/* * linux/drivers/input/keyboard/pxa27x_keypad.c * * Driver for the pxa27x matrix keyboard controller. * * Created: Feb 22, 2007 * Author: Rodolfo Giometti * * Based on a previous implementations by Kevin O'Connor * and Alex Osborne and * on some suggestions by Nicolas Pitre . * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Keypad Controller registers */ #define KPC 0x0000 /* Keypad Control register */ #define KPDK 0x0008 /* Keypad Direct Key register */ #define KPREC 0x0010 /* Keypad Rotary Encoder register */ #define KPMK 0x0018 /* Keypad Matrix Key register */ #define KPAS 0x0020 /* Keypad Automatic Scan register */ /* Keypad Automatic Scan Multiple Key Presser register 0-3 */ #define KPASMKP0 0x0028 #define KPASMKP1 0x0030 #define KPASMKP2 0x0038 #define KPASMKP3 0x0040 #define KPKDI 0x0048 /* bit definitions */ #define KPC_MKRN(n) ((((n) - 1) & 0x7) << 26) /* matrix key row number */ #define KPC_MKCN(n) ((((n) - 1) & 0x7) << 23) /* matrix key column number */ #define KPC_DKN(n) ((((n) - 1) & 0x7) << 6) /* direct key number */ #define KPC_AS (0x1 << 30) /* Automatic Scan bit */ #define KPC_ASACT (0x1 << 29) /* Automatic Scan on Activity */ #define KPC_MI (0x1 << 22) /* Matrix interrupt bit */ #define KPC_IMKP (0x1 << 21) /* Ignore Multiple Key Press */ #define KPC_MS(n) (0x1 << (13 + (n))) /* Matrix scan line 'n' */ #define KPC_MS_ALL (0xff << 13) #define KPC_ME (0x1 << 12) /* Matrix Keypad Enable */ #define KPC_MIE (0x1 << 11) /* Matrix Interrupt Enable */ #define KPC_DK_DEB_SEL (0x1 << 9) /* Direct Keypad Debounce Select */ #define KPC_DI (0x1 << 5) /* Direct key interrupt bit */ #define KPC_RE_ZERO_DEB (0x1 << 4) /* Rotary Encoder Zero Debounce */ #define KPC_REE1 (0x1 << 3) /* Rotary Encoder1 Enable */ #define KPC_REE0 (0x1 << 2) /* Rotary Encoder0 Enable */ #define KPC_DE (0x1 << 1) /* Direct Keypad Enable */ #define KPC_DIE (0x1 << 0) /* Direct Keypad interrupt Enable */ #define KPDK_DKP (0x1 << 31) #define KPDK_DK(n) ((n) & 0xff) #define KPREC_OF1 (0x1 << 31) #define kPREC_UF1 (0x1 << 30) #define KPREC_OF0 (0x1 << 15) #define KPREC_UF0 (0x1 << 14) #define KPREC_RECOUNT0(n) ((n) & 0xff) #define KPREC_RECOUNT1(n) (((n) >> 16) & 0xff) #define KPMK_MKP (0x1 << 31) #define KPAS_SO (0x1 << 31) #define KPASMKPx_SO (0x1 << 31) #define KPAS_MUKP(n) (((n) >> 26) & 0x1f) #define KPAS_RP(n) (((n) >> 4) & 0xf) #define KPAS_CP(n) ((n) & 0xf) #define KPASMKP_MKC_MASK (0xff) #define keypad_readl(off) __raw_readl(keypad->mmio_base + (off)) #define keypad_writel(off, v) __raw_writel((v), keypad->mmio_base + (off)) #define MAX_MATRIX_KEY_NUM (MAX_MATRIX_KEY_ROWS * MAX_MATRIX_KEY_COLS) #define MAX_KEYPAD_KEYS (MAX_MATRIX_KEY_NUM + MAX_DIRECT_KEY_NUM) struct pxa27x_keypad { const struct pxa27x_keypad_platform_data *pdata; struct clk *clk; struct input_dev *input_dev; void __iomem *mmio_base; int irq; unsigned short keycodes[MAX_KEYPAD_KEYS]; int rotary_rel_code[2]; /* state row bits of each column scan */ uint32_t matrix_key_state[MAX_MATRIX_KEY_COLS]; uint32_t direct_key_state; unsigned int direct_key_mask; }; #ifdef CONFIG_OF static int pxa27x_keypad_matrix_key_parse_dt(struct pxa27x_keypad *keypad, struct pxa27x_keypad_platform_data *pdata) { struct input_dev *input_dev = keypad->input_dev; struct device *dev = input_dev->dev.parent; u32 rows, cols; int error; error = matrix_keypad_parse_of_params(dev, &rows, &cols); if (error) return error; if (rows > MAX_MATRIX_KEY_ROWS || cols > MAX_MATRIX_KEY_COLS) { dev_err(dev, "rows or cols exceeds maximum value\n"); return -EINVAL; } pdata->matrix_key_rows = rows; pdata->matrix_key_cols = cols; error = matrix_keypad_build_keymap(NULL, NULL, pdata->matrix_key_rows, pdata->matrix_key_cols, keypad->keycodes, input_dev); if (error) return error; return 0; } static int pxa27x_keypad_direct_key_parse_dt(struct pxa27x_keypad *keypad, struct pxa27x_keypad_platform_data *pdata) { struct input_dev *input_dev = keypad->input_dev; struct device *dev = input_dev->dev.parent; struct device_node *np = dev->of_node; const __be16 *prop; unsigned short code; unsigned int proplen, size; int i; int error; error = of_property_read_u32(np, "marvell,direct-key-count", &pdata->direct_key_num); if (error) { /* * If do not have marvel,direct-key-count defined, * it means direct key is not supported. */ return error == -EINVAL ? 0 : error; } error = of_property_read_u32(np, "marvell,direct-key-mask", &pdata->direct_key_mask); if (error) { if (error != -EINVAL) return error; /* * If marvell,direct-key-mask is not defined, driver will use * default value. Default value is set when configure the keypad. */ pdata->direct_key_mask = 0; } pdata->direct_key_low_active = of_property_read_bool(np, "marvell,direct-key-low-active"); prop = of_get_property(np, "marvell,direct-key-map", &proplen); if (!prop) return -EINVAL; if (proplen % sizeof(u16)) return -EINVAL; size = proplen / sizeof(u16); /* Only MAX_DIRECT_KEY_NUM is accepted.*/ if (size > MAX_DIRECT_KEY_NUM) return -EINVAL; for (i = 0; i < size; i++) { code = be16_to_cpup(prop + i); keypad->keycodes[MAX_MATRIX_KEY_NUM + i] = code; __set_bit(code, input_dev->keybit); } return 0; } static int pxa27x_keypad_rotary_parse_dt(struct pxa27x_keypad *keypad, struct pxa27x_keypad_platform_data *pdata) { const __be32 *prop; int i, relkey_ret; unsigned int code, proplen; const char *rotaryname[2] = { "marvell,rotary0", "marvell,rotary1"}; const char relkeyname[] = {"marvell,rotary-rel-key"}; struct input_dev *input_dev = keypad->input_dev; struct device *dev = input_dev->dev.parent; struct device_node *np = dev->of_node; relkey_ret = of_property_read_u32(np, relkeyname, &code); /* if can read correct rotary key-code, we do not need this. */ if (relkey_ret == 0) { unsigned short relcode; /* rotary0 taks lower half, rotary1 taks upper half. */ relcode = code & 0xffff; pdata->rotary0_rel_code = (code & 0xffff); __set_bit(relcode, input_dev->relbit); relcode = code >> 16; pdata->rotary1_rel_code = relcode; __set_bit(relcode, input_dev->relbit); } for (i = 0; i < 2; i++) { prop = of_get_property(np, rotaryname[i], &proplen); /* * If the prop is not set, it means keypad does not need * initialize the rotaryX. */ if (!prop) continue; code = be32_to_cpup(prop); /* * Not all up/down key code are valid. * Now we depends on direct-rel-code. */ if ((!(code & 0xffff) || !(code >> 16)) && relkey_ret) { return relkey_ret; } else { unsigned int n = MAX_MATRIX_KEY_NUM + (i << 1); unsigned short keycode; keycode = code & 0xffff; keypad->keycodes[n] = keycode; __set_bit(keycode, input_dev->keybit); keycode = code >> 16; keypad->keycodes[n + 1] = keycode; __set_bit(keycode, input_dev->keybit); if (i == 0) pdata->rotary0_rel_code = -1; else pdata->rotary1_rel_code = -1; } if (i == 0) pdata->enable_rotary0 = 1; else pdata->enable_rotary1 = 1; } keypad->rotary_rel_code[0] = pdata->rotary0_rel_code; keypad->rotary_rel_code[1] = pdata->rotary1_rel_code; return 0; } static int pxa27x_keypad_build_keycode_from_dt(struct pxa27x_keypad *keypad) { struct input_dev *input_dev = keypad->input_dev; struct device *dev = input_dev->dev.parent; struct device_node *np = dev->of_node; struct