/* * Copyright (c) 2006 QLogic, Inc. All rights reserved. * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include "ipath_kernel.h" #include "ipath_common.h" static int ipath_open(struct inode *, struct file *); static int ipath_close(struct inode *, struct file *); static ssize_t ipath_write(struct file *, const char __user *, size_t, loff_t *); static unsigned int ipath_poll(struct file *, struct poll_table_struct *); static int ipath_mmap(struct file *, struct vm_area_struct *); static struct file_operations ipath_file_ops = { .owner = THIS_MODULE, .write = ipath_write, .open = ipath_open, .release = ipath_close, .poll = ipath_poll, .mmap = ipath_mmap }; static int ipath_get_base_info(struct ipath_portdata *pd, void __user *ubase, size_t ubase_size) { int ret = 0; struct ipath_base_info *kinfo = NULL; struct ipath_devdata *dd = pd->port_dd; if (ubase_size < sizeof(*kinfo)) { ipath_cdbg(PROC, "Base size %lu, need %lu (version mismatch?)\n", (unsigned long) ubase_size, (unsigned long) sizeof(*kinfo)); ret = -EINVAL; goto bail; } kinfo = kzalloc(sizeof(*kinfo), GFP_KERNEL); if (kinfo == NULL) { ret = -ENOMEM; goto bail; } ret = dd->ipath_f_get_base_info(pd, kinfo); if (ret < 0) goto bail; kinfo->spi_rcvhdr_cnt = dd->ipath_rcvhdrcnt; kinfo->spi_rcvhdrent_size = dd->ipath_rcvhdrentsize; kinfo->spi_tidegrcnt = dd->ipath_rcvegrcnt; kinfo->spi_rcv_egrbufsize = dd->ipath_rcvegrbufsize; /* * have to mmap whole thing */ kinfo->spi_rcv_egrbuftotlen = pd->port_rcvegrbuf_chunks * pd->port_rcvegrbuf_size; kinfo->spi_rcv_egrperchunk = pd->port_rcvegrbufs_perchunk; kinfo->spi_rcv_egrchunksize = kinfo->spi_rcv_egrbuftotlen / pd->port_rcvegrbuf_chunks; kinfo->spi_tidcnt = dd->ipath_rcvtidcnt; /* * for this use, may be ipath_cfgports summed over all chips that * are are configured and present */ kinfo->spi_nports = dd->ipath_cfgports; /* unit (chip/board) our port is on */ kinfo->spi_unit = dd->ipath_unit; /* for now, only a single page */ kinfo->spi_tid_maxsize = PAGE_SIZE; /* * Doing this per port, and based on the skip value, etc. This has * to be the actual buffer size, since the protocol code treats it * as an array. * * These have to be set to user addresses in the user code via mmap. * These values are used on return to user code for the mmap target * addresses only. For 32 bit, same 44 bit address problem, so use * the physical address, not virtual. Before 2.6.11, using the * page_address() macro worked, but in 2.6.11, even that returns the * full 64 bit address (upper bits all 1's). So far, using the * physical addresses (or chip offsets, for chip mapping) works, but * no doubt some future kernel release will chang that, and we'll be * on to yet another method of dealing with this */ kinfo->spi_rcvhdr_base = (u64) pd->port_rcvhdrq_phys; kinfo->spi_rcvhdr_tailaddr = (u64)pd->port_rcvhdrqtailaddr_phys; kinfo->spi_rcv_egrbufs = (u64) pd->port_rcvegr_phys; kinfo->spi_pioavailaddr = (u64) dd->ipath_pioavailregs_phys; kinfo->spi_status = (u64) kinfo->spi_pioavailaddr + (void *) dd->ipath_statusp - (void *) dd->ipath_pioavailregs_dma; kinfo->spi_piobufbase = (u64) pd->port_piobufs; kinfo->__spi_uregbase = dd->ipath_uregbase + dd->ipath_palign * pd->port_port; kinfo->spi_pioindex = dd->ipath_pbufsport * (pd->port_port - 1); kinfo->spi_piocnt = dd->ipath_pbufsport; kinfo->spi_pioalign = dd->ipath_palign; kinfo->spi_qpair = IPATH_KD_QP; kinfo->spi_piosize = dd->ipath_ibmaxlen; kinfo->spi_mtu = dd->ipath_ibmaxlen; /* maxlen, not ibmtu */ kinfo->spi_port = pd->port_port; kinfo->spi_sw_version = IPATH_KERN_SWVERSION; kinfo->spi_hw_version = dd->ipath_revision; if (copy_to_user(ubase, kinfo, sizeof(*kinfo))) ret = -EFAULT; bail: kfree(kinfo); return ret; } /** * ipath_tid_update - update a port TID * @pd: the port * @ti: the TID information * * The new implementation as of Oct 2004 is that the driver assigns * the tid and returns it to the caller. To make it easier to * catch bugs, and to reduce search time, we keep a cursor for * each port, walking the shadow tid array to find one that's not * in use. * * For now, if we can't allocate the full list, we fail, although * in the long run, we'll allocate as many as we can, and the * caller will deal with that by trying the remaining pages later. * That means that when we fail, we have to mark the tids as not in * use again, in our shadow copy. * * It's up to the caller to free the tids when they are done. * We'll unlock the pages as they free them. * * Also, right now we are locking one page at a time, but since * the intended use of this routine is for a single group of * virtually contiguous pages, that should change to improve * performance. */ static int ipath_tid_update(struct ipath_portdata *pd, const struct ipath_tid_info *ti) { int ret = 0, ntids; u32 tid, porttid, cnt, i, tidcnt; u16 *tidlist; struct ipath_devdata *dd = pd->port_dd; u64 physaddr; unsigned long vaddr; u64 __iomem *tidbase; unsigned long tidmap[8]; struct page **pagep = NULL; if (!dd->ipath_pageshadow) { ret = -ENOMEM; goto done; } cnt = ti->tidcnt; if (!cnt) { ipath_dbg("After copyin, tidcnt 0, tidlist %llx\n", (unsigned long long) ti->tidlist); /* * Should we treat as success? likely a bug */ ret = -EFAULT; goto done; } tidcnt = dd->ipath_rcvtidcnt; if (cnt >= tidcnt) { /* make sure it all fits in port_tid_pg_list */ dev_info(&dd->pcidev->dev, "Process tried to allocate %u " "TIDs, only trying max (%u)\n", cnt, tidcnt); cnt = tidcnt; } pagep = (struct page **)pd->port_tid_pg_list; tidlist = (u16 *) (&pagep[cnt]); memset(tidmap, 0, sizeof(tidmap)); tid = pd->port_tidcursor; /* before decrement; chip actual # */ porttid = pd->port_port * tidcnt; ntids = tidcnt; tidbase = (u64 __iomem *) (((char __iomem *) dd->ipath_kregbase) + dd->ipath_rcvtidbase + porttid * sizeof(*tidbase)); ipath_cdbg(VERBOSE, "Port%u %u tids, cursor %u, tidbase %p\n", pd->port_port, cnt, tid, tidbase); /* virtual