/* * Copyright 2007-8 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher */ #include #include #include #include #include "radeon.h" #include "atom.h" #include "atom-bits.h" static void atombios_overscan_setup(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); SET_CRTC_OVERSCAN_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_OverScan); int a1, a2; memset(&args, 0, sizeof(args)); args.ucCRTC = radeon_crtc->crtc_id; switch (radeon_crtc->rmx_type) { case RMX_CENTER: args.usOverscanTop = (adjusted_mode->crtc_vdisplay - mode->crtc_vdisplay) / 2; args.usOverscanBottom = (adjusted_mode->crtc_vdisplay - mode->crtc_vdisplay) / 2; args.usOverscanLeft = (adjusted_mode->crtc_hdisplay - mode->crtc_hdisplay) / 2; args.usOverscanRight = (adjusted_mode->crtc_hdisplay - mode->crtc_hdisplay) / 2; break; case RMX_ASPECT: a1 = mode->crtc_vdisplay * adjusted_mode->crtc_hdisplay; a2 = adjusted_mode->crtc_vdisplay * mode->crtc_hdisplay; if (a1 > a2) { args.usOverscanLeft = (adjusted_mode->crtc_hdisplay - (a2 / mode->crtc_vdisplay)) / 2; args.usOverscanRight = (adjusted_mode->crtc_hdisplay - (a2 / mode->crtc_vdisplay)) / 2; } else if (a2 > a1) { args.usOverscanLeft = (adjusted_mode->crtc_vdisplay - (a1 / mode->crtc_hdisplay)) / 2; args.usOverscanRight = (adjusted_mode->crtc_vdisplay - (a1 / mode->crtc_hdisplay)) / 2; } break; case RMX_FULL: default: args.usOverscanRight = radeon_crtc->h_border; args.usOverscanLeft = radeon_crtc->h_border; args.usOverscanBottom = radeon_crtc->v_border; args.usOverscanTop = radeon_crtc->v_border; break; } atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_scaler_setup(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); ENABLE_SCALER_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, EnableScaler); /* fixme - fill in enc_priv for atom dac */ enum radeon_tv_std tv_std = TV_STD_NTSC; bool is_tv = false, is_cv = false; struct drm_encoder *encoder; if (!ASIC_IS_AVIVO(rdev) && radeon_crtc->crtc_id) return; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { /* find tv std */ if (encoder->crtc == crtc) { struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); if (radeon_encoder->active_device & ATOM_DEVICE_TV_SUPPORT) { struct radeon_encoder_atom_dac *tv_dac = radeon_encoder->enc_priv; tv_std = tv_dac->tv_std; is_tv = true; } } } memset(&args, 0, sizeof(args)); args.ucScaler = radeon_crtc->crtc_id; if (is_tv) { switch (tv_std) { case TV_STD_NTSC: default: args.ucTVStandard = ATOM_TV_NTSC; break; case TV_STD_PAL: args.ucTVStandard = ATOM_TV_PAL; break; case TV_STD_PAL_M: args.ucTVStandard = ATOM_TV_PALM; break; case TV_STD_PAL_60: args.ucTVStandard = ATOM_TV_PAL60; break; case TV_STD_NTSC_J: args.ucTVStandard = ATOM_TV_NTSCJ; break; case TV_STD_SCART_PAL: args.ucTVStandard = ATOM_TV_PAL; /* ??? */ break; case TV_STD_SECAM: args.ucTVStandard = ATOM_TV_SECAM; break; case TV_STD_PAL_CN: args.ucTVStandard = ATOM_TV_PALCN; break; } args.ucEnable = SCALER_ENABLE_MULTITAP_MODE; } else if (is_cv) { args.ucTVStandard = ATOM_TV_CV; args.ucEnable = SCALER_ENABLE_MULTITAP_MODE; } else { switch (radeon_crtc->rmx_type) { case RMX_FULL: args.ucEnable = ATOM_SCALER_EXPANSION; break; case