pxa27x_keypad_platform_data *pdata; int error; pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) { dev_err(dev, "failed to allocate memory for pdata\n"); return -ENOMEM; } error = pxa27x_keypad_matrix_key_parse_dt(keypad, pdata); if (error) { dev_err(dev, "failed to parse matrix key\n"); return error; } error = pxa27x_keypad_direct_key_parse_dt(keypad, pdata); if (error) { dev_err(dev, "failed to parse direct key\n"); return error; } error = pxa27x_keypad_rotary_parse_dt(keypad, pdata); if (error) { dev_err(dev, "failed to parse rotary key\n"); return error; } error = of_property_read_u32(np, "marvell,debounce-interval", &pdata->debounce_interval); if (error) { dev_err(dev, "failed to parse debpunce-interval\n"); return error; } /* * The keycodes may not only includes matrix key but also the direct * key or rotary key. */ input_dev->keycodemax = ARRAY_SIZE(keypad->keycodes); keypad->pdata = pdata; return 0; } #else static int pxa27x_keypad_build_keycode_from_dt(struct pxa27x_keypad *keypad) { dev_info(keypad->input_dev->dev.parent, "missing platform data\n"); return -EINVAL; } #endif static int pxa27x_keypad_build_keycode(struct pxa27x_keypad *keypad) { const struct pxa27x_keypad_platform_data *pdata = keypad->pdata; struct input_dev *input_dev = keypad->input_dev; const struct matrix_keymap_data *keymap_data = pdata ? pdata->matrix_keymap_data : NULL; unsigned short keycode; int i; int error; error = matrix_keypad_build_keymap(keymap_data, NULL, pdata->matrix_key_rows, pdata->matrix_key_cols, keypad->keycodes, input_dev); if (error) return error; /* * The keycodes may not only include matrix keys but also the direct * or rotary keys. */ input_dev->keycodemax = ARRAY_SIZE(keypad->keycodes); /* For direct keys. */ for (i = 0; i < pdata->direct_key_num; i++) { keycode = pdata->direct_key_map[i]; keypad->keycodes[MAX_MATRIX_KEY_NUM + i] = keycode; __set_bit(keycode, input_dev->keybit); } if (pdata->enable_rotary0) { if (pdata->rotary0_up_key && pdata->rotary0_down_key) { keycode = pdata->rotary0_up_key; keypad->keycodes[MAX_MATRIX_KEY_NUM + 0] = keycode; __set_bit(keycode, input_dev->keybit); keycode = pdata->rotary0_down_key; keypad->keycodes[MAX_MATRIX_KEY_NUM + 1] = keycode; __set_bit(keycode, input_dev->keybit); keypad->rotary_rel_code[0] = -1; } else { keypad->rotary_rel_code[0] = pdata->rotary0_rel_code; __set_bit(pdata->rotary0_rel_code, input_dev->relbit); } } if (pdata->enable_rotary1) { if (pdata->rotary1_up_key && pdata->rotary1_down_key) { keycode = pdata->rotary1_up_key; keypad->keycodes[MAX_MATRIX_KEY_NUM + 2] = keycode; __set_bit(keycode, input_dev->keybit); keycode = pdata->rotary1_down_key; keypad->keycodes[MAX_MATRIX_KEY_NUM + 3] = keycode; __set_bit(keycode, input_dev->keybit); keypad->rotary_rel_code[1] = -1; } else { keypad->rotary_rel_code[1] = pdata->rotary1_rel_code; __set_bit(pdata->rotary1_rel_code, input_dev->relbit); } } __clear_bit(KEY_RESERVED, input_dev->keybit); return 0; } static void pxa27x_keypad_scan_matrix(struct pxa27x_keypad *keypad) { const struct pxa27x_keypad_platform_data *pdata = keypad->pdata; struct input_dev *input_dev = keypad->input_dev; int row, col, num_keys_pressed = 0; uint32_t new_state[MAX_MATRIX_KEY_COLS]; uint32_t kpas = keypad_readl(KPAS); num_keys_pressed = KPAS_MUKP(kpas); memset(new_state, 0, sizeof(new_state)); if (num_keys_pressed == 0) goto scan; if (num_keys_pressed == 1) { col = KPAS_CP(kpas); row = KPAS_RP(kpas); /* if invalid row/col, treat as no key pressed */ if (col >= pdata->matrix_key_cols || row >= pdata->matrix_key_rows) goto