/* * Copyright (c) 2006 Chelsio, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include "tcb.h" #include "cxgb3_offload.h" #include "iwch.h" #include "iwch_provider.h" #include "iwch_cm.h" static char *states[] = { "idle", "listen", "connecting", "mpa_wait_req", "mpa_req_sent", "mpa_req_rcvd", "mpa_rep_sent", "fpdu_mode", "aborting", "closing", "moribund", "dead", NULL, }; int peer2peer = 0; module_param(peer2peer, int, 0644); MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=0)"); static int ep_timeout_secs = 60; module_param(ep_timeout_secs, int, 0644); MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout " "in seconds (default=60)"); static int mpa_rev = 1; module_param(mpa_rev, int, 0644); MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, " "1 is spec compliant. (default=1)"); static int markers_enabled = 0; module_param(markers_enabled, int, 0644); MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)"); static int crc_enabled = 1; module_param(crc_enabled, int, 0644); MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)"); static int rcv_win = 256 * 1024; module_param(rcv_win, int, 0644); MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256)"); static int snd_win = 32 * 1024; module_param(snd_win, int, 0644); MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=32KB)"); static unsigned int nocong = 0; module_param(nocong, uint, 0644); MODULE_PARM_DESC(nocong, "Turn off congestion control (default=0)"); static unsigned int cong_flavor = 1; module_param(cong_flavor, uint, 0644); MODULE_PARM_DESC(cong_flavor, "TCP Congestion control flavor (default=1)"); static void process_work(struct work_struct *work); static struct workqueue_struct *workq; static DECLARE_WORK(skb_work, process_work); static struct sk_buff_head rxq; static cxgb3_cpl_handler_func work_handlers[NUM_CPL_CMDS]; static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp); static void ep_timeout(unsigned long arg); static void connect_reply_upcall(struct iwch_ep *ep, int status); static void start_ep_timer(struct iwch_ep *ep) { PDBG("%s ep %p\n", __func__, ep); if (timer_pending(&ep->timer)) { PDBG("%s stopped / restarted timer ep %p\n", __func__, ep); del_timer_sync(&ep->timer); } else get_ep(&ep->com); ep->timer.expires = jiffies + ep_timeout_secs * HZ; ep->timer.data = (unsigned long)ep; ep->timer.function = ep_timeout; add_timer(&ep->timer); } static void stop_ep_timer(struct iwch_ep *ep) { PDBG("%s ep %p\n", __func__, ep); if (!timer_pending(&ep->timer)) { printk(KERN_ERR "%s timer stopped when its not running! ep %p state %u\n", __func__, ep, ep->com.state); WARN_ON(1); return; } del_timer_sync(&ep->timer); put_ep(&ep->com); } int iwch_l2t_send(struct t3cdev *tdev, struct sk_buff *skb, struct l2t_entry *l2e) { int error = 0; struct cxio_rdev *rdev; rdev = (struct cxio_rdev *)tdev->ulp; if (cxio_fatal_error(rdev)) { kfree_skb(skb); return -EIO; } error = l2t_send(tdev, skb, l2e); if (error) kfree_skb(skb); return error; } int iwch_cxgb3_ofld_send(struct t3cdev *tdev, struct sk_buff *skb) { int error = 0; struct cxio_rdev *rdev; rdev = (struct cxio_rdev *)tdev->ulp; if (cxio_fatal_error(rdev)) { kfree_skb(skb); return -EIO; } error = cxgb3_ofld_send(tdev, skb); if (error) kfree_skb(skb); return error; } static void release_tid(struct t3cdev *tdev, u32 hwtid, struct sk_buff *skb) { struct cpl_tid_release *req; skb = get_skb(skb, sizeof *req, GFP_KERNEL); if (!skb) return; req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req)); req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid)); skb->priority = CPL_PRIORITY_SETUP; iwch_cxgb3_ofld_send(tdev, skb); return; } int iwch_quiesce_tid(struct iwch_ep *ep) { struct cpl_set_tcb_field *req; struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); if (!skb) return -ENOMEM; req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req)); req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid)); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid)); req->reply = 0; req->cpu_idx = 0; req->word = htons(W_TCB_RX_QUIESCE); req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE); req->val = cpu_to_be64(1 << S_TCB_RX_QUIESCE); skb->priority = CPL_PRIORITY_DATA; return iwch_cxgb3_ofld_send(ep->com.tdev, skb); } int iwch_resume_tid(struct iwch_ep *ep) { struct cpl_set_tcb_field *req; struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); if (!skb) return -ENOMEM; req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req)); req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid)); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid)); req->reply = 0; req->cpu_idx = 0; req->word = htons(W_TCB_RX_QUIESCE); req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE); req->val = 0; skb->priority = CPL_PRIORITY_DATA; return iwch_cxgb3_ofld_send(ep->com.tdev, skb); } static void set_emss(struct iwch_ep *ep, u16 opt) { PDBG("%s ep %p opt %u\n", __func__, ep, opt); ep->emss = T3C_DATA(ep->com.tdev)->mtus[G_TCPOPT_MSS(opt)] - 40; if (G_TCPOPT_TSTAMP(opt)) ep->emss -= 12; if (ep->emss < 128) ep->emss = 128; PDBG("emss=%d\n", ep->emss); } static enum iwch_ep_state state_read(struct iwch_ep_common *epc) { unsigned long flags; enum iwch_ep_state state; spin_lock_irqsave(&epc->lock, flags); state = epc->state; spin_unlock_irqrestore(&epc->lock, flags); return state; } static void __state_set(struct iwch_ep_common *epc, enum iwch_ep_state new) { epc->state = new; } static void state_set(struct iwch_ep_common *epc, enum iwch_ep_state new) { unsigned long flags; spin_lock_irqsave(&epc->lock, flags); PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]); __state_set(epc, new); spin_unlock_irqrestore(&epc->lock, flags); return; } static void *alloc_ep(int size, gfp_t gfp) { struct iwch_ep_common *epc; epc = kzalloc(size, gfp); if (epc) { kref_init(&epc->kref); spin_lock_init(&epc->lock); init_waitqueue_head(&epc->waitq); } PDBG("%s alloc ep %p\n", __func__, epc); return epc; } void __free_ep(struct kref *kref) { struct iwch_ep_common *epc; epc = container_of(kref, struct iwch_ep_common, kref); PDBG("%s ep %p state %s\n", __func__, epc, states[state_read(epc)]); kfree(epc); } static void release_ep_resources(struct iwch_ep *ep) { PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid); cxgb3_remove_tid(ep->com.tdev, (void *)ep, ep->hwtid); dst_release(ep->dst); l2t_release(L2DATA(ep->com.tdev), ep->l2t); put_ep(&ep->com); } static void process_work(struct work_struct *work) { struct sk_buff *skb = NULL; void *ep; struct t3cdev *tdev; int ret; while ((skb = skb_dequeue(&rxq))) { ep = *((void **) (skb->cb)); tdev = *((struct