RMX_CENTER: args.ucEnable = ATOM_SCALER_CENTER; break; case RMX_ASPECT: args.ucEnable = ATOM_SCALER_EXPANSION; break; default: if (ASIC_IS_AVIVO(rdev)) args.ucEnable = ATOM_SCALER_DISABLE; else args.ucEnable = ATOM_SCALER_CENTER; break; } } atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); if ((is_tv || is_cv) && rdev->family >= CHIP_RV515 && rdev->family <= CHIP_R580) { atom_rv515_force_tv_scaler(rdev, radeon_crtc); } } static void atombios_lock_crtc(struct drm_crtc *crtc, int lock) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; int index = GetIndexIntoMasterTable(COMMAND, UpdateCRTC_DoubleBufferRegisters); ENABLE_CRTC_PS_ALLOCATION args; memset(&args, 0, sizeof(args)); args.ucCRTC = radeon_crtc->crtc_id; args.ucEnable = lock; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_enable_crtc(struct drm_crtc *crtc, int state) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; int index = GetIndexIntoMasterTable(COMMAND, EnableCRTC); ENABLE_CRTC_PS_ALLOCATION args; memset(&args, 0, sizeof(args)); args.ucCRTC = radeon_crtc->crtc_id; args.ucEnable = state; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_enable_crtc_memreq(struct drm_crtc *crtc, int state) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; int index = GetIndexIntoMasterTable(COMMAND, EnableCRTCMemReq); ENABLE_CRTC_PS_ALLOCATION args; memset(&args, 0, sizeof(args)); args.ucCRTC = radeon_crtc->crtc_id; args.ucEnable = state; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_blank_crtc(struct drm_crtc *crtc, int state) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; int index = GetIndexIntoMasterTable(COMMAND, BlankCRTC); BLANK_CRTC_PS_ALLOCATION args; memset(&args, 0, sizeof(args)); args.ucCRTC = radeon_crtc->crtc_id; args.ucBlanking = state; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } void atombios_crtc_dpms(struct drm_crtc *crtc, int mode) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); switch (mode) { case DRM_MODE_DPMS_ON: radeon_crtc->enabled = true; /* adjust pm to dpms changes BEFORE enabling crtcs */ radeon_pm_compute_clocks(rdev); atombios_enable_crtc(crtc, ATOM_ENABLE); if (ASIC_IS_DCE3(rdev)) atombios_enable_crtc_memreq(crtc, ATOM_ENABLE); atombios_blank_crtc(crtc, ATOM_DISABLE); drm_vblank_post_modeset(dev, radeon_crtc->crtc_id); radeon_crtc_load_lut(crtc); break; case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: case DRM_MODE_DPMS_OFF: drm_vblank_pre_modeset(dev, radeon_crtc->crtc_id); atombios_blank_crtc(crtc, ATOM_ENABLE); if (ASIC_IS_DCE3(rdev)) atombios_enable_crtc_memreq(crtc, ATOM_DISABLE); atombios_enable_crtc(crtc, ATOM_DISABLE); radeon_crtc->enabled = false; /* adjust pm to dpms changes AFTER disabling crtcs */ radeon_pm_compute_clocks(rdev); break; } } static void atombios_set_crtc_dtd_timing(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; SET_CRTC_USING_DTD_TIMING_PARAMETERS args; int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_UsingDTDTiming); u16 misc = 0; memset(&args, 0, sizeof(args)); args.usH_Size = cpu_to_le16(mode->crtc_hdisplay - (radeon_crtc->h_border * 2)); args.usH_Blanking_Time = cpu_to_le16(mode->crtc_hblank_end - mode->crtc_hdisplay + (radeon_crtc->h_border * 2)); args.usV_Size = cpu_to_le16(mode->crtc_vdisplay - (radeon_crtc->v_border * 2)); args.usV_Blanking_Time = cpu_to_le16(mode->crtc_vblank_end - mode->crtc_vdisplay + (radeon_crtc->v_border * 2)); args.usH_SyncOffset = cpu_to_le16(mode->crtc_hsync_start - mode->crtc_hdisplay + radeon_crtc->h_border); args.usH_SyncWidth = cpu_to_le16(mode->crtc_hsync_end - mode->crtc_hsync_start); args.usV_SyncOffset = cpu_to_le16(mode->crtc_vsync_start - mode->crtc_vdisplay + radeon_crtc->v_border); args.usV_SyncWidth = cpu_to_le16(mode->crtc_vsync_end - mode->crtc_vsync_start); args.ucH_Border = radeon_crtc->h_border; args.ucV_Border = radeon_crtc->v_border; if (mode->flags & DRM_MODE_FLAG_NVSYNC) misc |= ATOM_VSYNC_POLARITY; if (mode->flags & DRM_MODE_FLAG_NHSYNC) misc |= ATOM_HSYNC_POLARITY; if (mode->flags & DRM_MODE_FLAG_CSYNC) misc |= ATOM_COMPOSITESYNC; if (mode->flags & DRM_MODE_FLAG_INTERLACE) misc |= ATOM_INTERLACE; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) misc |= ATOM_DOUBLE_CLOCK_MODE; args.susModeMiscInfo.usAccess = cpu_to_le16(misc); args.ucCRTC = radeon_crtc->crtc_id; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_crtc_set_timing(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; SET_CRTC_TIMING_PARAMETERS_PS_ALLOCATION args; int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_Timing); u16 misc = 0; memset(&args, 0, sizeof(args)); args.usH_Total = cpu_to_le16(mode->crtc_htotal); args.usH_Disp = cpu_to_le16(mode->crtc_hdisplay); args.usH_SyncStart = cpu_to_le16(mode->crtc_hsync_start); args.usH_SyncWidth = cpu_to_le16(mode->crtc_hsync_end - mode->crtc_hsync_start); args.usV_Total = cpu_to_le16(mode->crtc_vtotal); args.usV_Disp = cpu_to_le16(mode->crtc_vdisplay); args.usV_SyncStart = cpu_to_le16(mode->crtc_vsync_start); args.usV_SyncWidth = cpu_to_le16(mode->crtc_vsync_end - mode->crtc_vsync_start); args.ucOverscanRight = radeon_crtc->h_border; args.ucOverscanLeft = radeon_crtc->h_border; args.ucOverscanBottom = radeon_crtc->v_border; args.ucOverscanTop = radeon_crtc->v_border; if (mode->flags & DRM_MODE_FLAG_NVSYNC) misc |= ATOM_VSYNC_POLARITY; if (mode->flags & DRM_MODE_FLAG_NHSYNC) misc |= ATOM_HSYNC_POLARITY; if (mode->flags & DRM_MODE_FLAG_CSYNC) misc |= ATOM_COMPOSITESYNC; if (mode->flags & DRM_MODE_FLAG_INTERLACE) misc |= ATOM_INTERLACE; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) misc |= ATOM_DOUBLE_CLOCK_MODE; args.susModeMiscInfo.usAccess = cpu_to_le16(misc); args.ucCRTC = radeon_crtc->crtc_id; atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_disable_ss(struct drm_crtc *crtc) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; u32 ss_cntl; if (ASIC_IS_DCE4(rdev)) { switch (radeon_crtc->pll_id) { case ATOM_PPLL1: ss_cntl = RREG32(EVERGREEN_P1PLL_SS_CNTL); ss_cntl &= ~EVERGREEN_PxPLL_SS_EN; WREG32(EVERGREEN_P1PLL_SS_CNTL, ss_cntl); break; case ATOM_PPLL2: ss_cntl = RREG32(EVERGREEN_P2PLL_SS_CNTL); ss_cntl &= ~EVERGREEN_PxPLL_SS_EN; WREG32(EVERGREEN_P2PLL_SS_CNTL, ss_cntl); break; case ATOM_DCPLL: case ATOM_PPLL_INVALID: return; } } else if (ASIC_IS_AVIVO(rdev)) { switch (radeon_crtc->pll_id) { case