/* * * Device driver for GPIO attached remote control interfaces * on Conexant 2388x based TV/DVB cards. * * Copyright (c) 2003 Pavel Machek * Copyright (c) 2004 Gerd Knorr * Copyright (c) 2004, 2005 Chris Pascoe * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "cx88.h" #include #include #include #include #include #include #define MODULE_NAME "cx88xx" /* ---------------------------------------------------------------------- */ struct cx88_IR { struct cx88_core *core; struct rc_dev *dev; int users; char name[32]; char phys[32]; /* sample from gpio pin 16 */ u32 sampling; /* poll external decoder */ int polling; struct hrtimer timer; u32 gpio_addr; u32 last_gpio; u32 mask_keycode; u32 mask_keydown; u32 mask_keyup; }; static unsigned int ir_samplerate = 4; module_param(ir_samplerate, uint, 0444); MODULE_PARM_DESC(ir_samplerate, "IR samplerate in kHz, 1 - 20, default 4"); static int ir_debug; module_param(ir_debug, int, 0644); /* debug level [IR] */ MODULE_PARM_DESC(ir_debug, "enable debug messages [IR]"); #define ir_dprintk(fmt, arg...) do { \ if (ir_debug) \ printk(KERN_DEBUG "%s IR: " fmt, ir->core->name, ##arg);\ } while (0) #define dprintk(fmt, arg...) do { \ if (ir_debug) \ printk(KERN_DEBUG "cx88 IR: " fmt, ##arg); \ } while (0) /* ---------------------------------------------------------------------- */ static void cx88_ir_handle_key(struct cx88_IR *ir) { struct cx88_core *core = ir->core; u32 gpio, data, auxgpio; /* read gpio value */ gpio = cx_read(ir->gpio_addr); switch (core->boardnr) { case CX88_BOARD_NPGTECH_REALTV_TOP10FM: /* * This board apparently uses a combination of 2 GPIO * to represent the keys. Additionally, the second GPIO * can be used for parity. * * Example: * * for key "5" * gpio = 0x758, auxgpio = 0xe5 or 0xf5 * for key "Power" * gpio = 0x758, auxgpio = 0xed or 0xfd */ auxgpio = cx_read(MO_GP1_IO); /* Take out the parity part */ gpio = (gpio & 0x7fd) + (auxgpio & 0xef); break; case CX88_BOARD_WINFAST_DTV1000: case CX88_BOARD_WINFAST_DTV1800H: case CX88_BOARD_WINFAST_DTV1800H_XC4000: case CX88_BOARD_WINFAST_DTV2000H_PLUS: case CX88_BOARD_WINFAST_TV2000_XP_GLOBAL: case CX88_BOARD_WINFAST_TV2000_XP_GLOBAL_6F36: case CX88_BOARD_WINFAST_TV2000_XP_GLOBAL_6F43: gpio = (gpio & 0x6ff) | ((cx_read(MO_GP1_IO) << 8) & 0x900); auxgpio = gpio; break; default: auxgpio = gpio; } if (ir->polling) { if (ir->last_gpio == auxgpio) return; ir->last_gpio = auxgpio; } /* extract data */ data = ir_extract_bits(gpio, ir->mask_keycode); ir_dprintk("irq gpio=0x%x code=%d | %s%s%s\n", gpio, data, ir->polling ? "poll" : "irq", (gpio & ir->mask_keydown) ? " down" : "", (gpio & ir->mask_keyup) ? " up" : ""); if (ir->core->boardnr == CX88_BOARD_NORWOOD_MICRO) { u32 gpio_key = cx_read(MO_GP0_IO); data = (data << 4) | ((gpio_key & 0xf0) >> 4); rc_keydown(ir->dev, RC_PROTO_UNKNOWN, data, 0); } else if (ir->core->boardnr == CX88_BOARD_PROLINK_PLAYTVPVR || ir->core->boardnr == CX88_BOARD_PIXELVIEW_PLAYTV_ULTRA_PRO) { /* bit cleared on keydown, NEC scancode, 0xAAAACC, A = 0x866b */ u16 addr; u8 cmd; u32 scancode; addr = (data >> 8) & 0xffff; cmd = (data >> 0) & 0x00ff; scancode = RC_SCANCODE_NECX(addr, cmd); if (0 == (gpio & ir->mask_keyup)) rc_keydown_notimeout(ir->dev, RC_PROTO_NECX, scancode, 0); else rc_keyup(ir->dev); } else if (ir->mask_keydown) { /* bit set on keydown */ if (gpio & ir->mask_keydown) rc_keydown_notimeout(ir->dev, RC_PROTO_UNKNOWN, data, 0); else rc_keyup(ir->dev); } else if (ir->mask_keyup) { /* bit cleared on keydown */ if (0 == (gpio & ir->mask_keyup)) rc_keydown_notimeout(ir->dev, RC_PROTO_UNKNOWN, data, 0); else rc_keyup(ir->dev); } else { /* can't distinguish keydown/up :-/ */ rc_keydown_notimeout(ir->dev, RC_PROTO_UNKNOWN, data, 0); rc_keyup(ir->dev); } } static enum hrtimer_restart cx88_ir_work(struct hrtimer *timer) { unsigned long missed; struct cx88_IR *ir = container_of(timer, struct cx88_IR, timer); cx88_ir_handle_key(ir); missed = hrtimer_forward_now(&ir->timer, ir->polling * 1000000LL); if (missed > 1) ir_dprintk("Missed ticks %ld\n", missed - 1); return HRTIMER_RESTART; } static int __cx88_ir_start(void *priv) { struct cx88_core *core = priv; struct cx88_IR *ir; if (!core || !core->ir) return -EINVAL; ir = core->ir; if (ir->polling) { hrtimer_init(&ir->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); ir->timer.function = cx88_ir_work; hrtimer_start(&ir->timer, ir->polling * 1000000LL, HRTIMER_MODE_REL); } if (ir->sampling) { core->pci_irqmask |= PCI_INT_IR_SMPINT; cx_write(MO_DDS_IO, 0x33F286 * ir_samplerate); /* samplerate */ cx_write(MO_DDSCFG_IO, 0x5); /* enable */ } return 0; } static void __cx88_ir_stop(void *priv) { struct cx88_core *core = priv; struct cx88_IR *ir; if (!core || !core->ir) return; ir = core->ir; if (ir->sampling) { cx_write(MO_DDSCFG_IO, 0x0); core->pci_irqmask &= ~PCI_INT_IR_SMPINT; } if (ir->polling) hrtimer_cancel(&ir->timer); } int cx88_ir_start(struct cx88_core *core) { if (core->ir->users) return __cx88_ir_start(core); return 0; } EXPORT_SYMBOL(cx88_ir_start); void cx88_ir_stop(struct cx88_core *core) { if (core->ir->users) __cx88_ir_stop(core); } EXPORT_SYMBOL(cx88_ir_stop); static int cx88_ir_open(struct rc_dev *rc) { struct cx88_core *core = rc->priv; core->ir->users++; return __cx88_ir_start(core); } static void cx88_ir_close(struct rc_dev *rc) { struct cx88_core *core = rc->priv; core->ir->users--; if (!core->ir->users) __cx88_ir_stop(core); } /* ---------------------------------------------------------------------- */ int cx88_ir_init(struct cx88_core *core, struct pci_dev *pci) { struct cx88_IR *ir; struct rc_dev *dev; char *ir_codes = NULL; u64 rc_proto = RC_PROTO_BIT_OTHER; int err = -ENOMEM; u32 hardware_mask = 0; /* For devices with a hardware mask, when * used with a full-code IR table */ ir = kzalloc(sizeof(*ir), GFP_KERNEL); dev = rc_allocate_device(RC_DRIVER_IR_RAW); if (!ir || !dev) goto err_out_free; ir->dev = dev; /* detect & configure */ switch (core->boardnr) { case CX88_BOARD_DNTV_LIVE_DVB_T: case CX88_BOARD_KWORLD_DVB_T: case CX88_BOARD_KWORLD_DVB_T_CX22702: ir_codes = RC_MAP_DNTV_LIVE_DVB_T; ir->gpio_addr = MO_GP1_IO; ir->mask_keycode = 0x1f; ir->mask_keyup = 0x60; ir->polling = 50; /* ms */ break; case CX88_BOARD_TERRATEC_CINERGY_1400_DVB_T1: ir_codes = RC_MAP_CINERGY_1400; ir->sampling = 0xeb04; /* address */ break; case CX88_BOARD_HAUPPAUGE: case CX88_BOARD_HAUPPAUGE_DVB_T1: case CX88_BOARD_HAUPPAUGE_NOVASE2_S1: case CX88_BOARD_HAUPPAUGE_NOVASPLUS_S1: case CX88_BOARD_HAUPPAUGE_HVR1100: case CX88_BOARD_HAUPPAUGE_HVR3000: case CX88_BOARD_HAUPPAUGE_HVR4000: case CX88_BOARD_HAUPPAUGE_HVR4000LITE: case CX88_BOARD_PCHDTV_HD3000: case CX88_BOARD_PCHDTV_HD5500: case CX88_BOARD_HAUPPAUGE_IRONLY: ir_codes = RC_MAP_HAUPPAUGE; ir->sampling = 1; break; case CX88_BOARD_WINFAST_DTV2000H: case CX88_BOARD_WINFAST_DTV2000H_J: case CX88_BOARD_WINFAST_DTV1800H: case CX88_BOARD_WINFAST_DTV1800H_XC4000: case CX88_BOARD_WINFAST_DTV2000H_PLUS: ir_codes = RC_MAP_WINFAST; ir->gpio_addr = MO_GP0_IO; ir->mask_keycode = 0x8f8; ir->mask_keyup = 0x100; ir->polling = 50; /* ms */ break; case CX88_BOARD_WINFAST2000XP_EXPERT: case CX88_BOARD_WINFAST_DTV1000: case CX88_BOARD_WINFAST_TV2000_XP_GLOBAL: case CX88_BOARD_WINFAST_TV2000_XP_GLOBAL_6F36: case CX88_BOARD_WINFAST_TV2000_XP_GLOBAL_6F43: ir_codes = RC_MAP_WINFAST; ir->gpio_addr = MO_GP0_IO; ir->mask_keycode = 0x8f8; ir->mask_keyup = 0x100; ir->polling = 1; /* ms */ break; case CX88_BOARD_IODATA_GVBCTV7E: ir_codes = RC_MAP_IODATA_BCTV7E; ir->gpio_addr = MO_GP0_IO; ir->mask_keycode = 0xfd; ir->mask_keydown = 0x02; ir->polling = 5; /* ms */ break; case CX88_BOARD_PROLINK_PLAYTVPVR: case CX88_BOARD_PIXELVIEW_PLAYTV_ULTRA_PRO: /* * It seems that this hardware is paired with NEC extended * address 0x866b. So, unfortunately, its usage with other * IR's with different address won't work. Still, there are * other IR's from the same manufacturer that works, like the * 002-T mini RC, provided with newer PV hardware */ ir_codes = RC_MAP_PIXELVIEW_MK12; rc_proto = RC_PROTO_BIT_NECX; ir->gpio_addr = MO_GP1_IO; ir->mask_keyup = 0x80; ir->polling = 10; /* ms */ hardware_mask = 0x3f; /* Hardware returns only 6 bits from command part */ break; case CX88_BOARD_PROLINK_PV_8000GT: case CX88_BOARD_PROLINK_PV_GLOBAL_XTREME: ir_codes = RC_MAP_PIXELVIEW_NEW; ir->gpio_addr = MO_GP1_IO; ir->mask_keycode = 0x3f; ir->mask_keyup = 0x80; ir->polling = 1; /* ms */ break; case CX88_BOARD_KWORLD_LTV883: ir_codes = RC_MAP_PIXELVIEW; ir->gpio_addr = MO_GP1_IO; ir->mask_keycode = 0x1f; ir->mask_keyup = 0x60; ir->polling = 1; /* ms */ break; case CX88_BOARD_ADSTECH_DVB_T_PCI: ir_codes = RC_MAP_ADSTECH_DVB_T_PCI; ir->gpio_addr = MO_GP1_IO; ir->mask_keycode = 0xbf; ir->mask_keyup = 0x40; ir->polling = 50; /* ms */ break; case CX88_BOARD_MSI_TVANYWHERE_MASTER: ir_codes = RC_MAP_MSI_TVANYWHERE; ir->gpio_addr = MO_GP1_IO; ir->mask_keycode = 0x1f; ir->mask_keyup = 0x40; ir->polling = 1; /* ms */ break; case CX88_BOARD_AVERTV_303: case CX88_BOARD_AVERTV_STUDIO_303: ir_codes = RC_MAP_AVERTV_303; ir->gpio_addr = MO_GP2_IO; ir->mask_keycode = 0xfb; ir->mask_keydown = 0x02; ir->polling = 50; /* ms */ break; case CX88_BOARD_OMICOM_SS4_PCI: case CX88_BOARD_SATTRADE_ST4200: case CX88_BOARD_TBS_8920: case CX88_BOARD_TBS_8910: case CX88_BOARD_PROF_7300: case CX88_BOARD_PROF_7301: case CX88_BOARD_PROF_6200: ir_codes = RC_MAP_TBS_NEC; ir->sampling = 0xff00; /* address */ break; case CX88_BOARD_TEVII_S464: case CX88_BOARD_TEVII_S460: case CX88_BOARD_TEVII_S420: ir_codes = RC_MAP_TEVII_NEC; ir->sampling = 0xff00; /* address */ break; case CX88_BOARD_DNTV_LIVE_DVB_T_PRO: ir_codes = RC_MAP_DNTV_LIVE_DVBT_PRO; ir->sampling = 0xff00; /* address */ break; case CX88_BOARD_NORWOOD_MICRO: ir_codes = RC_MAP_NORWOOD; ir->gpio_addr = MO_GP1_IO; ir->mask_keycode = 0x0e; ir->mask_keyup = 0x80; ir->polling = 50; /* ms */ break; case CX88_BOARD_NPGTECH_REALTV_TOP10FM: ir_codes = RC_MAP_NPGTECH; ir->gpio_addr = MO_GP0_IO; ir->mask_keycode = 0xfa; ir->polling = 50; /* ms */ break; case CX88_BOARD_PINNACLE_PCTV_HD_800i: ir_codes = RC_MAP_PINNACLE_PCTV_HD; ir->sampling = 1; break; case CX88_BOARD_POWERCOLOR_REAL_ANGEL: ir_codes = RC_MAP_POWERCOLOR_REAL_ANGEL; ir->gpio_addr = MO_GP2_IO; ir->mask_keycode = 0x7e; ir->polling = 100; /* ms */ break; case CX88_BOARD_TWINHAN_VP1027_DVBS: ir_codes = RC_MAP_TWINHAN_VP1027_DVBS; ir->sampling = 0xff00; /* address */ break; } if (!ir_codes) { err = -ENODEV; goto err_out_free; } /* * The usage of mask_keycode were very convenient, due to several * reasons. Among others, the scancode tables were using the scancode * as the index elements. So, the less bits it was used, the smaller * the table were stored. After the input changes, the better is to use * the full scancodes, since it allows replacing the IR remote by * another one. Unfortunately, there are still some hardware, like * Pixelview Ultra Pro, where only part of the scancode is sent via * GPIO. So, there's no way to get the full scancode. Due to that, * hardware_mask were introduced here: it represents those hardware * that has such limits. */ if (hardware_mask && !ir->mask_keycode) ir->mask_keycode = hardware_mask; /* init input device */ snprintf(ir->name, sizeof(ir->name), "cx88 IR (%s)", core->board.name); snprintf(ir->phys, sizeof(ir->phys), "pci-%s/ir0", pci_name(pci)); dev->device_name = ir->name; dev->input_phys = ir->phys; dev->input_id.bustype = BUS_PCI; dev->input_id.version = 1; if (pci->subsystem_vendor) { dev->input_id.vendor = pci->subsystem_vendor; dev->input_id.product = pci->subsystem_device; } else { dev->input_id.vendor = pci->vendor; dev->input_id.product = pci->device; } dev->dev.parent = &pci->dev; dev->map_name = ir_codes; dev->driver_name = MODULE_NAME; dev->priv = core; dev->open = cx88_ir_open; dev->close = cx88_ir_close; dev->scancode_mask = hardware_mask; if (ir->sampling) { dev->timeout = 10 * 1000 * 1000; /* 10 ms */ } else { dev->driver_type = RC_DRIVER_SCANCODE; dev->allowed_protocols = rc_proto; } ir->core = core; core->ir = ir; /* all done */ err = rc_register_device(dev); if (err) goto err_out_free; return 0; err_out_free: rc_free_device(dev); core->ir = NULL; kfree(ir); return err; } int cx88_ir_fini(struct cx88_core *core) { struct cx88_IR *ir = core->ir; /* skip detach on non attached boards */ if (!ir) return 0; cx88_ir_stop(core); rc_unregister_device(ir->dev); kfree(ir); /* done */ core->ir = NULL; return 0; } /* ---------------------------------------------------------------------- */ void cx88_ir_irq(struct cx88_core *core) { struct cx88_IR *ir = core->ir; u32 