t3cdev **) (skb->cb + sizeof(void *))); ret = work_handlers[G_OPCODE(ntohl((__force __be32)skb->csum))](tdev, skb, ep); if (ret & CPL_RET_BUF_DONE) kfree_skb(skb); /* * ep was referenced in sched(), and is freed here. */ put_ep((struct iwch_ep_common *)ep); } } static int status2errno(int status) { switch (status) { case CPL_ERR_NONE: return 0; case CPL_ERR_CONN_RESET: return -ECONNRESET; case CPL_ERR_ARP_MISS: return -EHOSTUNREACH; case CPL_ERR_CONN_TIMEDOUT: return -ETIMEDOUT; case CPL_ERR_TCAM_FULL: return -ENOMEM; case CPL_ERR_CONN_EXIST: return -EADDRINUSE; default: return -EIO; } } /* * Try and reuse skbs already allocated... */ static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp) { if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) { skb_trim(skb, 0); skb_get(skb); } else { skb = alloc_skb(len, gfp); } return skb; } static struct rtable *find_route(struct t3cdev *dev, __be32 local_ip, __be32 peer_ip, __be16 local_port, __be16 peer_port, u8 tos) { struct rtable *rt; struct flowi fl = { .oif = 0, .nl_u = { .ip4_u = { .daddr = peer_ip, .saddr = local_ip, .tos = tos} }, .proto = IPPROTO_TCP, .uli_u = { .ports = { .sport = local_port, .dport = peer_port} } }; if (ip_route_output_flow(&init_net, &rt, &fl, NULL, 0)) return NULL; return rt; } static unsigned int find_best_mtu(const struct t3c_data *d, unsigned short mtu) { int i = 0; while (i < d->nmtus - 1 && d->mtus[i + 1] <= mtu) ++i; return i; } static void arp_failure_discard(struct t3cdev *dev, struct sk_buff *skb) { PDBG("%s t3cdev %p\n", __func__, dev); kfree_skb(skb); } /* * Handle an ARP failure for an active open. */ static void act_open_req_arp_failure(struct t3cdev *dev, struct sk_buff *skb) { printk(KERN_ERR MOD "ARP failure duing connect\n"); kfree_skb(skb); } /* * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant * and send it along. */ static void abort_arp_failure(struct t3cdev *dev, struct sk_buff *skb) { struct cpl_abort_req *req = cplhdr(skb); PDBG("%s t3cdev %p\n", __func__, dev); req->cmd = CPL_ABORT_NO_RST; iwch_cxgb3_ofld_send(dev, skb); } static int send_halfclose(struct iwch_ep *ep, gfp_t gfp) { struct cpl_close_con_req *req; struct sk_buff *skb; PDBG("%s ep %p\n", __func__, ep); skb = get_skb(NULL, sizeof(*req), gfp); if (!skb) { printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__); return -ENOMEM; } skb->priority = CPL_PRIORITY_DATA; set_arp_failure_handler(skb, arp_failure_discard); req = (struct cpl_close_con_req *) skb_put(skb, sizeof(*req)); req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_CLOSE_CON)); req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid)); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, ep->hwtid)); return iwch_l2t_send(ep->com.tdev, skb, ep->l2t); } static int send_abort(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp) { struct cpl_abort_req *req; PDBG("%s ep %p\n", __func__, ep); skb = get_skb(skb, sizeof(*req), gfp); if (!skb) { printk(KERN_ERR MOD "%s - failed to alloc skb.\n", __func__); return -ENOMEM; } skb->priority = CPL_PRIORITY_DATA; set_arp_failure_handler(skb, abort_arp_failure); req = (struct cpl_abort_req *) skb_put(skb, sizeof(*req)); req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_REQ)); req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid)); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid)); req->cmd = CPL_ABORT_SEND_RST; return iwch_l2t_send(ep->com.tdev, skb, ep->l2t); } static int send_connect(struct iwch_ep *ep) { struct cpl_act_open_req *req; struct sk_buff *skb; u32 opt0h, opt0l, opt2; unsigned int mtu_idx; int wscale; PDBG("%s ep %p\n", __func__, ep); skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); if (!skb) { printk(KERN_ERR MOD "%s - failed to alloc skb.\n", __func__); return -ENOMEM; } mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst)); wscale = compute_wscale(rcv_win); opt0h = V_NAGLE(0) | V_NO_CONG(nocong) | V_KEEP_ALIVE(1) | F_TCAM_BYPASS | V_WND_SCALE(wscale) | V_MSS_IDX(mtu_idx) | V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx); opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10); opt2 = V_FLAVORS_VALID(1) | V_CONG_CONTROL_FLAVOR(cong_flavor); skb->priority = CPL_PRIORITY_SETUP; set_arp_failure_handler(skb, act_open_req_arp_failure); req = (struct cpl_act_open_req *) skb_put(skb, sizeof(*req)); req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, ep->atid)); req->local_port = ep->com.local_addr.sin_port; req->peer_port = ep->com.remote_addr.sin_port; req->local_ip = ep->com.local_addr.sin_addr.s_addr; req->peer_ip = ep->com.remote_addr.sin_addr.s_addr; req->opt0h = htonl(opt0h); req->opt0l = htonl(opt0l); req->params = 0; req->opt2 = htonl(opt2); return iwch_l2t_send(ep->com.tdev, skb, ep->l2t); } static void send_mpa_req(struct iwch_ep *ep, struct sk_buff *skb) { int mpalen; struct tx_data_wr *req; struct mpa_message *mpa; int len; PDBG("%s ep %p pd_len %d\n", __func__, ep, ep->plen); BUG_ON(skb_cloned(skb)); mpalen = sizeof(*mpa) + ep->plen; if (skb->data + mpalen + sizeof(*req) > skb_end_pointer(skb)) { kfree_skb(skb); skb=alloc_skb(mpalen + sizeof(*req), GFP_KERNEL); if (!skb) { connect_reply_upcall(ep, -ENOMEM); return; } } skb_trim(skb, 0); skb_reserve(skb, sizeof(*req)); skb_put(skb, mpalen); skb->priority = CPL_PRIORITY_DATA; mpa = (struct mpa_message *) skb->data; memset(mpa, 0, sizeof(*mpa)); memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)); mpa->flags = (crc_enabled ? MPA_CRC : 0) | (markers_enabled ? MPA_MARKERS : 0); mpa->private_data_size = htons(ep->plen); mpa->revision = mpa_rev; if (ep->plen) memcpy(mpa->private_data, ep->mpa_pkt + sizeof(*mpa), ep->plen); /* * Reference the mpa skb. This ensures the data area * will remain in memory until the hw acks the tx. * Function tx_ack() will deref it. */ skb_get(skb); set_arp_failure_handler(skb, arp_failure_discard); skb_reset_transport_header(skb); len = skb->len; req = (struct tx_data_wr *) skb_push(skb, sizeof(*req)); req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL); req->wr_lo = htonl(V_WR_TID(ep->hwtid)); req->len = htonl(len); req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) | V_TX_SNDBUF(snd_win>>15)); req->flags = htonl(F_TX_INIT); req->sndseq = htonl(ep->snd_seq); BUG_ON(ep->mpa_skb); ep->mpa_skb = skb; iwch_l2t_send(ep->com.tdev, skb, ep->l2t); start_ep_timer(ep); state_set(&ep->com, MPA_REQ_SENT); return; } static int send_mpa_reject(struct iwch_ep *ep, const void *pdata, u8 plen) { int mpalen; struct tx_data_wr *req; struct mpa_message *mpa; struct sk_buff *skb; PDBG("%s ep %p plen %d\n", __func__, ep, plen); mpalen = sizeof(*mpa) + plen; skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL); if (!skb) { printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__); return -ENOMEM; } skb_reserve(skb, sizeof(*req)); mpa = (struct mpa_message *) skb_put(skb, mpalen); memset(mpa, 0, sizeof(*mpa)); memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); mpa->flags = MPA_REJECT; mpa->revision = mpa_rev; mpa->private_data_size = htons(plen); if (plen) memcpy(mpa->private_data, pdata, plen); /* * Reference the mpa skb again. This ensures the data area * will remain in memory until the hw acks the tx. * Function tx_ack() will deref it. */ skb_get(skb); skb->priority = CPL_PRIORITY_DATA; set_arp_failure_handler(skb, arp_failure_discard); skb_reset_transport_header(skb); req = (struct tx_data_wr *) skb_push(skb, sizeof(*req)); req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL); req->wr_lo = htonl(V_WR_TID(ep->hwtid)); req->len = htonl(mpalen); req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) | V_TX_SNDBUF(snd_win>>15)); req->flags = htonl(F_TX_INIT); req->sndseq = htonl(ep->snd_seq); BUG_ON(ep->mpa_skb); ep->mpa_skb = skb; return iwch_l2t_send(ep->com.tdev, skb, ep->l2t); } static int send_mpa_reply(struct iwch_ep *ep, const void *pdata, u8 plen) { int mpalen; struct tx_data_wr *req; struct mpa_message *mpa; int len; struct sk_buff *skb; PDBG("%s ep %p plen %d\n", __func__, ep, plen); mpalen = sizeof(*mpa) + plen; skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL); if (!skb) { printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__); return -ENOMEM; } skb->priority = CPL_PRIORITY_DATA; skb_reserve(skb, sizeof(*req)); mpa = (struct mpa_message *) skb_put(skb, mpalen); memset(mpa, 0, sizeof(*mpa)); memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) | (markers_enabled ? MPA_MARKERS : 0); mpa->revision = mpa_rev; mpa->private_data_size = htons(plen); if (plen) memcpy(mpa->private_data, pdata, plen); /* * Reference the mpa skb. This ensures the data area * will remain in memory until the hw acks the tx. * Function tx_ack() will deref it. */ skb_get(skb); set_arp_failure_handler(skb, arp_failure_discard); skb_reset_transport_header(skb); len = skb->len; req = (struct tx_data_wr *) skb_push(skb, sizeof(*req)); req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL); req->wr_lo = htonl(V_WR_TID(ep->hwtid)); req->len = htonl(len); req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) | V_TX_SNDBUF(snd_win>>15)); req->flags = htonl(F_TX_INIT); req->sndseq = htonl(ep->snd_seq); ep->mpa_skb = skb; state_set(&ep->com, MPA_REP_SENT); return iwch_l2t_send(ep->com.tdev, skb, ep->l2t); } static int act_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx) { struct iwch_ep *ep = ctx; struct cpl_act_establish *req = cplhdr(skb); unsigned int tid = GET_TID(req); PDBG("%s ep %p tid %d\n", __func__, ep, tid); dst_confirm(ep->dst); /* setup the hwtid for this connection */ ep->hwtid = tid; cxgb3_insert_tid(ep->com.tdev, &t3c_client, ep, tid); ep->snd_seq = ntohl(req->snd_isn); ep->rcv_seq = ntohl(req->rcv_isn); set_emss(ep, ntohs(req->tcp_opt)); /* dealloc the atid */ cxgb3_free_atid(ep->com.tdev, ep->atid); /* start MPA negotiation */ send_mpa_req(ep, skb); return 0; } static void abort_connection(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp) { PDBG("%s ep %p\n", __FILE__, ep); state_set(&ep->com, ABORTING); send_abort(ep, skb, gfp); } static void close_complete_upcall(struct iwch_ep *ep) { struct iw_cm_event event; PDBG("%s ep %p\n", __func__, ep); memset(&event, 0, sizeof(event)); event.event = IW_CM_EVENT_CLOSE; if (ep->com.cm_id) { PDBG("close complete delivered ep %p cm_id %p tid %d\n", ep, ep->com.cm_id, ep->hwtid); ep->com.cm_id->event_handler(ep->com.cm_id, &event); ep->com.cm_id->rem_ref(ep->com.cm_id); ep->com.cm_id = NULL; ep->com.qp = NULL; } } static void peer_close_upcall(struct iwch_ep *ep) { struct iw_cm_event event; PDBG("%s ep %p\n", __func__, ep); memset(&event, 0, sizeof(event)); event.event = IW_CM_EVENT_DISCONNECT; if (ep->com.cm_id) { PDBG("peer close delivered ep %p cm_id %p tid %d\n", ep, ep->com.cm_id, ep->hwtid); ep->com.cm_id->event_handler(ep->com.cm_id, &event); } } static void peer_abort_upcall(struct iwch_ep *ep) { struct iw_cm_event event; PDBG("%s ep %p\n", __func__, ep); memset(&event, 0, sizeof(event)); event.event = IW_CM_EVENT_CLOSE; event.status = -ECONNRESET; if (ep->com.cm_id) { PDBG("abort delivered ep %p cm_id %p tid %d\n", ep, ep->com.cm_id, ep->hwtid); ep->com.cm_id->event_handler(ep->com.cm_id, &event); ep->com.cm_id->rem_ref(ep->com.cm_id); ep->com.cm_id = NULL; ep->com.qp = NULL; } } static void connect_reply_upcall(struct iwch_ep *ep, int status) { struct iw_cm_event event; PDBG("%s ep %p status %d\n", __func__, ep, status); memset(&event, 0, sizeof(event)); event.event = IW_CM_EVENT_CONNECT_REPLY; event.status = status; event.local_addr = ep->com.local_addr; event.remote_addr = ep->com.remote_addr; if ((status == 0) || (status == -ECONNREFUSED)) { event.private_data_len = ep->plen; event.private_data = ep->mpa_pkt + sizeof(struct mpa_message); } if (ep->com.cm_id) { PDBG("%s ep %p tid %d status %d\n", __func__, ep, ep->hwtid, status); ep->com.cm_id->event_handler(ep->com.cm_id, &event); } if (status < 0) { ep->com.cm_id->rem_ref(ep->com.cm_id); ep->com.cm_id = NULL; ep->com.qp = NULL; } } static void connect_request_upcall(struct iwch_ep *ep) { struct iw_cm_event event; PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid); memset(&event, 0, sizeof(event)); event.event = IW_CM_EVENT_CONNECT_REQUEST; event.local_addr = ep->com.local_addr; event.remote_addr = ep->com.remote_addr; event.private_data_len = ep->plen; event.private_data = ep->mpa_pkt + sizeof(struct mpa_message); event.provider_data = ep; if (state_read(&ep->parent_ep->com) != DEAD) ep->parent_ep->com.cm_id->event_handler( ep->parent_ep->com.cm_id, &event); put_ep(&ep->parent_ep->com); ep->parent_ep = NULL; } static void established_upcall(struct iwch_ep *ep) { struct iw_cm_event event; PDBG("%s ep %p\n", __func__, ep); memset(&event, 0, sizeof(event)); event.event = IW_CM_EVENT_ESTABLISHED; if (ep->com.cm_id) { PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid); ep->com.cm_id->event_handler(ep->com.cm_id, &event); } } static int update_rx_credits(struct iwch_ep *ep, u32 credits) { struct cpl_rx_data_ack *req; struct sk_buff *skb; PDBG("%s ep %p credits %u\n", __func__, ep, credits); skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); if (!skb) { printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n"); return 0; } req = (struct cpl_rx_data_ack *) skb_put(skb, sizeof(*req)); req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RX_DATA_ACK, ep->hwtid)); req->credit_dack = htonl(V_RX_CREDITS(credits) | V_RX_FORCE_ACK(1)); skb->priority = CPL_PRIORITY_ACK; iwch_cxgb3_ofld_send(ep->com.tdev, skb); return credits; } static void process_mpa_reply(struct iwch_ep *ep, struct sk_buff *skb) { struct mpa_message *mpa; u16 plen; struct iwch_qp_attributes attrs; enum iwch_qp_attr_mask mask; int err; PDBG("%s ep %p\n", __func__, ep); /* * Stop mpa timer. If it expired, then the state has * changed and we bail since ep_timeout already aborted * the connection. */ stop_ep_timer(ep); if (state_read(&ep->com) != MPA_REQ_SENT) return; /* * If we get more than the supported amount of private data * then we must fail this connection. */ if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) { err = -EINVAL; goto err; } /* * copy the new data into our accumulation buffer. */ skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), skb->len); ep->mpa_pkt_len += skb->len; /* * if we don't even have the mpa message, then bail. */ if (ep->mpa_pkt_len < sizeof(*mpa)) return; mpa = (struct mpa_message *) ep->mpa_pkt; /* Validate MPA header. */ if (mpa->revision != mpa_rev) { err = -EPROTO; goto err; } if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) { err = -EPROTO; goto err; } plen = ntohs(mpa->private_data_size); /* * Fail if there's too much private data. */ if (plen > MPA_MAX_PRIVATE_DATA) { err = -EPROTO; goto err; } /* * If plen does not account for pkt size */ if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) { err = -EPROTO; goto err; } ep->plen = (u8) plen; /* * If we don't have all the pdata yet, then bail. * We'll continue process when more data arrives. */ if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) return; if (mpa->flags & MPA_REJECT) { err = -ECONNREFUSED; goto err; } /* * If we get here we have accumulated the entire mpa * start reply message including private data. And * the MPA header is valid. */ state_set(&ep->com, FPDU_MODE); ep->mpa_attr.initiator = 1; ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; ep->mpa_attr.recv_marker_enabled = markers_enabled; ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; ep->mpa_attr.version = mpa_rev; PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, " "xmit_marker_enabled=%d, version=%d\n", __func__, ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled, ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version); attrs.mpa_attr = ep->mpa_attr; attrs.max_ird = ep->ird; attrs.max_ord = ep->ord; attrs.llp_stream_handle = ep; attrs.next_state = IWCH_QP_STATE_RTS; mask = IWCH_QP_ATTR_NEXT_STATE | IWCH_QP_ATTR_LLP_STREAM_HANDLE | IWCH_QP_ATTR_MPA_ATTR | IWCH_QP_ATTR_MAX_IRD | IWCH_QP_ATTR_MAX_ORD; /* bind QP and TID with INIT_WR */ err = iwch_modify_qp(ep->com.qp->rhp, ep->com.qp, mask, &attrs, 1); if (err) goto err; if (peer2peer && iwch_rqes_posted(ep->com.qp) == 0) { iwch_post_zb_read(ep->com.qp); } goto out; err: abort_connection(ep, skb, GFP_KERNEL); out: connect_reply_upcall(ep, err); return; } static void process_mpa_request(struct iwch_ep *ep, struct sk_buff *skb) { struct mpa_message *mpa; u16 plen; PDBG("%s ep %p\n", __func__, ep); /* * Stop mpa timer. If it expired, then the state has * changed and we bail since ep_timeout already aborted * the connection. */ stop_ep_timer(ep); if (state_read(&ep->com) != MPA_REQ_WAIT) return; /* * If we get more than the supported amount of private data * then we must fail this connection. */ if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) { abort_connection(ep, skb, GFP_KERNEL); return; } PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__); /* * Copy the new data into our accumulation buffer. */ skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), skb->len); ep->mpa_pkt_len += skb->len; /* * If we don't even have the mpa message, then bail. * We'll continue process when more data arrives. */ if (ep->mpa_pkt_len < sizeof(*mpa)) return; PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__); mpa = (struct mpa_message *) ep->mpa_pkt; /* * Validate MPA Header. */ if (mpa->revision != mpa_rev) { abort_connection(ep, skb, GFP_KERNEL); return; } if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) { abort_connection(ep, skb, GFP_KERNEL); return; } plen = ntohs(mpa->private_data_size); /* * Fail if there's too much private data. */ if (plen > MPA_MAX_PRIVATE_DATA) { abort_connection(ep, skb, GFP_KERNEL); return; } /* * If plen does not account for pkt size */ if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) { abort_connection(ep, skb, GFP_KERNEL); return; } ep->plen = (u8) plen; /* * If we don't have all the pdata yet, then bail. */ if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) return; /* * If we get here we have accumulated the entire mpa * start reply message including private data. */ ep->mpa_attr.initiator = 0; ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; ep->mpa_attr.recv_marker_enabled = markers_enabled; ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; ep->mpa_attr.version = mpa_rev; PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, " "xmit_marker_enabled=%d, version=%d\n", __func__, ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled, ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version); state_set(&ep->com, MPA_REQ_RCVD); /* drive upcall */ connect_request_upcall(ep); return; } static int rx_data(struct t3cdev *tdev, struct sk_buff *skb, void *ctx) { struct iwch_ep *ep = ctx; struct cpl_rx_data *hdr = cplhdr(skb); unsigned int dlen = ntohs(hdr->len); PDBG("%s ep %p dlen %u\n", __func__, ep, dlen); skb_pull(skb, sizeof(*hdr)); skb_trim(skb, dlen); ep->rcv_seq += dlen; BUG_ON(ep->rcv_seq != (ntohl(hdr->seq) + dlen)); switch (state_read(&ep->com)) { case MPA_REQ_SENT: process_mpa_reply(ep, skb); break; case MPA_REQ_WAIT: process_mpa_request(ep, skb); break; case MPA_REP_SENT: break; default: printk(KERN_ERR MOD "%s Unexpected streaming data." " ep %p state %d tid %d\n", __func__, ep, state_read(&ep->com), ep->hwtid); /* * The ep will timeout and inform the ULP of the failure. * See ep_timeout(). */ break; } /* update RX credits */ update_rx_credits(ep, dlen); return CPL_RET_BUF_DONE; } /* * Upcall from the adapter indicating data has been transmitted. * For us its just the single MPA request or reply. We can now free * the skb holding the mpa message. */ static int tx_ack(struct t3cdev *tdev, struct sk_buff *skb, void *ctx) { struct iwch_ep *ep = ctx; struct cpl_wr_ack *hdr = cplhdr(skb); unsigned int credits = ntohs(hdr->credits); PDBG("%s ep %p credits %u\n", __func__, ep, credits); if (credits == 0) { PDBG(KERN_ERR "%s 0 credit ack ep %p state %u\n", __func__, ep, state_read(&ep->com)); return CPL_RET_BUF_DONE; } BUG_ON(credits != 1); dst_confirm(ep->dst); if (!ep->mpa_skb) { PDBG("%s rdma_init wr_ack ep %p state %u\n", __func__, ep, state_read(&ep->com)); if (ep->mpa_attr.initiator) { PDBG("%s initiator ep %p state %u\n", __func__, ep, state_read(&ep->com)); if (peer2peer) iwch_post_zb_read(ep->com.qp); } else { PDBG("%s responder ep %p state %u\n", __func__, ep, state_read(&ep->com)); ep->com.rpl_done = 1; wake_up(&ep->com.waitq); } } else { PDBG("%s lsm ack ep %p state %u freeing skb\n", __func__, ep, state_read(&ep->com)); kfree_skb(ep->mpa_skb); ep->mpa_skb = NULL; } return CPL_RET_BUF_DONE; } static int abort_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx) { struct iwch_ep *ep = ctx; unsigned long flags; int release = 0; PDBG("%s ep %p\n", __func__, ep); BUG_ON(!ep); /* * We get 2 abort replies from the HW. The first one must * be ignored except for scribbling that we need one more. */ if (!(ep->flags & ABORT_REQ_IN_PROGRESS)) { ep->flags |= ABORT_REQ_IN_PROGRESS; return CPL_RET_BUF_DONE; } spin_lock_irqsave(&ep->com.lock, flags); switch (ep->com.state) { case ABORTING: close_complete_upcall(ep); __state_set(&ep->com, DEAD); release = 1; break; default: printk(KERN_ERR "%s ep %p state %d\n", __func__, ep, ep->com.state); break; } spin_unlock_irqrestore(&ep->com.lock, flags); if (release) release_ep_resources(ep); return CPL_RET_BUF_DONE; } /* * Return whether a failed active open has allocated a TID */ static inline int act_open_has_tid(int status) { return status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST && status != CPL_ERR_ARP_MISS; } static int act_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx) { struct iwch_ep *ep = ctx; struct cpl_act_open_rpl *rpl = cplhdr(skb); PDBG("%s ep %p status %u errno %d\n", __func__, ep, rpl->status, status2errno(rpl->status)); connect_reply_upcall(ep, status2errno(rpl->status)); state_set(&ep->com, DEAD); if (ep->com.tdev->type != T3A && act_open_has_tid(rpl->status)) release_tid(ep->com.tdev, GET_TID(rpl), NULL); cxgb3_free_atid(ep->com.tdev, ep->atid); dst_release(ep->dst); l2t_release(L2DATA(ep->com.tdev), ep->l2t); put_ep(&ep->com); return CPL_RET_BUF_DONE; } static int listen_start(struct iwch_listen_ep *ep) { struct sk_buff *skb; struct cpl_pass_open_req *req; PDBG("%s ep %p\n", __func__, ep); skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); if (!skb) { printk(KERN_ERR MOD "t3c_listen_start failed to alloc skb!\n"); return -ENOMEM; } req = (struct cpl_pass_open_req *) skb_put(skb, sizeof(*req)); req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, ep->stid)); req->local_port = ep->com.local_addr.sin_port; req->local_ip = ep->com.local_addr.sin_addr.s_addr; req->peer_port = 0; req->peer_ip = 0; req->peer_netmask = 0; req->opt0h = htonl(F_DELACK | F_TCAM_BYPASS); req->opt0l = htonl(V_RCV_BUFSIZ(rcv_win>>10)); req->opt1 = htonl(V_CONN_POLICY(CPL_CONN_POLICY_ASK)); skb->priority = 1; return iwch_cxgb3_ofld_send(ep->com.tdev, skb); } static int pass_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx) { struct iwch_listen_ep *ep = ctx; struct cpl_pass_open_rpl *rpl = cplhdr(skb); PDBG("%s ep %p status %d error %d\n", __func__, ep, rpl->status, status2errno(rpl->status)); ep->com.rpl_err = status2errno(rpl->status); ep->com.rpl_done = 1; wake_up(&ep->com.waitq); return CPL_RET_BUF_DONE; } static int listen_stop(struct iwch_listen_ep *ep) { struct sk_buff *skb; struct cpl_close_listserv_req *req; PDBG("%s ep %p\n", __func__, ep); skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); if (!skb) { printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__); return -ENOMEM; } req = (struct cpl_close_listserv_req *) skb_put(skb, sizeof(*req)); req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); req->cpu_idx = 0; OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, ep->stid)); skb->priority = 1; return iwch_cxgb3_ofld_send(ep->com.tdev, skb); } static int close_listsrv_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx) { struct iwch_listen_ep *ep = ctx; struct cpl_close_listserv_rpl *rpl = cplhdr(skb); PDBG("%s ep %p\n", __func__, ep); ep->com.rpl_err = status2errno(rpl->status); ep->com.rpl_done = 1; wake_up(&ep->com.waitq); return CPL_RET_BUF_DONE; } static void accept_cr(struct iwch_ep *ep, __be32 peer_ip, struct sk_buff *skb) { struct cpl_pass_accept_rpl *rpl; unsigned int mtu_idx; u32 opt0h, opt0l, opt2; int wscale; PDBG("%s ep %p\n", __func__, ep); BUG_ON(skb_cloned(skb)); skb_trim(skb, sizeof(*rpl)); skb_get(skb); mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst)); wscale = compute_wscale(rcv_win); opt0h = V_NAGLE(0) | V_NO_CONG(nocong) | V_KEEP_ALIVE(1) | F_TCAM_BYPASS | V_WND_SCALE(wscale) | V_MSS_IDX(mtu_idx) | V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx); opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10); opt2 = V_FLAVORS_VALID(1) | V_CONG_CONTROL_FLAVOR(cong_flavor); rpl = cplhdr(skb); rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, ep->hwtid)); rpl->peer_ip = peer_ip; rpl->opt0h = htonl(opt0h); rpl->opt0l_status = htonl(opt0l | CPL_PASS_OPEN_ACCEPT); rpl->opt2 = htonl(opt2); rpl->rsvd = rpl->opt2; /* workaround for HW bug */ skb->priority = CPL_PRIORITY_SETUP; iwch_l2t_send(ep->com.tdev, skb, ep->l2t); return; } static void reject_cr(struct t3cdev *tdev, u32 hwtid, __be32 peer_ip, struct sk_buff *skb) { PDBG("%s t3cdev %p tid %u peer_ip %x\n", __func__, tdev, hwtid, peer_ip); BUG_ON(skb_cloned(skb)); skb_trim(skb, sizeof(struct cpl_tid_release)); skb_get(skb); if (tdev->type != T3A) release_tid(tdev, hwtid, skb); else { struct cpl_pass_accept_rpl *rpl; rpl = cplhdr(skb); skb->priority = CPL_PRIORITY_SETUP; rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, hwtid)); rpl->peer_ip = peer_ip; rpl->opt0h = htonl(F_TCAM_BYPASS); rpl->opt0l_status = htonl(CPL_PASS_OPEN_REJECT); rpl->opt2 = 0; rpl->rsvd = rpl->opt2; iwch_cxgb3_ofld_send(tdev, skb); } } static int pass_accept_req(struct t3cdev *tdev, struct sk_buff *skb, void *ctx) { struct iwch_ep *child_ep, *parent_ep = ctx; struct cpl_pass_accept_req *req = cplhdr(skb); unsigned int hwtid = GET_TID(req); struct dst_entry *dst; struct l2t_entry *l2t; struct rtable *rt; struct iff_mac tim; PDBG("%s parent ep %p tid %u\n", __func__, parent_ep, hwtid); if (state_read(&parent_ep->com) != LISTEN) { printk(KERN_ERR "%s - listening ep not in LISTEN\n", __func__); goto reject; } /* * Find the netdev for this connection request. */ tim.mac_addr = req->dst_mac; tim.vlan_tag = ntohs(req->vlan_tag); if (tdev->ctl(tdev, GET_IFF_FROM_MAC, &tim) < 0 || !tim.dev) { printk(KERN_ERR "%s bad dst mac %02x %02x %02x %02x %02x %02x\n", __func__, req->dst_mac[0], req->dst_mac[1], req->dst_mac[2], req->dst_mac[3], req->dst_mac[4], req->dst_mac[5]); goto reject; } /* Find output route */ rt = find_route(tdev, req->local_ip, req->peer_ip, req->local_port, req->peer_port, G_PASS_OPEN_TOS(ntohl(req->tos_tid))); if (!rt) { printk(KERN_ERR MOD "%s - failed to find dst entry!