ATOM_PPLL1: ss_cntl = RREG32(AVIVO_P1PLL_INT_SS_CNTL); ss_cntl &= ~1; WREG32(AVIVO_P1PLL_INT_SS_CNTL, ss_cntl); break; case ATOM_PPLL2: ss_cntl = RREG32(AVIVO_P2PLL_INT_SS_CNTL); ss_cntl &= ~1; WREG32(AVIVO_P2PLL_INT_SS_CNTL, ss_cntl); break; case ATOM_DCPLL: case ATOM_PPLL_INVALID: return; } } } union atom_enable_ss { ENABLE_LVDS_SS_PARAMETERS lvds_ss; ENABLE_LVDS_SS_PARAMETERS_V2 lvds_ss_2; ENABLE_SPREAD_SPECTRUM_ON_PPLL_PS_ALLOCATION v1; ENABLE_SPREAD_SPECTRUM_ON_PPLL_V2 v2; }; static void atombios_crtc_program_ss(struct drm_crtc *crtc, int enable, int pll_id, struct radeon_atom_ss *ss) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; int index = GetIndexIntoMasterTable(COMMAND, EnableSpreadSpectrumOnPPLL); union atom_enable_ss args; memset(&args, 0, sizeof(args)); if (ASIC_IS_DCE4(rdev)) { args.v2.usSpreadSpectrumPercentage = cpu_to_le16(ss->percentage); args.v2.ucSpreadSpectrumType = ss->type; switch (pll_id) { case ATOM_PPLL1: args.v2.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V2_P1PLL; args.v2.usSpreadSpectrumAmount = ss->amount; args.v2.usSpreadSpectrumStep = ss->step; break; case ATOM_PPLL2: args.v2.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V2_P2PLL; args.v2.usSpreadSpectrumAmount = ss->amount; args.v2.usSpreadSpectrumStep = ss->step; break; case ATOM_DCPLL: args.v2.ucSpreadSpectrumType |= ATOM_PPLL_SS_TYPE_V2_DCPLL; args.v2.usSpreadSpectrumAmount = 0; args.v2.usSpreadSpectrumStep = 0; break; case ATOM_PPLL_INVALID: return; } args.v2.ucEnable = enable; } else if (ASIC_IS_DCE3(rdev)) { args.v1.usSpreadSpectrumPercentage = cpu_to_le16(ss->percentage); args.v1.ucSpreadSpectrumType = ss->type; args.v1.ucSpreadSpectrumStep = ss->step; args.v1.ucSpreadSpectrumDelay = ss->delay; args.v1.ucSpreadSpectrumRange = ss->range; args.v1.ucPpll = pll_id; args.v1.ucEnable = enable; } else if (ASIC_IS_AVIVO(rdev)) { if (enable == ATOM_DISABLE) { atombios_disable_ss(crtc); return; } args.lvds_ss_2.usSpreadSpectrumPercentage = cpu_to_le16(ss->percentage); args.lvds_ss_2.ucSpreadSpectrumType = ss->type; args.lvds_ss_2.ucSpreadSpectrumStep = ss->step; args.lvds_ss_2.ucSpreadSpectrumDelay = ss->delay; args.lvds_ss_2.ucSpreadSpectrumRange = ss->range; args.lvds_ss_2.ucEnable = enable; } else { if (enable == ATOM_DISABLE) { atombios_disable_ss(crtc); return; } args.lvds_ss.usSpreadSpectrumPercentage = cpu_to_le16(ss->percentage); args.lvds_ss.ucSpreadSpectrumType = ss->type; args.lvds_ss.ucSpreadSpectrumStepSize_Delay = (ss->step & 3) << 2; args.lvds_ss.ucSpreadSpectrumStepSize_Delay |= (ss->delay & 7) << 4; args.lvds_ss.ucEnable = enable; } atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } union adjust_pixel_clock { ADJUST_DISPLAY_PLL_PS_ALLOCATION v1; ADJUST_DISPLAY_PLL_PS_ALLOCATION_V3 v3; }; static u32 atombios_adjust_pll(struct drm_crtc *crtc, struct drm_display_mode *mode, struct radeon_pll *pll, bool ss_enabled, struct radeon_atom_ss *ss) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct drm_encoder *encoder = NULL; struct radeon_encoder *radeon_encoder = NULL; u32 adjusted_clock = mode->clock; int encoder_mode = 0; u32 dp_clock = mode->clock; int bpc = 8; /* reset the