address of first page in transfer */ vaddr = ti->tidvaddr; if (!access_ok(VERIFY_WRITE, (void __user *) vaddr, cnt * PAGE_SIZE)) { ipath_dbg("Fail vaddr %p, %u pages, !access_ok\n", (void *)vaddr, cnt); ret = -EFAULT; goto done; } ret = ipath_get_user_pages(vaddr, cnt, pagep); if (ret) { if (ret == -EBUSY) { ipath_dbg("Failed to lock addr %p, %u pages " "(already locked)\n", (void *) vaddr, cnt); /* * for now, continue, and see what happens but with * the new implementation, this should never happen, * unless perhaps the user has mpin'ed the pages * themselves (something we need to test) */ ret = 0; } else { dev_info(&dd->pcidev->dev, "Failed to lock addr %p, %u pages: " "errno %d\n", (void *) vaddr, cnt, -ret); goto done; } } for (i = 0; i < cnt; i++, vaddr += PAGE_SIZE) { for (; ntids--; tid++) { if (tid == tidcnt) tid = 0; if (!dd->ipath_pageshadow[porttid + tid]) break; } if (ntids < 0) { /* * oops, wrapped all the way through their TIDs, * and didn't have enough free; see comments at * start of routine */ ipath_dbg("Not enough free TIDs for %u pages " "(index %d), failing\n", cnt, i); i--; /* last tidlist[i] not filled in */ ret = -ENOMEM; break; } tidlist[i] = tid; ipath_cdbg(VERBOSE, "Updating idx %u to TID %u, " "vaddr %lx\n", i, tid, vaddr); /* we "know" system pages and TID pages are same size */ dd->ipath_pageshadow[porttid + tid] = pagep[i]; /* * don't need atomic or it's overhead */ __set_bit(tid, tidmap); physaddr = page_to_phys(pagep[i]); ipath_stats.sps_pagelocks++; ipath_cdbg(VERBOSE, "TID %u, vaddr %lx, physaddr %llx pgp %p\n", tid, vaddr, (unsigned long long) physaddr, pagep[i]); dd->ipath_f_put_tid(dd, &tidbase[tid], 1, physaddr); /* * don't check this tid in ipath_portshadow, since we * just filled it in; start with the next one. */ tid++; } if (ret) { u32 limit; cleanup: /* jump here if copy out of updated info failed... */ ipath_dbg("After failure (ret=%d), undo %d of %d entries\n", -ret, i, cnt); /* same code that's in ipath_free_tid() */ limit = sizeof(tidmap) * BITS_PER_BYTE; if (limit > tidcnt) /* just in case size changes in future */ limit = tidcnt; tid = find_first_bit((const unsigned long *)tidmap, limit); for (; tid < limit; tid++) { if (!test_bit(tid, tidmap)) continue; if (dd->ipath_pageshadow[porttid + tid]) { ipath_cdbg(VERBOSE, "Freeing TID %u\n", tid); dd->ipath_f_put_tid(dd, &tidbase[tid], 1, dd->ipath_tidinvalid); dd->ipath_pageshadow[porttid + tid] = NULL; ipath_stats.sps_pageunlocks++; } } ipath_release_user_pages(pagep, cnt); } else { /* * Copy the updated array, with ipath_tid's filled in, back * to user. Since we did the copy in already, this "should * never fail" If it does, we have to clean up... */ if (copy_to_user((void __user *) (unsigned long) ti->tidlist, tidlist, cnt * sizeof(*tidlist))) { ret = -EFAULT; goto cleanup; } if (copy_to_user((void __user *) (unsigned long) ti->tidmap, tidmap, sizeof tidmap)) { ret = -EFAULT; goto cleanup; } if (tid == tidcnt) tid = 0; pd->port_tidcursor = tid; } done: if (ret) ipath_dbg("Failed to map %u TID pages, failing with %d\n", ti->tidcnt, -ret); return ret; } /** * ipath_tid_free - free a port TID * @pd: the port * @ti: the TID info * * right now we are unlocking one page at a time, but since * the intended use of this routine is for a single group of * virtually contiguous pages, that should change to improve * performance. We check that the TID is in range for this port * but otherwise don't check validity; if user has an error and * frees the wrong tid, it's only their own data that can thereby * be corrupted. We do check that the TID was in use, for sanity * We always use our idea of the saved address, not the address that * they pass in to us. */ static int ipath_tid_free(struct ipath_portdata *pd, const struct ipath_tid_info *ti) { int ret = 0; u32 tid, porttid, cnt, limit, tidcnt; struct ipath_devdata *dd = pd->port_dd; u64 __iomem *tidbase; unsigned long tidmap[8]; if (!dd->ipath_pageshadow) { ret = -ENOMEM; goto done; } if (copy_from_user(tidmap, (void __user *)(unsigned long)ti->tidmap, sizeof tidmap)) { ret = -EFAULT; goto done; } porttid = pd->port_port * dd->ipath_rcvtidcnt; tidbase = (u64 __iomem *) ((char __iomem *)(dd->ipath_kregbase) + dd->ipath_rcvtidbase + porttid * sizeof(*tidbase)); tidcnt = dd->ipath_rcvtidcnt; limit = sizeof(tidmap) * BITS_PER_BYTE; if (limit > tidcnt) /* just in case size changes in future */ limit = tidcnt; tid = find_first_bit(tidmap, limit); ipath_cdbg(VERBOSE, "Port%u free %u tids; first bit (max=%d) " "set is %d, porttid %u\n", pd->port_port, ti->tidcnt, limit, tid, porttid); for (cnt = 0; tid < limit; tid++) { /* * small optimization; if we detect a run of 3 or so without * any set, use find_first_bit again. That's mainly to * accelerate the case where we wrapped, so we have some at * the beginning, and some at the end, and a big gap * in the middle. */ if (!test_bit(tid, tidmap)) continue; cnt++; if (dd->ipath_pageshadow[porttid + tid]) { ipath_cdbg(VERBOSE, "PID %u freeing TID %u\n", pd->port_pid, tid); dd->ipath_f_put_tid(dd, &tidbase[tid], 1, dd->ipath_tidinvalid); ipath_release_user_pages( &dd->ipath_pageshadow[porttid + tid], 1); dd->ipath_pageshadow[porttid + tid] = NULL; ipath_stats.sps_pageunlocks++; } else ipath_dbg("Unused tid %u, ignoring\n", tid); } if (cnt != ti->tidcnt) ipath_dbg("passed in tidcnt %d, only %d bits set in map\n", ti->tidcnt, cnt); done: if (ret) ipath_dbg("Failed to unmap %u TID pages, failing with %d\n", ti->tidcnt, -ret); return ret; } /** * ipath_set_part_key - set a partition key * @pd: the port * @key: the key * * We can have up to 4 active at a time (other than the default, which is * always allowed). This is somewhat tricky, since multiple ports may set * the same key, so we reference count them, and clean up at exit. All 4 * partition keys are packed into a single infinipath