\n", __func__); goto reject; } dst = &rt->u.dst; l2t = t3_l2t_get(tdev, dst->neighbour, dst->neighbour->dev); if (!l2t) { printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n", __func__); dst_release(dst); goto reject; } child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL); if (!child_ep) { printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n", __func__); l2t_release(L2DATA(tdev), l2t); dst_release(dst); goto reject; } state_set(&child_ep->com, CONNECTING); child_ep->com.tdev = tdev; child_ep->com.cm_id = NULL; child_ep->com.local_addr.sin_family = PF_INET; child_ep->com.local_addr.sin_port = req->local_port; child_ep->com.local_addr.sin_addr.s_addr = req->local_ip; child_ep->com.remote_addr.sin_family = PF_INET; child_ep->com.remote_addr.sin_port = req->peer_port; child_ep->com.remote_addr.sin_addr.s_addr = req->peer_ip; get_ep(&parent_ep->com); child_ep->parent_ep = parent_ep; child_ep->tos = G_PASS_OPEN_TOS(ntohl(req->tos_tid)); child_ep->l2t = l2t; child_ep->dst = dst; child_ep->hwtid = hwtid; init_timer(&child_ep->timer); cxgb3_insert_tid(tdev, &t3c_client, child_ep, hwtid); accept_cr(child_ep, req->peer_ip, skb); goto out; reject: reject_cr(tdev, hwtid, req->peer_ip, skb); out: return CPL_RET_BUF_DONE; } static int pass_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx) { struct iwch_ep *ep = ctx; struct cpl_pass_establish *req = cplhdr(skb); PDBG("%s ep %p\n", __func__, ep); ep->snd_seq = ntohl(req->snd_isn); ep->rcv_seq = ntohl(req->rcv_isn); set_emss(ep, ntohs(req->tcp_opt)); dst_confirm(ep->dst); state_set(&ep->com, MPA_REQ_WAIT); start_ep_timer(ep); return CPL_RET_BUF_DONE; } static int peer_close(struct t3cdev *tdev, struct sk_buff *skb, void *ctx) { struct iwch_ep *ep = ctx; struct iwch_qp_attributes attrs; unsigned long flags; int disconnect = 1; int release = 0; PDBG("%s ep %p\n", __func__, ep); dst_confirm(ep->dst); spin_lock_irqsave(&ep->com.lock, flags); switch (ep->com.state) { case MPA_REQ_WAIT: __state_set(&ep->com, CLOSING); break; case MPA_REQ_SENT: __state_set(&ep->com, CLOSING); connect_reply_upcall(ep, -ECONNRESET); break; case MPA_REQ_RCVD: /* * We're gonna mark this puppy DEAD, but keep * the reference on it until the ULP accepts or * rejects the CR. */ __state_set(&ep->com, CLOSING); get_ep(&ep->com); break; case MPA_REP_SENT: __state_set(&ep->com, CLOSING); ep->com.rpl_done = 1; ep->com.rpl_err = -ECONNRESET; PDBG("waking up ep %p\n", ep); wake_up(&ep->com.waitq); break; case FPDU_MODE: start_ep_timer(ep); __state_set(&ep->com, CLOSING); attrs.next_state = IWCH_QP_STATE_CLOSING; iwch_modify_qp(ep->com.qp->rhp, ep->com.qp, IWCH_QP_ATTR_NEXT_STATE, &attrs, 1); peer_close_upcall(ep); break; case ABORTING: disconnect = 0; break; case CLOSING: __state_set(&ep->com, MORIBUND); disconnect = 0; break; case MORIBUND: stop_ep_timer(ep); if (ep->com.cm_id && ep->com.qp) { attrs.next_state = IWCH_QP_STATE_IDLE; iwch_modify_qp(ep->com.qp->rhp, ep->com.qp, IWCH_QP_ATTR_NEXT_STATE, &attrs, 1); } close_complete_upcall(ep); __state_set(&ep->com, DEAD); release = 1; disconnect = 0; break; case DEAD: disconnect = 0; break; default: BUG_ON(1); } spin_unlock_irqrestore(&ep->com.lock, flags); if (disconnect) iwch_ep_disconnect(ep, 0, GFP_KERNEL); if (release) release_ep_resources(ep); return CPL_RET_BUF_DONE; } /* * Returns whether an ABORT_REQ_RSS message is a negative advice. */ static int is_neg_adv_abort(unsigned int status) { return status == CPL_ERR_RTX_NEG_ADVICE || status == CPL_ERR_PERSIST_NEG_ADVICE; } static int peer_abort(struct t3cdev *tdev, struct sk_buff *skb, void *ctx) { struct cpl_abort_req_rss *req = cplhdr(skb); struct iwch_ep *ep = ctx; struct cpl_abort_rpl *rpl; struct sk_buff *rpl_skb; struct iwch_qp_attributes attrs; int ret; int release = 0; unsigned long flags; if (is_neg_adv_abort(req->status)) { PDBG("%s neg_adv_abort ep %p tid %d\n", __func__, ep, ep->hwtid); t3_l2t_send_event(ep->com.tdev, ep->l2t); return CPL_RET_BUF_DONE; } /* * We get 2 peer aborts from the HW. The first one must * be ignored except for scribbling that we need one more. */ if (!(ep->flags & PEER_ABORT_IN_PROGRESS)) { ep->flags |= PEER_ABORT_IN_PROGRESS; return CPL_RET_BUF_DONE; } spin_lock_irqsave(&ep->com.lock, flags); PDBG("%s ep %p state %u\n", __func__, ep, ep->com.state); switch (ep->com.state) { case CONNECTING: break; case MPA_REQ_WAIT: stop_ep_timer(ep); break; case MPA_REQ_SENT: stop_ep_timer(ep); connect_reply_upcall(ep, -ECONNRESET); break; case MPA_REP_SENT: ep->com.rpl_done = 1; ep->com.rpl_err = -ECONNRESET; PDBG("waking up ep %p\n", ep); wake_up(&ep->com.waitq); break; case MPA_REQ_RCVD: /* * We're gonna mark this puppy DEAD, but keep * the reference on it until the ULP accepts or * rejects the CR. */ get_ep(&ep->com); break; case MORIBUND: case CLOSING: stop_ep_timer(ep); /*FALLTHROUGH*/ case FPDU_MODE: if (ep->com.cm_id && ep->com.qp) { attrs.next_state = IWCH_QP_STATE_ERROR; ret = iwch_modify_qp(ep->com.qp->rhp, ep->com.qp, IWCH_QP_ATTR_NEXT_STATE, &attrs, 1); if (ret) printk(KERN_ERR MOD "%s - qp <- error failed!\n", __func__); } peer_abort_upcall(ep); break; case ABORTING: break; case DEAD: PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__); spin_unlock_irqrestore(&ep->com.lock, flags); return CPL_RET_BUF_DONE; default: BUG_ON(1); break; } dst_confirm(ep->dst); if (ep->com.state != ABORTING) { __state_set(&ep->com, DEAD); release = 1; } spin_unlock_irqrestore(&ep->com.lock, flags); rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL); if (!rpl_skb) { printk(KERN_ERR MOD "%s - cannot allocate skb!