samples; unsigned int todo, bits; struct ir_raw_event ev; if (!ir || !ir->sampling) return; /* * Samples are stored in a 32 bit register, oldest sample in * the msb. A set bit represents space and an unset bit * represents a pulse. */ samples = cx_read(MO_SAMPLE_IO); if (samples == 0xff && ir->dev->idle) return; init_ir_raw_event(&ev); for (todo = 32; todo > 0; todo -= bits) { ev.pulse = samples & 0x80000000 ? false : true; bits = min(todo, 32U - fls(ev.pulse ? samples : ~samples)); ev.duration = (bits * (NSEC_PER_SEC / 1000)) / ir_samplerate; ir_raw_event_store_with_filter(ir->dev, &ev); samples <<= bits; } ir_raw_event_handle(ir->dev); } static int get_key_pvr2000(struct IR_i2c *ir, enum rc_proto *protocol, u32 *scancode, u8 *toggle) { int flags, code; /* poll IR chip */ flags = i2c_smbus_read_byte_data(ir->c, 0x10); if (flags < 0) { dprintk("read error\n"); return 0; } /* key pressed ? */ if (0 == (flags & 0x80)) return 0; /* read actual key code */ code = i2c_smbus_read_byte_data(ir->c, 0x00); if (code < 0) { dprintk("read error\n"); return 0; } dprintk("IR Key/Flags: (0x%02x/0x%02x)\n", code & 0xff, flags & 0xff); *protocol = RC_PROTO_UNKNOWN; *scancode = code & 0xff; *toggle = 0; return 1; } void cx88_i2c_init_ir(struct cx88_core *core) { struct i2c_board_info info; static const unsigned short default_addr_list[] = { 0x18, 0x6b, 0x71, I2C_CLIENT_END }; static const unsigned short pvr2000_addr_list[] = { 0x18, 0x1a, I2C_CLIENT_END }; const unsigned short *addr_list = default_addr_list; const unsigned short *addrp; /* Instantiate the IR receiver device, if present */ if (core->i2c_rc != 0) return; memset(&info, 0, sizeof(struct i2c_board_info)); strlcpy(info.type, "ir_video", I2C_NAME_SIZE); switch (core->boardnr) { case CX88_BOARD_LEADTEK_PVR2000: addr_list = pvr2000_addr_list; core->init_data.name = "cx88 Leadtek PVR 2000 remote"; core->init_data.type = RC_PROTO_BIT_UNKNOWN; core->init_data.get_key = get_key_pvr2000; core->init_data.ir_codes = RC_MAP_EMPTY; break; } /* * We can't call i2c_new_probed_device() because it uses * quick writes for probing and at least some RC receiver * devices only reply to reads. * Also, Hauppauge XVR needs to be specified, as address 0x71 * conflicts with another remote type used with saa7134 */ for (addrp = addr_list; *addrp != I2C_CLIENT_END; addrp++) { info.platform_data = NULL; memset(&core->init_data, 0, sizeof(core->init_data)); if (*addrp == 0x71) { /* Hauppauge XVR */ core->init_data.name = "cx88 Hauppauge XVR remote"; core->init_data.ir_codes = RC_MAP_HAUPPAUGE; core->init_data.type = RC_PROTO_BIT_RC5 | RC_PROTO_BIT_RC6_MCE | RC_PROTO_BIT_RC6_6A_32; core->init_data.internal_get_key_func = IR_KBD_GET_KEY_HAUP_XVR; info.platform_data = &core->init_data; } if (i2c_smbus_xfer(&core->i2c_adap, *addrp, 0, I2C_SMBUS_READ, 0, I2C_SMBUS_QUICK, NULL) >= 0) { info.addr = *addrp; i2c_new_device(&core->i2c_adap, &info); break; } } } /* ---------------------------------------------------------------------- */ MODULE_AUTHOR("Gerd Knorr, Pavel Machek, Chris Pascoe"); MODULE_DESCRIPTION("input driver for cx88 GPIO-based IR remote controls"); MODULE_LICENSE("GPL");