register. It's an * error for a process to set the same pkey multiple times. We provide no * mechanism to de-allocate a pkey at this time, we may eventually need to * do that. I've used the atomic operations, and no locking, and only make * a single pass through what's available. This should be more than * adequate for some time. I'll think about spinlocks or the like if and as * it's necessary. */ static int ipath_set_part_key(struct ipath_portdata *pd, u16 key) { struct ipath_devdata *dd = pd->port_dd; int i, any = 0, pidx = -1; u16 lkey = key & 0x7FFF; int ret; if (lkey == (IPATH_DEFAULT_P_KEY & 0x7FFF)) { /* nothing to do; this key always valid */ ret = 0; goto bail; } ipath_cdbg(VERBOSE, "p%u try to set pkey %hx, current keys " "%hx:%x %hx:%x %hx:%x %hx:%x\n", pd->port_port, key, dd->ipath_pkeys[0], atomic_read(&dd->ipath_pkeyrefs[0]), dd->ipath_pkeys[1], atomic_read(&dd->ipath_pkeyrefs[1]), dd->ipath_pkeys[2], atomic_read(&dd->ipath_pkeyrefs[2]), dd->ipath_pkeys[3], atomic_read(&dd->ipath_pkeyrefs[3])); if (!lkey) { ipath_cdbg(PROC, "p%u tries to set key 0, not allowed\n", pd->port_port); ret = -EINVAL; goto bail; } /* * Set the full membership bit, because it has to be * set in the register or the packet, and it seems * cleaner to set in the register than to force all * callers to set it. (see bug 4331) */ key |= 0x8000; for (i = 0; i < ARRAY_SIZE(pd->port_pkeys); i++) { if (!pd->port_pkeys[i] && pidx == -1) pidx = i; if (pd->port_pkeys[i] == key) { ipath_cdbg(VERBOSE, "p%u tries to set same pkey " "(%x) more than once\n", pd->port_port, key); ret = -EEXIST; goto bail; } } if (pidx == -1) { ipath_dbg("All pkeys for port %u already in use, " "can't set %x\n", pd->port_port, key); ret = -EBUSY; goto bail; } for (any = i = 0; i < ARRAY_SIZE(dd->ipath_pkeys); i++) { if (!dd->ipath_pkeys[i]) { any++; continue; } if (dd->ipath_pkeys[i] == key) { atomic_t *pkrefs = &dd->ipath_pkeyrefs[i]; if (atomic_inc_return(pkrefs) > 1) { pd->port_pkeys[pidx] = key; ipath_cdbg(VERBOSE, "p%u set key %x " "matches #%d, count now %d\n", pd->port_port, key, i, atomic_read(pkrefs)); ret = 0; goto bail; } else { /* * lost race, decrement count, catch below */ atomic_dec(pkrefs); ipath_cdbg(VERBOSE, "Lost race, count was " "0, after dec, it's %d\n", atomic_read(pkrefs)); any++; } } if ((dd->ipath_pkeys[i] & 0x7FFF) == lkey) { /* * It makes no sense to have both the limited and * full membership PKEY set at the same time since * the unlimited one will disable the limited one. */ ret = -EEXIST; goto bail; } } if (!any) { ipath_dbg("port %u, all pkeys already in use, " "can't set %x\n", pd->port_port, key); ret = -EBUSY; goto bail; } for (any = i = 0; i < ARRAY_SIZE(dd->ipath_pkeys); i++) { if (!dd->ipath_pkeys[i] && atomic_inc_return(&dd->ipath_pkeyrefs[i]) == 1) { u64 pkey; /* for ipathstats, etc. */ ipath_stats.sps_pkeys[i] = lkey; pd->port_pkeys[pidx] = dd->ipath_pkeys[i] = key; pkey = (u64) dd->ipath_pkeys[0] | ((u64) dd->ipath_pkeys[1] << 16) | ((u64) dd->ipath_pkeys[2] << 32) | ((u64) dd->ipath_pkeys[3] << 48); ipath_cdbg(PROC, "p%u set key %x in #%d, " "portidx %d, new pkey reg %llx\n", pd->port_port, key, i, pidx, (unsigned long long) pkey); ipath_write_kreg( dd, dd->ipath_kregs->kr_partitionkey, pkey); ret = 0; goto bail; } } ipath_dbg("port %u, all pkeys already in use 2nd pass, " "can't set %x\n", pd->port_port, key); ret = -EBUSY; bail: return ret; } /** * ipath_manage_rcvq - manage a port's receive queue * @pd: the port * @start_stop: action to carry out * * start_stop == 0 disables receive on the port, for use in queue * overflow conditions. start_stop==1 re-enables, to be used to * re-init the software copy of the head register */ static int ipath_manage_rcvq(struct ipath_portdata *pd, int start_stop) { struct ipath_devdata *dd = pd->port_dd; u64 tval; ipath_cdbg(PROC, "%sabling rcv for unit %u port %u\n", start_stop ? "en" : "dis", dd->ipath_unit, pd->port_port); /* atomically clear receive enable port. */ if (start_stop) { /* * On enable, force in-memory copy of the tail register to * 0, so that protocol code doesn't have to worry about * whether or not the chip has yet updated the in-memory * copy or not on return from the system call. The chip * always resets it's tail register back to 0 on a * transition from disabled to enabled. This could cause a * problem if software was broken, and did the enable w/o * the disable, but eventually the in-memory copy will be * updated and correct itself, even in the face of software * bugs. */ *pd->port_rcvhdrtail_kvaddr = 0; set_bit(INFINIPATH_R_PORTENABLE_SHIFT + pd->port_port, &dd->ipath_rcvctrl); } else clear_bit(INFINIPATH_R_PORTENABLE_SHIFT + pd->port_port, &dd->ipath_rcvctrl); ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl, dd->ipath_rcvctrl); /* now be sure chip saw it before we return */ tval = ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch); if (start_stop) { /* * And try to be sure that tail reg update has happened too. * This should in theory interlock with the RXE changes to * the tail register. Don't assign it to the tail register * in memory copy, since we could overwrite an update by the * chip if we did. */ tval = ipath_read_ureg32(dd, ur_rcvhdrtail, pd->port_port); } /* always; new head should be equal to new tail; see above */ return 0; } static void ipath_clean_part_key(struct ipath_portdata *pd, struct ipath_devdata *dd) { int i, j, pchanged = 0; u64 oldpkey; /* for debugging only */ oldpkey = (u64) dd->ipath_pkeys[0] | ((u64) dd->ipath_pkeys[1] << 16) | ((u64) dd->ipath_pkeys[2] << 32) | ((u64) dd->ipath_pkeys[3] << 48); for (i = 0; i < ARRAY_SIZE(pd->port_pkeys); i++) { if (!pd->port_pkeys[i]) continue; ipath_cdbg(VERBOSE, "look for key[%d] %hx in pkeys\n", i, pd->port_pkeys[i]); for (j = 0; j < ARRAY_SIZE(dd->ipath_pkeys); j++) { /* check for match independent of the global bit */ if ((dd->ipath_pkeys[j] & 