence = atomic_inc_return(&pipe->frame_number); else buf->vbuf.sequence = atomic_read(&pipe->frame_number); buf->state = error ? ISP_BUF_STATE_ERROR : ISP_BUF_STATE_DONE; wake_up(&buf->wait); if (list_empty(&video->dmaqueue)) { if (queue->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) state = ISP_PIPELINE_QUEUE_OUTPUT | ISP_PIPELINE_STREAM; else state = ISP_PIPELINE_QUEUE_INPUT | ISP_PIPELINE_STREAM; spin_lock_irqsave(&pipe->lock, flags); pipe->state &= ~state; if (video->pipe.stream_state == ISP_PIPELINE_STREAM_CONTINUOUS) video->dmaqueue_flags |= ISP_VIDEO_DMAQUEUE_UNDERRUN; spin_unlock_irqrestore(&pipe->lock, flags); return NULL; } if (queue->type == V4L2_BUF_TYPE_VIDEO_CAPTURE && pipe->input != NULL) { spin_lock_irqsave(&pipe->lock, flags); pipe->state &= ~ISP_PIPELINE_STREAM; spin_unlock_irqrestore(&pipe->lock, flags); } buf = list_first_entry(&video->dmaqueue, struct isp_video_buffer, irqlist); buf->state = ISP_BUF_STATE_ACTIVE; return to_isp_buffer(buf); } /* * omap3isp_video_resume - Perform resume operation on the buffers * @video: ISP video object * @continuous: Pipeline is in single shot mode if 0 or continous mode otherwise * * This function is intended to be used on suspend/resume scenario. It * requests video queue layer to discard buffers marked as DONE if it's in * continuous mode and requests ISP modules to queue again the ACTIVE buffer * if there's any. */ void omap3isp_video_resume(struct isp_video *video, int continuous) { struct isp_buffer *buf = NULL; if (continuous && video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) omap3isp_video_queue_discard_done(video->queue); if (!list_empty(&video->dmaqueue)) { buf = list_first_entry(&video->dmaqueue, struct isp_buffer, buffer.irqlist); video->ops->queue(video, buf); video->dmaqueue_flags |= ISP_VIDEO_DMAQUEUE_QUEUED; } else { if (continuous) video->dmaqueue_flags |= ISP_VIDEO_DMAQUEUE_UNDERRUN; } } /* ----------------------------------------------------------------------------- * V4L2 ioctls */ static int isp_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap) { struct isp_video *video = video_drvdata(file); strlcpy(cap->driver, ISP_VIDEO_DRIVER_NAME, sizeof(cap->driver)); strlcpy(cap->card, video->video.name, sizeof(cap->card)); strlcpy(cap->bus_info, "media", sizeof(cap->bus_info)); cap->version = ISP_VIDEO_DRIVER_VERSION; if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) cap->capabilities = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING; else cap->capabilities = V4L2_CAP_VIDEO_OUTPUT | V4L2_CAP_STREAMING; return 0; } static int isp_video_get_format(struct file *file, void *fh, struct v4l2_format *format) { struct isp_video_fh *vfh = to_isp_video_fh(fh); struct isp_video *video = video_drvdata(file); if (format->type != video->type) return -EINVAL; mutex_lock(&video->mutex); *format = vfh->format; mutex_unlock(&video->mutex); return 0; } static int isp_video_set_format(struct file *file, void *fh, struct v4l2_format *format) { struct isp_video_fh *vfh = to_isp_video_fh(fh); struct isp_video *video = video_drvdata(file); struct v4l2_mbus_framefmt fmt; if (format->type != video->type) return -EINVAL; mutex_lock(&video->mutex); /* Fill the bytesperline and sizeimage fields by converting to media bus * format and back to pixel format. */ isp_video_pix_to_mbus(&format->fmt.pix, &fmt); isp_video_mbus_to_pix(video, &fmt, &format->fmt.pix); vfh->format = *format; mutex_unlock(&video->mutex); return 0; } static int isp_video_try_format(struct file *file, void *fh, struct v4l2_format *format) { struct isp_video *video = video_drvdata(file); struct v4l2_subdev_format fmt; struct v4l2_subdev *subdev; u32 pad; int ret; if (format->type != video->type) return -EINVAL; subdev = isp_video_remote_subdev(video, &pad); if (subdev == NULL) return -EINVAL; isp_video_pix_to_mbus(&format->fmt.pix, &fmt.format); fmt.pad = pad; fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE; ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt); if (ret) return ret == -ENOIOCTLCMD ? -EINVAL : ret; isp_video_mbus_to_pix(video, &fmt.format, &format->fmt.pix); return 0; } static int isp_video_cropcap(struct file *file, void *fh, struct v4l2_cropcap *cropcap) { struct isp_video *video = video_drvdata(file); struct v4l2_subdev *subdev; int ret; subdev = isp_video_remote_subdev(video, NULL); if (subdev == NULL) return -EINVAL; mutex_lock(&video->mutex); ret = v4l2_subdev_call(subdev, video, cropcap, cropcap); mutex_unlock(&video->mutex); return ret == -ENOIOCTLCMD ? -EINVAL : ret; } static int isp_video_get_crop(struct file *file, void *fh, struct v4l2_crop *crop) { struct isp_video *video = video_drvdata(file); struct v4l2_subdev_format format; struct v4l2_subdev *subdev; u32 pad; int ret; subdev = isp_video_remote_subdev(video, &pad); if (subdev == NULL) return -EINVAL; /* Try the get crop operation first and fallback to get format if not * implemented. */ ret = v4l2_subdev_call(subdev, video, g_crop, crop); if (ret != -ENOIOCTLCMD) return ret; format.pad = pad; format.which = V4L2_SUBDEV_FORMAT_ACTIVE; ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &format); if (ret < 0) return ret == -ENOIOCTLCMD ? -EINVAL : ret; crop->c.left = 0; crop->c.top = 0; crop->c.width = format.format.width; crop->c.height = format.format.height; return 0; } static int isp_video_set_crop(struct file *file, void *fh, struct v4l2_crop *crop) { struct isp_video *video = video_drvdata(file); struct v4l2_subdev *subdev; int ret; subdev = isp_video_remote_subdev(video, NULL); if (subdev == NULL) return -EINVAL; mutex_lock(&video->mutex); ret = v4l2_subdev_call(subdev, video, s_crop, crop); mutex_unlock(&video->mutex); return ret == -ENOIOCTLCMD ? -EINVAL : ret; } static int isp_video_get_param(struct file *file, void *fh, struct v4l2_streamparm *a) { struct isp_video_fh *vfh = to_isp_video_fh(fh); struct isp_video *video = video_drvdata(file); if (video->type != V4L2_BUF_TYPE_VIDEO_OUTPUT || video->type != a->type) return -EINVAL; memset(a, 0, sizeof(*a)); a->type = V4L2_BUF_TYPE_VIDEO_OUTPUT; a->parm.output.capability = V4L2_CAP_TIMEPERFRAME; a->parm.output.timeperframe = vfh->timeperframe; return 0; } static int isp_video_set_param(struct file *file, void *fh, struct v4l2_streamparm *a) { struct isp_video_fh *vfh = to_isp_video_fh(fh); struct isp_video *video = video_drvdata(file); if (video->type != V4L2_BUF_TYPE_VIDEO_OUTPUT || video->type != a->type) return -EINVAL; if (a->parm.output.timeperframe.denominator == 0) a->parm.output.timeperframe.denominator = 1; vfh->timeperframe = a->parm.output.timeperframe; return 0; } static int isp_video_reqbufs(struct file *file, void *fh, struct v4l2_requestbuffers *rb) { struct isp_video_fh *vfh = to_isp_video_fh(fh); return omap3isp_video_queue_reqbufs(&vfh->queue, rb); } static int isp_video_querybuf(struct file *file, void *fh, struct v4l2_buffer *b) { struct isp_video_fh *vfh = to_isp_video_fh(fh); return omap3isp_video_queue_querybuf(&vfh->queue, b); } static int isp_video_qbuf(struct file *file, void *fh, struct v4l2_buffer *b) { struct isp_video_fh *vfh = to_isp_video_fh(fh); return omap3isp_video_queue_qbuf(&vfh->queue, b); } static int isp_video_dqbuf(struct file *file, void *fh, struct v4l2_buffer *b) { struct isp_video_fh *vfh = to_isp_video_fh(fh); return omap3isp_video_queue_dqbuf(&vfh->queue, b, file->f_flags & O_NONBLOCK); } /* * Stream management * * Every ISP pipeline has a single input and a single output. The input can be * either a sensor or a video node. The