scan; new_state[col] = (1 << row); goto scan; } if (num_keys_pressed > 1) { uint32_t kpasmkp0 = keypad_readl(KPASMKP0); uint32_t kpasmkp1 = keypad_readl(KPASMKP1); uint32_t kpasmkp2 = keypad_readl(KPASMKP2); uint32_t kpasmkp3 = keypad_readl(KPASMKP3); new_state[0] = kpasmkp0 & KPASMKP_MKC_MASK; new_state[1] = (kpasmkp0 >> 16) & KPASMKP_MKC_MASK; new_state[2] = kpasmkp1 & KPASMKP_MKC_MASK; new_state[3] = (kpasmkp1 >> 16) & KPASMKP_MKC_MASK; new_state[4] = kpasmkp2 & KPASMKP_MKC_MASK; new_state[5] = (kpasmkp2 >> 16) & KPASMKP_MKC_MASK; new_state[6] = kpasmkp3 & KPASMKP_MKC_MASK; new_state[7] = (kpasmkp3 >> 16) & KPASMKP_MKC_MASK; } scan: for (col = 0; col < pdata->matrix_key_cols; col++) { uint32_t bits_changed; int code; bits_changed = keypad->matrix_key_state[col] ^ new_state[col]; if (bits_changed == 0) continue; for (row = 0; row < pdata->matrix_key_rows; row++) { if ((bits_changed & (1 << row)) == 0) continue; code = MATRIX_SCAN_CODE(row, col, MATRIX_ROW_SHIFT); input_event(input_dev, EV_MSC, MSC_SCAN, code); input_report_key(input_dev, keypad->keycodes[code], new_state[col] & (1 << row)); } } input_sync(input_dev); memcpy(keypad->matrix_key_state, new_state, sizeof(new_state)); } #define DEFAULT_KPREC (0x007f007f) static inline int rotary_delta(uint32_t kprec) { if (kprec & KPREC_OF0) return (kprec & 0xff) + 0x7f; else if (kprec & KPREC_UF0) return (kprec & 0xff) - 0x7f - 0xff; else return (kprec & 0xff) - 0x7f; } static void report_rotary_event(struct pxa27x_keypad *keypad, int r, int delta) { struct input_dev *dev = keypad->input_dev; if (delta == 0) return; if (keypad->rotary_rel_code[r] == -1) { int code = MAX_MATRIX_KEY_NUM + 2 * r + (delta > 0 ? 0 : 1); unsigned char keycode = keypad->keycodes[code]; /* simulate a press-n-release */ input_event(dev, EV_MSC, MSC_SCAN, code); input_report_key(dev, keycode, 1); input_sync(dev); input_event(dev, EV_MSC, MSC_SCAN, code); input_report_key(dev, keycode, 0); input_sync(dev); } else { input_report_rel(dev, keypad->rotary_rel_code[r], delta); input_sync(dev); } } static void pxa27x_keypad_scan_rotary(struct pxa27x_keypad *keypad) { const struct pxa27x_keypad_platform_data *pdata = keypad->pdata; uint32_t kprec; /* read and reset to default count value */ kprec = keypad_readl(KPREC); keypad_writel(KPREC, DEFAULT_KPREC); if (pdata->enable_rotary0) report_rotary_event(keypad, 0, rotary_delta(kprec)); if (pdata->enable_rotary1) report_rotary_event(keypad, 1, rotary_delta(kprec >> 16)); } static void pxa27x_keypad_scan_direct(struct pxa27x_keypad *keypad) { const struct pxa27x_keypad_platform_data *pdata = keypad->pdata; struct input_dev *input_dev = keypad->input_dev; unsigned int new_state; uint32_t kpdk, bits_changed; int i; kpdk = keypad_readl(KPDK); if (pdata->enable_rotary0 || pdata->enable_rotary1) pxa27x_keypad_scan_rotary(keypad); /* * The KPDR_DK only output the key pin level, so it relates to board, * and low level may be active. */ if (pdata->direct_key_low_active) new_state = ~KPDK_DK(kpdk) & keypad->direct_key_mask; else new_state = KPDK_DK(kpdk) & keypad->direct_key_mask; bits_changed = keypad->direct_key_state ^ new_state; if (bits_changed == 0) return; for (i = 0; i < pdata->direct_key_num; i++) { if (bits_changed & (1 << i)) { int code = MAX_MATRIX_KEY_NUM + i; input_event(input_dev, EV_MSC, MSC_SCAN, code); input_report_key(input_dev, keypad->keycodes[code], new_state & (1 << i)); } } input_sync(input_dev); keypad->direct_key_state = new_state; } static void clear_wakeup_event(struct pxa27x_keypad *keypad) { const struct pxa27x_keypad_platform_data *pdata = keypad->pdata; if (pdata->clear_wakeup_event) (pdata->clear_wakeup_event)(); } static irqreturn_t pxa27x_keypad_irq_handler(int irq, void *dev_id) { struct pxa27x_keypad *keypad = dev_id; unsigned long kpc = keypad_readl(KPC); clear_wakeup_event(keypad); if (kpc & KPC_DI) pxa27x_keypad_scan_direct(keypad); if (kpc & KPC_MI) pxa27x_keypad_scan_matrix(keypad); return IRQ_HANDLED; } static void pxa27x_keypad_config(struct pxa27x_keypad *keypad) { const struct pxa27x_keypad_platform_data *pdata = keypad->pdata; unsigned int mask = 0, direct_key_num = 0; unsigned long kpc = 0; /* clear pending interrupt bit */ keypad_readl(KPC); /* enable matrix keys with automatic scan */ if (pdata->matrix_key_rows && pdata->matrix_key_cols) { kpc |= KPC_ASACT | KPC_MIE | KPC_ME | KPC_MS_ALL; kpc |= KPC_MKRN(pdata->matrix_key_rows) | KPC_MKCN(pdata->matrix_key_cols); } /* enable rotary key, debounce interval same as direct keys */ if (pdata->enable_rotary0) { mask |= 0x03; direct_key_num = 2; kpc |= KPC_REE0; } if (pdata->enable_rotary1) { mask |= 0x0c; direct_key_num = 4; kpc |= KPC_REE1; } if (pdata->direct_key_num > direct_key_num) direct_key_num = pdata->direct_key_num; /* * Direct keys usage may not start from KP_DKIN0, check the platfrom * mask data to config the specific. */ if (pdata->direct_key_mask) keypad->direct_key_mask = pdata->direct_key_mask; else keypad->direct_key_mask = ((1 << direct_key_num) - 1) & ~mask; /* enable direct key */ if (direct_key_num) kpc |= KPC_DE | KPC_DIE | KPC_DKN(direct_key_num); keypad_writel(KPC, kpc | KPC_RE_ZERO_DEB); keypad_writel(KPREC, DEFAULT_KPREC); keypad_writel(KPKDI, pdata->debounce_interval); } static int pxa27x_keypad_open(struct input_dev *dev) { struct pxa27x_keypad *keypad = input_get_drvdata(dev); /* Enable unit clock */ clk_prepare_enable(keypad->clk); pxa27x_keypad_config(keypad); return 0; } static void pxa27x_keypad_close(struct input_dev *dev) { struct pxa27x_keypad *keypad = input_get_drvdata(dev); /* Disable clock unit */ clk_disable_unprepare(keypad->clk); } #ifdef CONFIG_PM_SLEEP static int pxa27x_keypad_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct pxa27x_keypad *keypad = platform_get_drvdata(pdev); /* * If the keypad is used a wake up source, clock can not be disabled. * Or it can not detect the key pressing. */ if (device_may_wakeup(&pdev->dev)) enable_irq_wake(keypad->irq); else clk_disable_unprepare(keypad->clk); return 0; } static int pxa27x_keypad_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct pxa27x_keypad *keypad = platform_get_drvdata(pdev); struct input_dev *input_dev = keypad->input_dev; /* * If the keypad is used as wake up source, the clock is not turned * off. So do not need configure it again. */ if (device_may_wakeup(&pdev->dev)) { disable_irq_wake(keypad->irq); } else { mutex_lock(&input_dev->mutex); if (input_dev->users) { /* Enable unit clock */ clk_prepare_enable(keypad->clk); pxa27x_keypad_config(keypad); } mutex_unlock(&input_dev->mutex); } return 0; } #endif static SIMPLE_DEV_PM_OPS(pxa27x_keypad_pm_ops, pxa27x_keypad_suspend, pxa27x_keypad_resume); static int pxa27x_keypad_probe(struct platform_device *pdev) { const struct pxa27x_keypad_platform_data *pdata = dev_get_platdata(&pdev->dev); struct device_node *np = pdev->dev.of_node; struct pxa27x_keypad *keypad; struct input_dev *input_dev; struct resource *res; int irq, error; /* Driver need build keycode from device tree or pdata */ if (!np && !pdata) return -EINVAL; irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "failed to get keypad irq\n"); return -ENXIO; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res == NULL) { dev_err(&pdev->dev, "failed to get I/O memory\n"); return -ENXIO; } keypad = kzalloc(sizeof(struct pxa27x_keypad), GFP_KERNEL); input_dev = input_allocate_device(); if (!keypad || !input_dev) { dev_err(&pdev->dev, "failed to allocate memory\n"); error = -ENOMEM; goto failed_free; } keypad->pdata = pdata; keypad->input_dev = input_dev; keypad->irq = irq; res = request_mem_region(res->start, resource_size(res), pdev->name); if (res == NULL) { dev_err(&pdev->dev, "failed to request I/O memory\n"); error = -EBUSY; goto failed_free; } keypad->mmio_base = ioremap(res->start, resource_size(res)); if (keypad->mmio_base == NULL) { dev_err(&pdev->dev, "failed to remap I/O memory\n"); error = -ENXIO; goto failed_free_mem; } keypad->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(keypad->clk)) { dev_err(&pdev->dev, "failed to get keypad clock\n"); error = PTR_ERR(keypad->clk); goto failed_free_io; } input_dev->name = pdev->name; input_dev->id.bustype = BUS_HOST; input_dev->open = pxa27x_keypad_open; input_dev->close = pxa27x_keypad_close; input_dev->dev.parent = &pdev->dev; input_dev->keycode = keypad->keycodes; input_dev->keycodesize = sizeof(keypad->keycodes[0]); input_dev->keycodemax = ARRAY_SIZE(keypad->keycodes); input_set_drvdata(input_dev, keypad); input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REP); input_set_capability(input_dev, EV_MSC, MSC_SCAN); if (pdata) error = pxa27x_keypad_build_keycode(keypad); else error = pxa27x_keypad_build_keycode_from_dt(keypad); if (error) { dev_err(&pdev->dev, "failed to build keycode\n"); goto failed_put_clk; } if ((pdata->enable_rotary0 && keypad->rotary_rel_code[0] != -1) || (pdata->enable_rotary1 && keypad->rotary_rel_code[1] != -1)) { input_dev->evbit[0] |= BIT_MASK(EV_REL); } error = request_irq(irq, pxa27x_keypad_irq_handler, 0, pdev->name, keypad); if (error) { dev_err(&pdev->dev, "failed to request IRQ\n"); goto failed_put_clk; } /* Register the input device */ error = input_register_device(input_dev); if (error) { dev_err(&pdev->dev, "failed to register input device\n"); goto failed_free_irq; } platform_set_drvdata(pdev, keypad); device_init_wakeup(&pdev->dev, 1); return 0; failed_free_irq: free_irq(irq, keypad); failed_put_clk: clk_put(keypad->clk); failed_free_io: iounmap(keypad->mmio_base); failed_free_mem: release_mem_region(res->start, resource_size(res)); failed_free: input_free_device(input_dev); kfree(keypad); return error; } static int pxa27x_keypad_remove(struct platform_device *pdev) { struct pxa27x_keypad *keypad = platform_get_drvdata(pdev); struct resource *res; free_irq(keypad->irq, keypad); clk_put(keypad->clk); input_unregister_device(keypad->input_dev); iounmap(keypad->mmio_base); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); release_mem_region(res->start, resource_size(res)); kfree(keypad); return 0; } /* work with hotplug and coldplug */ MODULE_ALIAS("platform:pxa27x-keypad"); #ifdef CONFIG_OF static const struct of_device_id pxa27x_keypad_dt_match[] = { { .compatible = "marvell,pxa27x-keypad" }, {}, }; MODULE_DEVICE_TABLE(of, pxa27x_keypad_dt_match); #endif static struct platform_driver pxa27x_keypad_driver = { .probe = pxa27x_keypad_probe, .remove = pxa27x_keypad_remove, .driver = { .name = "pxa27x-keypad", .of_match_table = of_match_ptr(pxa27x_keypad_dt_match), .owner = THIS_MODULE, .pm = &pxa27x_keypad_pm_ops, }, }; module_platform_driver(pxa27x_keypad_driver); MODULE_DESCRIPTION("PXA27x Keypad Controller Driver"); MODULE_LICENSE("GPL");