0x7fff) != (pd->port_pkeys[i] & 0x7fff)) continue; if (atomic_dec_and_test(&dd->ipath_pkeyrefs[j])) { ipath_cdbg(VERBOSE, "p%u clear key " "%x matches #%d\n", pd->port_port, pd->port_pkeys[i], j); ipath_stats.sps_pkeys[j] = dd->ipath_pkeys[j] = 0; pchanged++; } else ipath_cdbg( VERBOSE, "p%u key %x matches #%d, " "but ref still %d\n", pd->port_port, pd->port_pkeys[i], j, atomic_read(&dd->ipath_pkeyrefs[j])); break; } pd->port_pkeys[i] = 0; } if (pchanged) { u64 pkey = (u64) dd->ipath_pkeys[0] | ((u64) dd->ipath_pkeys[1] << 16) | ((u64) dd->ipath_pkeys[2] << 32) | ((u64) dd->ipath_pkeys[3] << 48); ipath_cdbg(VERBOSE, "p%u old pkey reg %llx, " "new pkey reg %llx\n", pd->port_port, (unsigned long long) oldpkey, (unsigned long long) pkey); ipath_write_kreg(dd, dd->ipath_kregs->kr_partitionkey, pkey); } } /** * ipath_create_user_egr - allocate eager TID buffers * @pd: the port to allocate TID buffers for * * This routine is now quite different for user and kernel, because * the kernel uses skb's, for the accelerated network performance * This is the user port version * * Allocate the eager TID buffers and program them into infinipath * They are no longer completely contiguous, we do multiple allocation * calls. */ static int ipath_create_user_egr(struct ipath_portdata *pd) { struct ipath_devdata *dd = pd->port_dd; unsigned e, egrcnt, alloced, egrperchunk, chunk, egrsize, egroff; size_t size; int ret; gfp_t gfp_flags; /* * GFP_USER, but without GFP_FS, so buffer cache can be * coalesced (we hope); otherwise, even at order 4, * heavy filesystem activity makes these fail, and we can * use compound pages. */ gfp_flags = __GFP_WAIT | __GFP_IO | __GFP_COMP; egrcnt = dd->ipath_rcvegrcnt; /* TID number offset for this port */ egroff = pd->port_port * egrcnt; egrsize = dd->ipath_rcvegrbufsize; ipath_cdbg(VERBOSE, "Allocating %d egr buffers, at egrtid " "offset %x, egrsize %u\n", egrcnt, egroff, egrsize); /* * to avoid wasting a lot of memory, we allocate 32KB chunks of * physically contiguous memory, advance through it until used up * and then allocate more. Of course, we need memory to store those * extra pointers, now. Started out with 256KB, but under heavy * memory pressure (creating large files and then copying them over * NFS while doing lots of MPI jobs), we hit some allocation * failures, even though we can sleep... (2.6.10) Still get * failures at 64K. 32K is the lowest we can go without wasting * additional memory. */ size = 0x8000; alloced = ALIGN(egrsize * egrcnt, size); egrperchunk = size / egrsize; chunk = (egrcnt + egrperchunk - 1) / egrperchunk; pd->port_rcvegrbuf_chunks = chunk; pd->port_rcvegrbufs_perchunk = egrperchunk; pd->port_rcvegrbuf_size = size; pd->port_rcvegrbuf = vmalloc(chunk * sizeof(pd->port_rcvegrbuf[0])); if (!pd->port_rcvegrbuf) { ret = -ENOMEM; goto bail; } pd->port_rcvegrbuf_phys = vmalloc(chunk * sizeof(pd->port_rcvegrbuf_phys[0])); if (!pd->port_rcvegrbuf_phys) { ret = -ENOMEM; goto bail_rcvegrbuf; } for (e = 0; e < pd->port_rcvegrbuf_chunks; e++) { pd->port_rcvegrbuf[e] = dma_alloc_coherent( &dd->pcidev->dev, size, &pd->port_rcvegrbuf_phys[e], gfp_flags); if (!pd->port_rcvegrbuf[e]) { ret = -ENOMEM; goto bail_rcvegrbuf_phys; } } pd->port_rcvegr_phys = pd->port_rcvegrbuf_phys[0]; for (e = chunk = 0; chunk < pd->port_rcvegrbuf_chunks; chunk++) { dma_addr_t pa = pd->port_rcvegrbuf_phys[chunk]; unsigned i; for (i = 0; e < egrcnt && i < egrperchunk; e++, i++) { dd->ipath_f_put_tid(dd, e + egroff + (u64 __iomem *) ((char __iomem *) dd->ipath_kregbase + dd->ipath_rcvegrbase), 0, pa); pa += egrsize; } cond_resched(); /* don't hog the cpu */ } ret = 0; goto bail; bail_rcvegrbuf_phys: for (e = 0; e < pd->port_rcvegrbuf_chunks && pd->port_rcvegrbuf[e]; e++) { dma_free_coherent(&dd->pcidev->dev, size, pd->port_rcvegrbuf[e], pd->port_rcvegrbuf_phys[e]); } vfree(pd->port_rcvegrbuf_phys); pd->port_rcvegrbuf_phys = NULL; bail_rcvegrbuf: vfree(pd->port_rcvegrbuf); pd->port_rcvegrbuf = NULL; bail: return ret; } static int ipath_do_user_init(struct ipath_portdata *pd, const struct ipath_user_info *uinfo) { int ret = 0; struct ipath_devdata *dd = pd->port_dd; u32 head32; /* for now, if major version is different, bail */ if ((uinfo->spu_userversion >> 16) != IPATH_USER_SWMAJOR) { dev_info(&dd->pcidev->dev, "User major version %d not same as driver " "major %d\n", uinfo->spu_userversion >> 16, IPATH_USER_SWMAJOR); ret = -ENODEV; goto done; } if ((uinfo->spu_userversion & 0xffff) != IPATH_USER_SWMINOR) ipath_dbg("User minor version %d not same as driver " "minor %d\n", uinfo->spu_userversion & 0xffff, IPATH_USER_SWMINOR); if (uinfo->spu_rcvhdrsize) { ret = ipath_setrcvhdrsize(dd, uinfo->spu_rcvhdrsize); if (ret) goto done; } /* for now we do nothing with rcvhdrcnt: uinfo->spu_rcvhdrcnt */ /* for right now, kernel piobufs are at end, so port 1 is at 0 */ pd->port_piobufs = dd->ipath_piobufbase + dd->ipath_pbufsport * (pd->port_port - 1) * dd->ipath_palign; ipath_cdbg(VERBOSE, "Set base of piobufs for port %u to 0x%x\n", pd->port_port, pd->port_piobufs); /* * Now allocate the rcvhdr Q and eager TIDs; skip the TID * array for time being. If pd->port_port > chip-supported, * we need to do extra stuff here to handle by handling overflow * through port 0, someday */ ret = ipath_create_rcvhdrq(dd, pd); if (!ret) ret = ipath_create_user_egr(pd); if (ret) goto done; /* * set the eager head register for this port to the current values * of the tail pointers, since we don't know if they were * updated on last use of the port. */ head32 = ipath_read_ureg32(dd, ur_rcvegrindextail, pd->port_port); ipath_write_ureg(dd, ur_rcvegrindexhead, head32, pd->port_port); dd->ipath_lastegrheads[pd->port_port] = -1; dd->ipath_lastrcvhdrqtails[pd->port_port] = -1; ipath_cdbg(VERBOSE, "Wrote port%d egrhead %x from tail regs\n", pd->port_port, head32); pd->port_tidcursor = 0; /* start at beginning