output is always a video node. * * As every pipeline has an output video node, the ISP video objects at the * pipeline output stores the pipeline state. It tracks the streaming state of * both the input and output, as well as the availability of buffers. * * In sensor-to-memory mode, frames are always available at the pipeline input. * Starting the sensor usually requires I2C transfers and must be done in * interruptible context. The pipeline is started and stopped synchronously * to the stream on/off commands. All modules in the pipeline will get their * subdev set stream handler called. The module at the end of the pipeline must * delay starting the hardware until buffers are available at its output. * * In memory-to-memory mode, starting/stopping the stream requires * synchronization between the input and output. ISP modules can't be stopped * in the middle of a frame, and at least some of the modules seem to become * busy as soon as they're started, even if they don't receive a frame start * event. For that reason frames need to be processed in single-shot mode. The * driver needs to wait until a frame is completely processed and written to * memory before restarting the pipeline for the next frame. Pipelined * processing might be possible but requires more testing. * * Stream start must be delayed until buffers are available at both the input * and output. The pipeline must be started in the videobuf queue callback with * the buffers queue spinlock held. The modules subdev set stream operation must * not sleep. */ static int isp_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type) { struct isp_video_fh *vfh = to_isp_video_fh(fh); struct isp_video *video = video_drvdata(file); enum isp_pipeline_state state; struct isp_pipeline *pipe; struct isp_video *far_end; unsigned long flags; int ret; if (type != video->type) return -EINVAL; mutex_lock(&video->stream_lock); if (video->streaming) { mutex_unlock(&video->stream_lock); return -EBUSY; } /* Start streaming on the pipeline. No link touching an entity in the * pipeline can be activated or deactivated once streaming is started. */ pipe = video->video.entity.pipe ? to_isp_pipeline(&video->video.entity) : &video->pipe; media_entity_pipeline_start(&video->video.entity, &pipe->pipe); /* Verify that the currently configured format matches the output of * the connected subdev. */ ret = isp_video_check_format(video, vfh); if (ret < 0) goto error; video->bpl_padding = ret; video->bpl_value = vfh->format.fmt.pix.bytesperline; /* Find the ISP video node connected at the far end of the pipeline and * update the pipeline. */ far_end = isp_video_far_end(video); if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) { state = ISP_PIPELINE_STREAM_OUTPUT | ISP_PIPELINE_IDLE_OUTPUT; pipe->input = far_end; pipe->output = video; } else { if (far_end == NULL) { ret = -EPIPE; goto error; } state = ISP_PIPELINE_STREAM_INPUT | ISP_PIPELINE_IDLE_INPUT; pipe->input = video; pipe->output = far_end; } if (video->isp->pdata->set_constraints) video->isp->pdata->set_constraints(video->isp, true); pipe->l3_ick = clk_get_rate(video->isp->clock[ISP_CLK_L3_ICK]); /* Validate the pipeline and update its state. */ ret = isp_video_validate_pipeline(pipe); if (ret < 0) goto error; spin_lock_irqsave(&pipe->lock, flags); pipe->state &= ~ISP_PIPELINE_STREAM; pipe->state |= state; spin_unlock_irqrestore(&pipe->lock, flags); /* Set the maximum time per frame as the value requested by userspace. * This is a soft limit that can be overridden if the hardware doesn't * support the request limit. */ if (video->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) pipe->max_timeperframe = vfh->timeperframe; video->queue = &vfh->queue; INIT_LIST_HEAD(&video->dmaqueue); atomic_set(&pipe->frame_number, -1); ret = omap3isp_video_queue_streamon(&vfh->queue); if (ret < 0) goto error; /* In sensor-to-memory mode, the stream can be started synchronously * to the stream on command. In memory-to-memory mode, it will be * started when buffers are queued on both the input and output. */ if (pipe->input == NULL) { ret = omap3isp_pipeline_set_stream(pipe, ISP_PIPELINE_STREAM_CONTINUOUS); if (ret < 0) goto error; spin_lock_irqsave(&video->queue->irqlock, flags); if (list_empty(&video->dmaqueue)) video->dmaqueue_flags |= ISP_VIDEO_DMAQUEUE_UNDERRUN; spin_unlock_irqrestore(&video->queue->irqlock, flags); } error: if (ret < 0) { omap3isp_video_queue_streamoff(&vfh->queue); if (video->isp->pdata->set_constraints) video->isp->pdata->set_constraints(video->isp, false); media_entity_pipeline_stop(&video->video.entity); video->queue = NULL; } if (!ret) video->streaming = 1; mutex_unlock(&video->stream_lock); return ret; } static int isp_video_streamoff(struct file *file, void *fh, enum v4l2_buf_type type) { struct isp_video_fh *vfh = to_isp_video_fh(fh); struct isp_video *video = video_drvdata(file); struct isp_pipeline *pipe = to_isp_pipeline(&video->video.entity); enum isp_pipeline_state state; unsigned int streaming; unsigned long flags; if (type != video->type) return -EINVAL; mutex_lock(&video->stream_lock); /* Make sure we're not streaming yet. */ mutex_lock(&vfh->queue.lock); streaming = vfh->queue.streaming; mutex_unlock(&vfh->queue.lock); if (!streaming) goto done; /* Update the pipeline state. */ if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) state = ISP_PIPELINE_STREAM_OUTPUT | ISP_PIPELINE_QUEUE_OUTPUT; else state = ISP_PIPELINE_STREAM_INPUT | ISP_PIPELINE_QUEUE_INPUT; spin_lock_irqsave(&pipe->lock, flags); pipe->state &= ~state; spin_unlock_irqrestore(&pipe->lock, flags); /* Stop the stream. */ omap3isp_pipeline_set_stream(pipe, ISP_PIPELINE_STREAM_STOPPED); omap3isp_video_queue_streamoff(&vfh->queue); video->queue = NULL; video->streaming = 0; if (video->isp->pdata->set_constraints) video->isp->pdata->set_constraints(video->isp, false); media_entity_pipeline_stop(&video->video.entity); done: mutex_unlock(&video->stream_lock); return 0; } static int isp_video_enum_input(struct file *file, void *fh, struct v4l2_input *input) { if (input->index > 0) return -EINVAL; strlcpy(input->name, "camera", sizeof(input->name)); input->type = V4L2_INPUT_TYPE_CAMERA; return 0; } static int isp_video_g_input(struct file *file, void *fh, unsigned int *input) { *input = 0; return 0; } static int isp_video_s_input(struct file *file, void *fh, unsigned int input) { return input == 0 ? 0 : -EINVAL; } static const struct v4l2_ioctl_ops isp_video_ioctl_ops = { .vidioc_querycap = isp_video_querycap, .vidioc_g_fmt_vid_cap = isp_video_get_format, .vidioc_s_fmt_vid_cap = isp_video_set_format, .vidioc_try_fmt_vid_cap = isp_video_try_format, .vidioc_g_fmt_vid_out = isp_video_get_format, .vidioc_s_fmt_vid_out = isp_video_set_format, .vidioc_try_fmt_vid_out = isp_video_try_format, .vidioc_cropcap = isp_video_cropcap, .vidioc_g_crop = isp_video_get_crop, .vidioc_s_crop = isp_video_set_crop, .vidioc_g_parm = isp_video_get_param, .vidioc_s_parm = isp_video_set_param, .vidioc_reqbufs = isp_video_reqbufs, .vidioc_querybuf = isp_video_querybuf, .vidioc_qbuf = isp_video_qbuf, .vidioc_dqbuf = isp_video_dqbuf, .vidioc_streamon = isp_video_streamon, .vidioc_streamoff = isp_video_streamoff, .vidioc_enum_input = isp_video_enum_input, .vidioc_g_input = isp_video_g_input, .vidioc_s_input = isp_video_s_input, }; /* ----------------------------------------------------------------------------- * V4L2 file operations */ static int isp_video_open(struct file *file) { struct isp_video *video = video_drvdata(file); struct isp_video_fh *handle; int ret = 0; handle = kzalloc(sizeof(*handle), GFP_KERNEL); if (handle == NULL) return -ENOMEM; v4l2_fh_init(&handle->vfh, &video->video); v4l2_fh_add(&handle->vfh); /* If this is the first user, initialise the pipeline. */ if (omap3isp_get(video->isp) == NULL) { ret = -EBUSY; goto done; } ret = omap3isp_pipeline_pm_use(&video->video.entity, 1); if (ret < 0) { omap3isp_put(video->isp); goto done; } omap3isp_video_queue_init(&handle->queue, video->type, &isp_video_queue_ops, video->isp->dev, sizeof(struct isp_buffer)); memset(&handle->format, 0, sizeof(handle->format)); handle->format.type = video->type; handle->timeperframe.denominator = 1; handle->video = video; file->private_data = &handle->vfh; done: if (ret < 0) { v4l2_fh_del(&handle->vfh); kfree(handle); } return ret; } static int isp_video_release(struct file *file) { struct isp_video *video = video_drvdata(file); struct v4l2_fh *vfh = file->private_data; struct isp_video_fh *handle = to_isp_video_fh(vfh); /* Disable streaming and free the buffers queue resources. */ isp_video_streamoff(file, vfh, video->type); mutex_lock(&handle->queue.lock); omap3isp_video_queue_cleanup(&handle->queue); mutex_unlock(&handle->queue.lock); omap3isp_pipeline_pm_use(&video->video.entity, 0); /* Release the file handle. */ v4l2_fh_del(vfh); kfree(handle); file->private_data = NULL; omap3isp_put(video->isp); return 0; } static unsigned int isp_video_poll(struct file *file, poll_table *wait) { struct isp_video_fh *vfh = to_isp_video_fh(file->private_data); struct isp_video_queue *queue = &vfh->queue; return omap3isp_video_queue_poll(queue, file, wait); } static int isp_video_mmap(struct file *file, struct vm_area_struct *vma) { struct isp_video_fh *vfh = to_isp_video_fh(file->private_data); return omap3isp_video_queue_mmap(&vfh->queue, vma); } static struct v4l2_file_operations isp_video_fops = { .owner = THIS_MODULE, .unlocked_ioctl = video_ioctl2, .open = isp_video_open, .release = isp_video_release, .poll = isp_video_poll, .mmap = isp_video_mmap, }; /* ----------------------------------------------------------------------------- * ISP video core */ static const struct isp_video_operations isp_video_dummy_ops = { }; int omap3isp_video_init(struct isp_video *video, const char *name) { const char *direction; int ret; switch (video->type) { case V4L2_BUF_TYPE_VIDEO_CAPTURE: direction = "output"; video->pad.flags = MEDIA_PAD_FL_SINK; break; case V4L2_BUF_TYPE_VIDEO_OUTPUT: direction = "input"; video->pad.flags = MEDIA_PAD_FL_SOURCE; break; default: return -EINVAL; } ret = media_entity_init(&video->video.entity, 1, &video->pad, 0); if (ret < 0) return ret; mutex_init(&video->mutex); atomic_set(&video->active, 0); spin_lock_init(&video->pipe.lock); mutex_init(&video->stream_lock); /* Initialize the video device. */ if (video->ops == NULL) video->ops = &isp_video_dummy_ops; video->video.fops = &isp_video_fops; snprintf(video->video.name, sizeof(video->video.name), "OMAP3 ISP %s %s", name, direction); video->video.vfl_type = VFL_TYPE_GRABBER; video->video.release = video_device_release_empty; video->video.ioctl_ops = &isp_video_ioctl_ops; video->pipe.stream_state = ISP_PIPELINE_STREAM_STOPPED; video_set_drvdata(&video->video, video); return 0; } int omap3isp_video_register(struct isp_video *video, struct v4l2_device *vdev) { int ret; video->video.v4l2_dev = vdev; ret = video_register_device(&video->video, VFL_TYPE_GRABBER, -1); if (ret < 0) printk(KERN_ERR "%s: could not register video device (%d)\n", __func__, ret); return ret; } void omap3isp_video_unregister(struct isp_video *video) { if (video_is_registered(&video->video)) { media_entity_cleanup(&video->video.entity); video_unregister_device(&video->video); } }