\n", __func__); release = 1; goto out; } rpl_skb->priority = CPL_PRIORITY_DATA; rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl)); rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL)); rpl->wr.wr_lo = htonl(V_WR_TID(ep->hwtid)); OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid)); rpl->cmd = CPL_ABORT_NO_RST; iwch_cxgb3_ofld_send(ep->com.tdev, rpl_skb); out: if (release) release_ep_resources(ep); return CPL_RET_BUF_DONE; } static int close_con_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx) { struct iwch_ep *ep = ctx; struct iwch_qp_attributes attrs; unsigned long flags; int release = 0; PDBG("%s ep %p\n", __func__, ep); BUG_ON(!ep); /* The cm_id may be null if we failed to connect */ spin_lock_irqsave(&ep->com.lock, flags); switch (ep->com.state) { case CLOSING: __state_set(&ep->com, MORIBUND); break; case MORIBUND: stop_ep_timer(ep); if ((ep->com.cm_id) && (ep->com.qp)) { attrs.next_state = IWCH_QP_STATE_IDLE; iwch_modify_qp(ep->com.qp->rhp, ep->com.qp, IWCH_QP_ATTR_NEXT_STATE, &attrs, 1); } close_complete_upcall(ep); __state_set(&ep->com, DEAD); release = 1; break; case ABORTING: case DEAD: break; default: BUG_ON(1); break; } spin_unlock_irqrestore(&ep->com.lock, flags); if (release) release_ep_resources(ep); return CPL_RET_BUF_DONE; } /* * T3A does 3 things when a TERM is received: * 1) send up a CPL_RDMA_TERMINATE message with the TERM packet * 2) generate an async event on the QP with the TERMINATE opcode * 3) post a TERMINATE opcde cqe into the associated CQ. * * For (1), we save the message in the qp for later consumer consumption. * For (2), we move the QP into TERMINATE, post a QP event and disconnect. * For (3), we toss the CQE in cxio_poll_cq(). * * terminate() handles case (1)... */ static int terminate(struct t3cdev *tdev, struct sk_buff *skb, void *ctx) { struct iwch_ep *ep = ctx; if (state_read(&ep->com) != FPDU_MODE) return CPL_RET_BUF_DONE; PDBG("%s ep %p\n", __func__, ep); skb_pull(skb, sizeof(struct cpl_rdma_terminate)); PDBG("%s saving %d bytes of term msg\n", __func__, skb->len); skb_copy_from_linear_data(skb, ep->com.qp->attr.terminate_buffer, skb->len); ep->com.qp->attr.terminate_msg_len = skb->len; ep->com.qp->attr.is_terminate_local = 0; return CPL_RET_BUF_DONE; } static int ec_status(struct t3cdev *tdev, struct sk_buff *skb, void *ctx) { struct cpl_rdma_ec_status *rep = cplhdr(skb); struct iwch_ep *ep = ctx; PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid, rep->status); if (rep->status) { struct iwch_qp_attributes attrs; printk(KERN_ERR MOD "%s BAD CLOSE - Aborting tid %u\n", __func__, ep->hwtid); stop_ep_timer(ep); attrs.next_state = IWCH_QP_STATE_ERROR; iwch_modify_qp(ep->com.qp->rhp, ep->com.qp, IWCH_QP_ATTR_NEXT_STATE, &attrs, 1); abort_connection(ep, NULL, GFP_KERNEL); } return CPL_RET_BUF_DONE; } static void ep_timeout(unsigned long arg) { struct iwch_ep *ep = (struct iwch_ep *)arg; struct iwch_qp_attributes attrs; unsigned long flags; int abort = 1; spin_lock_irqsave(&ep->com.lock, flags); PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid, ep->com.state); switch (ep->com.state) { case MPA_REQ_SENT: __state_set(&ep->com, ABORTING); connect_reply_upcall(ep, -ETIMEDOUT); break; case MPA_REQ_WAIT: __state_set(&ep->com, ABORTING); break; case CLOSING: case MORIBUND: if (ep->com.cm_id && ep->com.qp) { attrs.next_state = IWCH_QP_STATE_ERROR; iwch_modify_qp(ep->com.qp->rhp, ep->com.qp, IWCH_QP_ATTR_NEXT_STATE, &attrs, 1); } __state_set(&ep->com, ABORTING); break; default: printk(KERN_ERR "%s unexpected state ep %p state %u\n", __func__, ep, ep->com.state); WARN_ON(1); abort = 0; } spin_unlock_irqrestore(&ep->com.lock, flags); if (abort) abort_connection(ep, NULL, GFP_ATOMIC); put_ep(&ep->com); } int iwch_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len) { int err; struct iwch_ep *ep = to_ep(cm_id); PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); if (state_read(&ep->com) == DEAD) { put_ep(&ep->com); return -ECONNRESET; } BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD); if (mpa_rev == 0) abort_connection(ep, NULL, GFP_KERNEL); else { err = send_mpa_reject(ep, pdata, pdata_len); err = iwch_ep_disconnect(ep, 0, GFP_KERNEL); } return 0; } int iwch_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) { int err; struct iwch_qp_attributes attrs; enum iwch_qp_attr_mask mask; struct iwch_ep *ep = to_ep(cm_id); struct iwch_dev *h = to_iwch_dev(cm_id->device); struct iwch_qp *qp = get_qhp(h, conn_param->qpn); PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); if (state_read(&ep->com) == DEAD) return -ECONNRESET; BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD); BUG_ON(!qp); if ((conn_param->ord > qp->rhp->attr.max_rdma_read_qp_depth) || (conn_param->ird > qp->rhp->attr.max_rdma_reads_per_qp)) { abort_connection(ep, NULL, GFP_KERNEL); return -EINVAL; } cm_id->add_ref(cm_id); ep->com.cm_id = cm_id; ep->com.qp = qp; ep->com.rpl_done = 0; ep->com.rpl_err = 0; ep->ird = conn_param->ird; ep->ord = conn_param->ord; PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord); get_ep(&ep->com); /* bind QP to EP and move to RTS */ attrs.mpa_attr = ep->mpa_attr; attrs.max_ird = ep->ird; attrs.max_ord = ep->ord; attrs.llp_stream_handle = ep; attrs.next_state = IWCH_QP_STATE_RTS; /* bind QP and TID with INIT_WR */ mask = IWCH_QP_ATTR_NEXT_STATE | IWCH_QP_ATTR_LLP_STREAM_HANDLE | IWCH_QP_ATTR_MPA_ATTR | IWCH_QP_ATTR_MAX_IRD | IWCH_QP_ATTR_MAX_ORD; err = iwch_modify_qp(ep->com.qp->rhp, ep->com.qp, mask, &attrs, 1); if (err) goto err; /* if needed, wait for wr_ack */ if (iwch_rqes_posted(qp)) { wait_event(ep->com.waitq, ep->com.rpl_done); err = ep->com.rpl_err; if (err) goto err; } err = send_mpa_reply(ep, conn_param->private_data, conn_param->private_data_len); if (err) goto err; state_set(&ep->com, FPDU_MODE); established_upcall(ep); put_ep(&ep->com); return 0; err: ep->com.cm_id = NULL; ep->com.qp = NULL; cm_id->rem_ref(cm_id); put_ep(&ep->com); return err; } static int is_loopback_dst(struct iw_cm_id *cm_id) { struct net_device *dev; dev = ip_dev_find(&init_net, cm_id->remote_addr.sin_addr.s_addr); if (!dev) return 0; dev_put(dev); return 1; } int iwch_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) { int err = 0; struct iwch_dev *h = to_iwch_dev(cm_id->device); struct iwch_ep *ep; struct rtable *rt; if (is_loopback_dst(cm_id)) { err = -ENOSYS; goto out; } ep = alloc_ep(sizeof(*ep), GFP_KERNEL); if (!ep) { printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__); err = -ENOMEM; goto out; } init_timer(&ep->timer); ep->plen = conn_param->private_data_len; if (ep->plen) memcpy(ep->mpa_pkt + sizeof(struct mpa_message), conn_param->private_data, ep->plen); ep->ird = conn_param->ird; ep->ord = conn_param->ord; ep->com.tdev = h->rdev.t3cdev_p; cm_id->add_ref(cm_id); ep->com.cm_id = cm_id; ep->com.qp = get_qhp(h, conn_param->qpn); BUG_ON(!ep->com.qp); PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn, ep->com.qp, cm_id); /* * Allocate an active TID to initiate a TCP connection. */ ep->atid = cxgb3_alloc_atid(h->rdev.t3cdev_p, &t3c_client, ep); if (ep->atid == -1) { printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__); err = -ENOMEM; goto fail2; } /* find a route */ rt = find_route(h->rdev.t3cdev_p, cm_id->local_addr.sin_addr.s_addr, cm_id->remote_addr.sin_addr.s_addr, cm_id->local_addr.sin_port, cm_id->remote_addr.sin_port, IPTOS_LOWDELAY); if (!rt) { printk(KERN_ERR MOD "%s - cannot find route.