after open */ /* * now enable the port; the tail registers will be written to memory * by the chip as soon as it sees the write to * dd->ipath_kregs->kr_rcvctrl. The update only happens on * transition from 0 to 1, so clear it first, then set it as part of * enabling the port. This will (very briefly) affect any other * open ports, but it shouldn't be long enough to be an issue. * We explictly set the in-memory copy to 0 beforehand, so we don't * have to wait to be sure the DMA update has happened. */ *pd->port_rcvhdrtail_kvaddr = 0ULL; set_bit(INFINIPATH_R_PORTENABLE_SHIFT + pd->port_port, &dd->ipath_rcvctrl); ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl, dd->ipath_rcvctrl & ~INFINIPATH_R_TAILUPD); ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl, dd->ipath_rcvctrl); done: return ret; } /* common code for the mappings on dma_alloc_coherent mem */ static int ipath_mmap_mem(struct vm_area_struct *vma, struct ipath_portdata *pd, unsigned len, int write_ok, dma_addr_t addr, char *what) { struct ipath_devdata *dd = pd->port_dd; unsigned pfn = (unsigned long)addr >> PAGE_SHIFT; int ret; if ((vma->vm_end - vma->vm_start) > len) { dev_info(&dd->pcidev->dev, "FAIL on %s: len %lx > %x\n", what, vma->vm_end - vma->vm_start, len); ret = -EFAULT; goto bail; } if (!write_ok) { if (vma->vm_flags & VM_WRITE) { dev_info(&dd->pcidev->dev, "%s must be mapped readonly\n", what); ret = -EPERM; goto bail; } /* don't allow them to later change with mprotect */ vma->vm_flags &= ~VM_MAYWRITE; } ret = remap_pfn_range(vma, vma->vm_start, pfn, len, vma->vm_page_prot); if (ret) dev_info(&dd->pcidev->dev, "%s port%u mmap of %lx, %x bytes r%c failed: %d\n", what, pd->port_port, (unsigned long)addr, len, write_ok?'w':'o', ret); else ipath_cdbg(VERBOSE, "%s port%u mmaped %lx, %x bytes r%c\n", what, pd->port_port, (unsigned long)addr, len, write_ok?'w':'o'); bail: return ret; } static int mmap_ureg(struct vm_area_struct *vma, struct ipath_devdata *dd, u64 ureg) { unsigned long phys; int ret; /* * This is real hardware, so use io_remap. This is the mechanism * for the user process to update the head registers for their port * in the chip. */ if ((vma->vm_end - vma->vm_start) > PAGE_SIZE) { dev_info(&dd->pcidev->dev, "FAIL mmap userreg: reqlen " "%lx > PAGE\n", vma->vm_end - vma->vm_start); ret = -EFAULT; } else { phys = dd->ipath_physaddr + ureg; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT, vma->vm_end - vma->vm_start, vma->vm_page_prot); } return ret; } static int mmap_piobufs(struct vm_area_struct *vma, struct ipath_devdata *dd, struct ipath_portdata *pd) { unsigned long phys; int ret; /* * When we map the PIO buffers in the chip, we want to map them as * writeonly, no read possible. This prevents access to previous * process data, and catches users who might try to read the i/o * space due to a bug. */ if ((vma->vm_end - vma->vm_start) > (dd->ipath_pbufsport * dd->ipath_palign)) { dev_info(&dd->pcidev->dev, "FAIL mmap piobufs: " "reqlen %lx > PAGE\n", vma->vm_end - vma->vm_start); ret = -EFAULT; goto bail; } phys = dd->ipath_physaddr + pd->port_piobufs; /* * Don't mark this as non-cached, or we don't get the * write combining behavior we want on the PIO buffers! */ #if defined(__powerpc__) /* There isn't a generic way to specify writethrough mappings */ pgprot_val(vma->vm_page_prot) |= _PAGE_NO_CACHE; pgprot_val(vma->vm_page_prot) |= _PAGE_WRITETHRU; pgprot_val(vma->vm_page_prot) &= ~_PAGE_GUARDED; #endif /* * don't allow them to later change to readable with mprotect (for when * not initially mapped readable, as is normally the case) */ vma->vm_flags &= ~VM_MAYREAD; vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT, vma->vm_end - vma->vm_start, vma->vm_page_prot); bail: return ret; } static int mmap_rcvegrbufs(struct vm_area_struct *vma, struct ipath_portdata *pd) { struct ipath_devdata *dd = pd->port_dd; unsigned long start, size; size_t total_size, i; dma_addr_t *phys; int ret; size = pd->port_rcvegrbuf_size; total_size = pd->port_rcvegrbuf_chunks * size; if ((vma->vm_end - vma->vm_start) > total_size) { dev_info(&dd->pcidev->dev, "FAIL on egr bufs: " "reqlen %lx > actual %lx\n", vma->vm_end - vma->vm_start, (unsigned long) total_size); ret = -EFAULT; goto bail; } if (vma->vm_flags & VM_WRITE) { dev_info(&dd->pcidev->dev, "Can't map eager buffers as " "writable (flags=%lx)\n", vma->vm_flags); ret = -EPERM; goto bail; } /* don't allow them to later change to writeable with mprotect */ vma->vm_flags &= ~VM_MAYWRITE; start = vma->vm_start; phys = pd->port_rcvegrbuf_phys; for (i = 0; i < pd->port_rcvegrbuf_chunks; i++, start += size) { ret = remap_pfn_range(vma, start, phys[i] >> PAGE_SHIFT, size, vma->vm_page_prot); if (ret < 0) goto bail; } ret = 0; bail: return ret; } /** * ipath_mmap - mmap various structures into user space * @fp: the file pointer * @vma: the VM area * * We use this to have a shared buffer between the kernel and the user code * for the rcvhdr queue, egr buffers, and the per-port user regs and pio * buffers in the chip. We have the open and close entries so we can bump * the ref count and keep the driver from being unloaded while still mapped. */ static int ipath_mmap(struct file *fp, struct vm_area_struct *vma) { struct ipath_portdata *pd; struct ipath_devdata *dd; u64 pgaddr, ureg; int ret; pd = port_fp(fp); dd = pd->port_dd; /* * This is the ipath_do_user_init() code, mapping the shared buffers * into the user process. The address referred to by vm_pgoff is the * virtual, not physical, address; we only do one mmap for each * space mapped. */ pgaddr = vma->vm_pgoff << PAGE_SHIFT; /* * Must fit in 40 bits for our hardware; some checked elsewhere, * but we'll be paranoid. Check for 0 is mostly in case one of the * allocations failed, but user called mmap anyway. We want to catch * that before it can match. */ if (!pgaddr || pgaddr >= (1ULL<<40)) { ipath_dev_err(dd, "Bad phys addr %llx, start %lx, end %lx\n", (unsigned long long)pgaddr, vma->vm_start, vma->vm_end); return -EINVAL; } /* just the offset of the port user registers, not physical addr */ ureg = dd->ipath_uregbase + dd->ipath_palign * pd->port_port; ipath_cdbg(MM, "ushare: pgaddr %llx vm_start=%lx, vmlen %lx\n", (unsigned long long) pgaddr, vma->vm_start, vma->vm_end - vma->vm_start); if (vma->vm_start & (PAGE_SIZE-1)) { ipath_dev_err(dd, "vm_start not aligned: %lx, end=%lx phys %lx\n", vma->vm_start, vma->vm_end, (unsigned long)pgaddr); ret = -EINVAL; } else if (pgaddr == ureg) ret = mmap_ureg(vma, dd, ureg); else if (pgaddr == pd->port_piobufs) ret = mmap_piobufs(vma, dd, pd); else if (pgaddr == (u64) pd->port_rcvegr_phys) ret = mmap_rcvegrbufs(vma, pd); else if (pgaddr == (u64) pd->port_rcvhdrq_phys) { /* * The rcvhdrq itself; readonly except on HT (so have * to allow writable mapping), multiple pages, contiguous * from an i/o perspective. */ unsigned total_size = ALIGN(dd->ipath_rcvhdrcnt * dd->ipath_rcvhdrentsize * sizeof(u32), PAGE_SIZE); ret = ipath_mmap_mem(vma, pd, total_size, 1, pd->port_rcvhdrq_phys, "rcvhdrq"); } else if (pgaddr == (u64)pd->port_rcvhdrqtailaddr_phys) /* in-memory copy of rcvhdrq tail register */ ret = ipath_mmap_mem(vma, pd, PAGE_SIZE, 0, pd->port_rcvhdrqtailaddr_phys, "rcvhdrq tail"); else if (pgaddr == dd->ipath_pioavailregs_phys) /* in-memory copy of pioavail registers */ ret = ipath_mmap_mem(vma, pd, PAGE_SIZE, 0, dd->ipath_pioavailregs_phys, "pioavail registers"); else ret = -EINVAL; vma->vm_private_data = NULL; if (ret < 0) dev_info(&dd->pcidev->dev, "Failure %d on addr %lx, off %lx\n", -ret, vma->vm_start, vma->vm_pgoff); return ret; } static unsigned int ipath_poll(struct file *fp, struct poll_table_struct *pt) { struct ipath_portdata *pd; u32 head, tail; int bit; struct ipath_devdata *dd; pd = port_fp(fp); dd = pd->port_dd; bit = pd->port_port + INFINIPATH_R_INTRAVAIL_SHIFT; set_bit(bit, &dd->ipath_rcvctrl); /* * Before blocking, make sure that head is still == tail, * reading from the chip, so we can be sure the interrupt * enable has made it to the chip. If not equal, disable * interrupt again and return immediately. This avoids races, * and the overhead of the chip read doesn't matter much at * this point, since we are waiting for something anyway. */ ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl, dd->ipath_rcvctrl); head = ipath_read_ureg32(dd, ur_rcvhdrhead, pd->port_port); tail = ipath_read_ureg32(dd, ur_rcvhdrtail, pd->port_port); if (tail == head) { set_bit(IPATH_PORT_WAITING_RCV, &pd->port_flag); if(dd->ipath_rhdrhead_intr_off) /* arm rcv interrupt */ (void)ipath_write_ureg(dd, ur_rcvhdrhead, dd->ipath_rhdrhead_intr_off | head, pd->port_port); poll_wait(fp, &pd->port_wait, pt); if (test_bit(IPATH_PORT_WAITING_RCV, &pd->port_flag)) { /* timed out, no packets received */ clear_bit(IPATH_PORT_WAITING_RCV, &pd->port_flag); pd->port_rcvwait_to++; } } else { /* it's already happened; don't do wait_event overhead */ pd->port_rcvnowait++; } clear_bit(bit, &dd->ipath_rcvctrl); ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl, dd->ipath_rcvctrl); return 0; } static int try_alloc_port(struct ipath_devdata *dd, int port, struct file *fp) { int ret; if (!dd->ipath_pd[port]) { void *p, *ptmp; p = kzalloc(sizeof(struct ipath_portdata), GFP_KERNEL); /* * Allocate memory for use in ipath_tid_update() just once * at open, not per call. Reduces cost of expected send * setup. */ ptmp = kmalloc(dd->ipath_rcvtidcnt * sizeof(u16) + dd->ipath_rcvtidcnt * sizeof(struct page **), GFP_KERNEL); if (!p || !ptmp) { ipath_dev_err(dd, "Unable to allocate portdata " "memory, failing open\n"); ret = -ENOMEM; kfree(p); kfree(ptmp); goto bail; } dd->ipath_pd[port] = p; dd->ipath_pd[port]->port_port = port; dd->ipath_pd[port]->port_dd = dd; dd->ipath_pd[port]->port_tid_pg_list = ptmp; init_waitqueue_head(&dd->ipath_pd[port]->port_wait); } if (!dd->ipath_pd[port]->port_cnt) { dd->ipath_pd[port]->port_cnt = 1; fp->private_data = (void *) dd->ipath_pd[port]; ipath_cdbg(PROC, "%s[%u] opened unit:port %u:%u\n", current->comm, current->pid, dd->ipath_unit, port); dd->ipath_pd[port]->port_pid = current->pid; strncpy(dd->ipath_pd[port]->port_comm, current->comm, sizeof(dd->ipath_pd[port]->port_comm)); ipath_stats.sps_ports++; ret = 0; goto bail; } ret = -EBUSY; bail: return ret; } static inline int usable(struct ipath_devdata *dd) { return dd && (dd->ipath_flags & IPATH_PRESENT) && dd->ipath_kregbase && dd->ipath_lid && !(dd->ipath_flags & (IPATH_LINKDOWN | IPATH_DISABLED | IPATH_LINKUNK)); } static int find_free_port(int unit, struct file *fp) { struct ipath_devdata *dd = ipath_lookup(unit); int ret, i; if (!dd) { ret = -ENODEV; goto bail; } if (!usable(dd)) { ret = -ENETDOWN; goto bail; } for (i = 0; i < dd->ipath_cfgports; i++) { ret = try_alloc_port(dd, i, fp); if (ret != -EBUSY) goto bail; } ret = -EBUSY; bail: return ret; } static int find_best_unit(struct file *fp) { int ret = 0, i, prefunit = -1, devmax; int maxofallports, npresent, nup; int ndev; (void) ipath_count_units(&npresent, &nup, &maxofallports); /* * This code is present to allow a knowledgeable person to * specify the layout of processes to processors before opening * this driver, and then we'll assign the process to the "closest" * InfiniPath chip to that processor (we assume reasonable connectivity, * for now). This code assumes that if affinity has been set * before this point, that at most one cpu is set; for now this * is reasonable. I check for both cpus_empty() and cpus_full(), * in case some kernel variant sets none of the bits when no * affinity is set. 2.6.11 and 12 kernels have all present * cpus set. Some day we'll have to fix it up further to handle * a cpu subset. This algorithm fails for two HT chips connected * in tunnel fashion. Eventually this needs