\n", __func__); err = -EHOSTUNREACH; goto fail3; } ep->dst = &rt->u.dst; /* get a l2t entry */ ep->l2t = t3_l2t_get(ep->com.tdev, ep->dst->neighbour, ep->dst->neighbour->dev); if (!ep->l2t) { printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__); err = -ENOMEM; goto fail4; } state_set(&ep->com, CONNECTING); ep->tos = IPTOS_LOWDELAY; ep->com.local_addr = cm_id->local_addr; ep->com.remote_addr = cm_id->remote_addr; /* send connect request to rnic */ err = send_connect(ep); if (!err) goto out; l2t_release(L2DATA(h->rdev.t3cdev_p), ep->l2t); fail4: dst_release(ep->dst); fail3: cxgb3_free_atid(ep->com.tdev, ep->atid); fail2: cm_id->rem_ref(cm_id); put_ep(&ep->com); out: return err; } int iwch_create_listen(struct iw_cm_id *cm_id, int backlog) { int err = 0; struct iwch_dev *h = to_iwch_dev(cm_id->device); struct iwch_listen_ep *ep; might_sleep(); ep = alloc_ep(sizeof(*ep), GFP_KERNEL); if (!ep) { printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__); err = -ENOMEM; goto fail1; } PDBG("%s ep %p\n", __func__, ep); ep->com.tdev = h->rdev.t3cdev_p; cm_id->add_ref(cm_id); ep->com.cm_id = cm_id; ep->backlog = backlog; ep->com.local_addr = cm_id->local_addr; /* * Allocate a server TID. */ ep->stid = cxgb3_alloc_stid(h->rdev.t3cdev_p, &t3c_client, ep); if (ep->stid == -1) { printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__); err = -ENOMEM; goto fail2; } state_set(&ep->com, LISTEN); err = listen_start(ep); if (err) goto fail3; /* wait for pass_open_rpl */ wait_event(ep->com.waitq, ep->com.rpl_done); err = ep->com.rpl_err; if (!err) { cm_id->provider_data = ep; goto out; } fail3: cxgb3_free_stid(ep->com.tdev, ep->stid); fail2: cm_id->rem_ref(cm_id); put_ep(&ep->com); fail1: out: return err; } int iwch_destroy_listen(struct iw_cm_id *cm_id) { int err; struct iwch_listen_ep *ep = to_listen_ep(cm_id); PDBG("%s ep %p\n", __func__, ep); might_sleep(); state_set(&ep->com, DEAD); ep->com.rpl_done = 0; ep->com.rpl_err = 0; err = listen_stop(ep); if (err) goto done; wait_event(ep->com.waitq, ep->com.rpl_done); cxgb3_free_stid(ep->com.tdev, ep->stid); done: err = ep->com.rpl_err; cm_id->rem_ref(cm_id); put_ep(&ep->com); return err; } int iwch_ep_disconnect(struct iwch_ep *ep, int abrupt, gfp_t gfp) { int ret=0; unsigned long flags; int close = 0; int fatal = 0; struct t3cdev *tdev; struct cxio_rdev *rdev; spin_lock_irqsave(&ep->com.lock, flags); PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep, states[ep->com.state], abrupt); tdev = (struct t3cdev *)ep->com.tdev; rdev = (struct cxio_rdev *)tdev->ulp; if (cxio_fatal_error(rdev)) { fatal = 1; close_complete_upcall(ep); ep->com.state = DEAD; } switch (ep->com.state) { case MPA_REQ_WAIT: case MPA_REQ_SENT: case MPA_REQ_RCVD: case MPA_REP_SENT: case FPDU_MODE: close = 1; if (abrupt) ep->com.state = ABORTING; else { ep->com.state = CLOSING; start_ep_timer(ep); } break; case CLOSING: close = 1; if (abrupt) { stop_ep_timer(ep); ep->com.state = ABORTING; } else ep->com.state = MORIBUND; break; case MORIBUND: case ABORTING: case DEAD: PDBG("%s ignoring disconnect ep %p state %u\n", __func__, ep, ep->com.state); break; default: BUG(); break; } spin_unlock_irqrestore(&ep->com.lock, flags); if (close) { if (abrupt) ret = send_abort(ep, NULL, gfp); else ret = send_halfclose(ep, gfp); if (ret) fatal = 1; } if (fatal) release_ep_resources(ep); return ret; } int iwch_ep_redirect(void *ctx, struct dst_entry *old, struct dst_entry *new, struct l2t_entry *l2t) { struct iwch_ep *ep = ctx; if (ep->dst != old) return 0; PDBG("%s ep %p redirect to dst %p l2t %p\n", __func__, ep, new, l2t); dst_hold(new); l2t_release(L2DATA(ep->com.tdev), ep->l2t); ep->l2t = l2t; dst_release(old); ep->dst = new; return 1; } /* * All the CM events are handled on a work queue to have a safe context. */ static int sched(struct t3cdev *tdev, struct sk_buff *skb, void *ctx) { struct iwch_ep_common *epc = ctx; get_ep(epc); /* * Save ctx and tdev in the skb->cb area. */ *((void **) skb->cb) = ctx; *((struct t3cdev **) (skb->cb + sizeof(void *))) = tdev; /* * Queue the skb and schedule the worker thread. */ skb_queue_tail(&rxq, skb); queue_work(workq, &skb_work); return 0; } static int set_tcb_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx) { struct cpl_set_tcb_rpl *rpl = cplhdr(skb); if (rpl->status != CPL_ERR_NONE) { printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u " "for tid %u\n", rpl->status, GET_TID(rpl)); } return CPL_RET_BUF_DONE; } int __init iwch_cm_init(void) { skb_queue_head_init(&rxq); workq = create_singlethread_workqueue("iw_cxgb3"); if (!workq) return -ENOMEM; /* * All upcalls from the T3 Core go to sched() to * schedule the processing on a work queue. */ t3c_handlers[CPL_ACT_ESTABLISH] = sched; t3c_handlers[CPL_ACT_OPEN_RPL] = sched; t3c_handlers[CPL_RX_DATA] = sched; t3c_handlers[CPL_TX_DMA_ACK] = sched; t3c_handlers[CPL_ABORT_RPL_RSS] = sched; t3c_handlers[CPL_ABORT_RPL] = sched; t3c_handlers[CPL_PASS_OPEN_RPL] = sched; t3c_handlers[CPL_CLOSE_LISTSRV_RPL] = sched; t3c_handlers[CPL_PASS_ACCEPT_REQ] = sched; t3c_handlers[CPL_PASS_ESTABLISH] = sched; t3c_handlers[CPL_PEER_CLOSE] = sched; t3c_handlers[CPL_CLOSE_CON_RPL] = sched; t3c_handlers[CPL_ABORT_REQ_RSS] = sched; t3c_handlers[CPL_RDMA_TERMINATE] = sched; t3c_handlers[CPL_RDMA_EC_STATUS] = sched; t3c_handlers[CPL_SET_TCB_RPL] = set_tcb_rpl; /* * These are the real handlers that are called from a * work queue. */ work_handlers[CPL_ACT_ESTABLISH] = act_establish; work_handlers[CPL_ACT_OPEN_RPL] = act_open_rpl; work_handlers[CPL_RX_DATA] = rx_data; work_handlers[CPL_TX_DMA_ACK] = tx_ack; work_handlers[CPL_ABORT_RPL_RSS] = abort_rpl; work_handlers[CPL_ABORT_RPL] = abort_rpl; work_handlers[CPL_PASS_OPEN_RPL] = pass_open_rpl; work_handlers[CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl; work_handlers[CPL_PASS_ACCEPT_REQ] = pass_accept_req; work_handlers[CPL_PASS_ESTABLISH] = pass_establish; work_handlers[CPL_PEER_CLOSE] = peer_close; work_handlers[CPL_ABORT_REQ_RSS] = peer_abort; work_handlers[CPL_CLOSE_CON_RPL] = close_con_rpl; work_handlers[CPL_RDMA_TERMINATE] = terminate; work_handlers[CPL_RDMA_EC_STATUS] = ec_status; return 0; } void __exit iwch_cm_term(void) { flush_workqueue(workq); destroy_workqueue(workq); }