real topology * information. There may be some issues with dual core numbering * as well. This needs more work prior to release. */ if (!cpus_empty(current->cpus_allowed) && !cpus_full(current->cpus_allowed)) { int ncpus = num_online_cpus(), curcpu = -1; for (i = 0; i < ncpus; i++) if (cpu_isset(i, current->cpus_allowed)) { ipath_cdbg(PROC, "%s[%u] affinity set for " "cpu %d\n", current->comm, current->pid, i); curcpu = i; } if (curcpu != -1) { if (npresent) { prefunit = curcpu / (ncpus / npresent); ipath_dbg("%s[%u] %d chips, %d cpus, " "%d cpus/chip, select unit %d\n", current->comm, current->pid, npresent, ncpus, ncpus / npresent, prefunit); } } } /* * user ports start at 1, kernel port is 0 * For now, we do round-robin access across all chips */ if (prefunit != -1) devmax = prefunit + 1; else devmax = ipath_count_units(NULL, NULL, NULL); recheck: for (i = 1; i < maxofallports; i++) { for (ndev = prefunit != -1 ? prefunit : 0; ndev < devmax; ndev++) { struct ipath_devdata *dd = ipath_lookup(ndev); if (!usable(dd)) continue; /* can't use this unit */ if (i >= dd->ipath_cfgports) /* * Maxed out on users of this unit. Try * next. */ continue; ret = try_alloc_port(dd, i, fp); if (!ret) goto done; } } if (npresent) { if (nup == 0) { ret = -ENETDOWN; ipath_dbg("No ports available (none initialized " "and ready)\n"); } else { if (prefunit > 0) { /* if started above 0, retry from 0 */ ipath_cdbg(PROC, "%s[%u] no ports on prefunit " "%d, clear and re-check\n", current->comm, current->pid, prefunit); devmax = ipath_count_units(NULL, NULL, NULL); prefunit = -1; goto recheck; } ret = -EBUSY; ipath_dbg("No ports available\n"); } } else { ret = -ENXIO; ipath_dbg("No boards found\n"); } done: return ret; } static int ipath_open(struct inode *in, struct file *fp) { int ret, user_minor; mutex_lock(&ipath_mutex); user_minor = iminor(in) - IPATH_USER_MINOR_BASE; ipath_cdbg(VERBOSE, "open on dev %lx (minor %d)\n", (long)in->i_rdev, user_minor); if (user_minor) ret = find_free_port(user_minor - 1, fp); else ret = find_best_unit(fp); mutex_unlock(&ipath_mutex); return ret; } /** * unlock_exptid - unlock any expected TID entries port still had in use * @pd: port * * We don't actually update the chip here, because we do a bulk update * below, using ipath_f_clear_tids. */ static void unlock_expected_tids(struct ipath_portdata *pd) { struct ipath_devdata *dd = pd->port_dd; int port_tidbase = pd->port_port * dd->ipath_rcvtidcnt; int i, cnt = 0, maxtid = port_tidbase + dd->ipath_rcvtidcnt; ipath_cdbg(VERBOSE, "Port %u unlocking any locked expTID pages\n", pd->port_port); for (i = port_tidbase; i < maxtid; i++) { if (!dd->ipath_pageshadow[i]) continue; ipath_release_user_pages_on_close(&dd->ipath_pageshadow[i], 1); dd->ipath_pageshadow[i] = NULL; cnt++; ipath_stats.sps_pageunlocks++; } if (cnt) ipath_cdbg(VERBOSE, "Port %u locked %u expTID entries\n", pd->port_port, cnt); if (ipath_stats.sps_pagelocks || ipath_stats.sps_pageunlocks) ipath_cdbg(VERBOSE, "%llu pages locked, %llu unlocked\n", (unsigned long long) ipath_stats.sps_pagelocks, (unsigned long long) ipath_stats.sps_pageunlocks); } static int ipath_close(struct inode *in, struct file *fp) { int ret = 0; struct ipath_portdata *pd; struct ipath_devdata *dd; unsigned port; ipath_cdbg(VERBOSE, "close on dev %lx, private data %p\n", (long)in->i_rdev, fp->private_data); mutex_lock(&ipath_mutex); pd = port_fp(fp); port = pd->port_port; fp->private_data = NULL; dd = pd->port_dd; if (pd->port_hdrqfull) { ipath_cdbg(PROC, "%s[%u] had %u rcvhdrqfull errors " "during run\n", pd->port_comm, pd->port_pid, pd->port_hdrqfull); pd->port_hdrqfull = 0; } if (pd->port_rcvwait_to || pd->port_piowait_to || pd->port_rcvnowait || pd->port_pionowait) { ipath_cdbg(VERBOSE, "port%u, %u rcv, %u pio wait timeo; " "%u rcv %u, pio already\n", pd->port_port, pd->port_rcvwait_to, pd->port_piowait_to, pd->port_rcvnowait, pd->port_pionowait); pd->port_rcvwait_to = pd->port_piowait_to = pd->port_rcvnowait = pd->port_pionowait = 0; } if (pd->port_flag) { ipath_dbg("port %u port_flag still set to 0x%lx\n", pd->port_port, pd->port_flag); pd->port_flag = 0; } if (dd->ipath_kregbase) { int i; /* atomically clear receive enable port. */ clear_bit(INFINIPATH_R_PORTENABLE_SHIFT + port, &dd->ipath_rcvctrl); ipath_write_kreg( dd, dd->ipath_kregs->kr_rcvctrl, dd->ipath_rcvctrl); /* and read back from chip to be sure that nothing * else is in flight when we do the rest */ (void)ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch); /* clean up the pkeys for this port user */ ipath_clean_part_key(pd, dd); /* * be paranoid, and never write 0's to these, just use an * unused part of the port 0 tail page. Of course, * rcvhdraddr points to a large chunk of memory, so this * could still trash things, but at least it won't trash * page 0, and by disabling the port, it should stop "soon", * even if a packet or two is in already in flight after we * disabled the port. */ ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdrtailaddr, port, dd->ipath_dummy_hdrq_phys); ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdraddr, pd->port_port, dd->ipath_dummy_hdrq_phys); i = dd->ipath_pbufsport * (port - 1); ipath_disarm_piobufs(dd, i, dd->ipath_pbufsport); if (dd->ipath_pageshadow) unlock_expected_tids(pd); ipath_stats.sps_ports--; ipath_cdbg(PROC, "%s[%u] closed port %u:%u\n", pd->port_comm, pd->port_pid, dd->ipath_unit, port); dd->ipath_f_clear_tids(dd, pd->port_port); } pd->port_cnt = 0; pd->port_pid = 0; dd->ipath_pd[pd->port_port] = NULL; /* before releasing mutex */ mutex_unlock(&ipath_mutex); ipath_free_pddata(dd, pd); /* after releasing the mutex */ return ret; } static int ipath_port_info(struct ipath_portdata *pd, struct ipath_port_info __user *uinfo) { struct ipath_port_info info; int nup; int ret; (void) ipath_count_units(NULL, &nup, NULL); info.num_active = nup; info.unit = pd->port_dd->ipath_unit; info.port = pd->port_port; if (copy_to_user(uinfo, &info, sizeof(info))) { ret = -EFAULT; goto bail; } ret = 0; bail: return ret; } static ssize_t ipath_write(struct file *fp, const char __user *data, size_t count, loff_t *off) { const struct ipath_cmd __user *ucmd; struct ipath_portdata *pd; const void __user *src; size_t consumed, copy; struct ipath_cmd cmd; ssize_t ret = 0; void *dest; if (count < sizeof(cmd.type)) { ret = -EINVAL; goto bail; } ucmd = (const struct ipath_cmd __user *) data; if (copy_from_user(&cmd.type, &ucmd->type, sizeof(cmd.type))) { ret = -EFAULT; goto bail; } consumed = sizeof(cmd.type); switch (cmd.type) { case IPATH_CMD_USER_INIT: copy = sizeof(cmd.cmd.user_info); dest = &cmd.cmd.user_info; src = &ucmd->cmd.user_info; break; case IPATH_CMD_RECV_CTRL: copy = sizeof(cmd.cmd.recv_ctrl); dest = &cmd.cmd.recv_ctrl; src = &ucmd->cmd.recv_ctrl; break; case IPATH_CMD_PORT_INFO: copy = sizeof(cmd.cmd.port_info); dest = &cmd.cmd.port_info; src = &ucmd->cmd.port_info; break; case IPATH_CMD_TID_UPDATE: case IPATH_CMD_TID_FREE: copy = sizeof(cmd.cmd.tid_info); dest = &cmd.cmd.tid_info; src = &ucmd->cmd.tid_info; break; case IPATH_CMD_SET_PART_KEY: copy = sizeof(cmd.cmd.part_key); dest = &cmd.cmd.part_key; src = &ucmd->cmd.part_key; break; default: ret = -EINVAL; goto bail; } if ((count - consumed) < copy) { ret = -EINVAL; goto bail; } if (copy_from_user(dest, src, copy)) { ret = -EFAULT; goto bail; } consumed += copy; pd = port_fp(fp); switch (cmd.type) { case IPATH_CMD_USER_INIT: ret = ipath_do_user_init(pd, &cmd.cmd.user_info); if (ret < 0) goto bail; ret = ipath_get_base_info( pd, (void __user *) (unsigned long) cmd.cmd.user_info.spu_base_info, cmd.cmd.user_info.spu_base_info_size); break; case IPATH_CMD_RECV_CTRL: ret = ipath_manage_rcvq(pd, cmd.cmd.recv_ctrl); break; case IPATH_CMD_PORT_INFO: ret = ipath_port_info(pd, (struct ipath_port_info __user *) (unsigned long) cmd.cmd.port_info); break; case IPATH_CMD_TID_UPDATE: ret = ipath_tid_update(pd, &cmd.cmd.tid_info); break; case IPATH_CMD_TID_FREE: ret = ipath_tid_free(pd, &cmd.cmd.tid_info); break; case IPATH_CMD_SET_PART_KEY: ret = ipath_set_part_key(pd, cmd.cmd.part_key); break; } if (ret >= 0) ret = consumed; bail: return ret; } static struct class *ipath_class; static int init_cdev(int minor, char *name, struct file_operations *fops, struct cdev **cdevp, struct class_device **class_devp) { const dev_t dev = MKDEV(IPATH_MAJOR, minor); struct cdev *cdev = NULL; struct class_device *class_dev = NULL; int ret; cdev = cdev_alloc(); if (!cdev) { printk(KERN_ERR IPATH_DRV_NAME ": Could not allocate cdev for minor %d, %s\n", minor, name); ret = -ENOMEM; goto done; } cdev->owner = THIS_MODULE; cdev->ops = fops; kobject_set_name(&cdev->kobj, name); ret = cdev_add(cdev, dev, 1); if (ret < 0) { printk(KERN_ERR IPATH_DRV_NAME ": Could not add cdev for minor %d, %s (err %d)\n", minor, name, -ret); goto err_cdev; } class_dev = class_device_create(ipath_class, NULL, dev, NULL, name); if (IS_ERR(class_dev)) { ret = PTR_ERR(class_dev); printk(KERN_ERR IPATH_DRV_NAME ": Could not create " "class_dev for minor %d, %s (err %d)\n", minor, name, -ret); goto err_cdev; } goto done; err_cdev: cdev_del(cdev); cdev = NULL; done: if (ret >= 0) { *cdevp = cdev; *class_devp = class_dev; } else { *cdevp = NULL; *class_devp = NULL; } return ret; } int ipath_cdev_init(int minor, char *name, struct file_operations *fops, struct cdev **cdevp, struct class_device **class_devp) { return init_cdev(minor, name, fops, cdevp, class_devp); } static void cleanup_cdev(struct cdev **cdevp, struct class_device **class_devp) { struct class_device *class_dev = *class_devp; if (class_dev) { class_device_unregister(class_dev); *class_devp = NULL; } if (*cdevp) { cdev_del(*cdevp); *cdevp = NULL; } } void ipath_cdev_cleanup(struct cdev **cdevp, struct class_device **class_devp) { cleanup_cdev(cdevp, class_devp); } static struct cdev *wildcard_cdev; static struct class_device *wildcard_class_dev; static const dev_t dev = MKDEV(IPATH_MAJOR, 0); static int user_init(void) { int ret; ret = register_chrdev_region(dev, IPATH_NMINORS, IPATH_DRV_NAME); if (ret < 0) { printk(KERN_ERR IPATH_DRV_NAME ": Could not register " "chrdev region (err %d)\n", -ret); goto done; } ipath_class = class_create(THIS_MODULE, IPATH_DRV_NAME); if (IS_ERR(ipath_class)) { ret = PTR_ERR(ipath_class); printk(KERN_ERR IPATH_DRV_NAME ": Could not create " "device class (err %d)\n", -ret); goto bail; } goto done; bail: unregister_chrdev_region(dev, IPATH_NMINORS); done: return ret; } static void user_cleanup(void) { if (ipath_class) { class_destroy(ipath_class); ipath_class = NULL; } unregister_chrdev_region(dev, IPATH_NMINORS); } static atomic_t user_count = ATOMIC_INIT(0); static atomic_t user_setup = ATOMIC_INIT(0); int ipath_user_add(struct ipath_devdata *dd) { char name[10]; int ret; if (atomic_inc_return(&user_count) == 1) { ret = user_init(); if (ret < 0) { ipath_dev_err(dd, "Unable to set up user support: " "error %d\n", -ret); goto bail; } ret = init_cdev(0, "ipath", &ipath_file_ops, &wildcard_cdev, &wildcard_class_dev); if (ret < 0) { ipath_dev_err(dd, "Could not create wildcard " "minor: error %d\n", -ret); goto bail_user; } atomic_set(&user_setup, 1); } snprintf(name, sizeof(name), "ipath%d", dd->ipath_unit); ret = init_cdev(dd->ipath_unit + 1, name, &ipath_file_ops, &dd->user_cdev, &dd->user_class_dev); if (ret < 0) ipath_dev_err(dd, "Could not create user minor %d, %s\n", dd->ipath_unit + 1, name); goto bail; bail_user: user_cleanup(); bail: return ret; } void ipath_user_remove(struct ipath_devdata *dd) { cleanup_cdev(&dd->user_cdev, &dd->user_class_dev); if (atomic_dec_return(&user_count) == 0) { if (atomic_read(&user_setup) == 0) goto bail; cleanup_cdev(&wildcard_cdev, &wildcard_class_dev); user_cleanup(); atomic_set(&user_setup, 0); } bail: return; }