pll flags */ pll->flags = 0; if (ASIC_IS_AVIVO(rdev)) { if ((rdev->family == CHIP_RS600) || (rdev->family == CHIP_RS690) || (rdev->family == CHIP_RS740)) pll->flags |= (/*RADEON_PLL_USE_FRAC_FB_DIV |*/ RADEON_PLL_PREFER_CLOSEST_LOWER); } else pll->flags |= RADEON_PLL_LEGACY; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->crtc == crtc) { radeon_encoder = to_radeon_encoder(encoder); encoder_mode = atombios_get_encoder_mode(encoder); if (radeon_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT | ATOM_DEVICE_DFP_SUPPORT)) { struct drm_connector *connector = radeon_get_connector_for_encoder(encoder); if (connector) { struct radeon_connector *radeon_connector = to_radeon_connector(connector); struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv; dp_clock = dig_connector->dp_clock; } } /* use recommended ref_div for ss */ if (radeon_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) { if (ss_enabled) { if (ss->refdiv) { pll->flags |= RADEON_PLL_USE_REF_DIV; pll->reference_div = ss->refdiv; } } } if (ASIC_IS_AVIVO(rdev)) { /* DVO wants 2x pixel clock if the DVO chip is in 12 bit mode */ if (radeon_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DVO1) adjusted_clock = mode->clock * 2; if (radeon_encoder->active_device & (ATOM_DEVICE_TV_SUPPORT)) pll->flags |= RADEON_PLL_PREFER_CLOSEST_LOWER; } else { if (encoder->encoder_type != DRM_MODE_ENCODER_DAC) pll->flags |= RADEON_PLL_NO_ODD_POST_DIV; if (encoder->encoder_type == DRM_MODE_ENCODER_LVDS) pll->flags |= RADEON_PLL_USE_REF_DIV; } break; } } /* DCE3+ has an AdjustDisplayPll that will adjust the pixel clock * accordingly based on the encoder/transmitter to work around * special hw requirements. */ if (ASIC_IS_DCE3(rdev)) { union adjust_pixel_clock args; u8 frev, crev; int index; index = GetIndexIntoMasterTable(COMMAND, AdjustDisplayPll); if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev)) return adjusted_clock; memset(&args, 0, sizeof(args)); switch (frev) { case 1: switch (crev) { case 1: case 2: args.v1.usPixelClock = cpu_to_le16(mode->clock / 10); args.v1.ucTransmitterID = radeon_encoder->encoder_id; args.v1.ucEncodeMode = encoder_mode; if (encoder_mode == ATOM_ENCODER_MODE_DP) { if (ss_enabled) args.v1.ucConfig |= ADJUST_DISPLAY_CONFIG_SS_ENABLE; } else if (encoder_mode == ATOM_ENCODER_MODE_LVDS) { args.v1.ucConfig |= ADJUST_DISPLAY_CONFIG_SS_ENABLE; } atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); adjusted_clock = le16_to_cpu(args.v1.usPixelClock) * 10; break; case 3: args.v3.sInput.usPixelClock = cpu_to_le16(mode->clock / 10); args.v3.sInput.ucTransmitterID = radeon_encoder->encoder_id; args.v3.sInput.ucEncodeMode = encoder_mode; args.v3.sInput.ucDispPllConfig = 0; if (radeon_encoder->devices & (ATOM_DEVICE_DFP_SUPPORT)) { struct radeon_encoder_atom_dig *dig = radeon_encoder->enc_priv; if (encoder_mode == ATOM_ENCODER_MODE_DP) { if (ss_enabled) args.v3.sInput.ucDispPllConfig |= DISPPLL_CONFIG_SS_ENABLE; args.v3.sInput.ucDispPllConfig |= DISPPLL_CONFIG_COHERENT_MODE; /* 16200 or 27000 */ args.v3.sInput.usPixelClock = cpu_to_le16(dp_clock / 10); } else { if (encoder_mode == ATOM_ENCODER_MODE_HDMI) { /* deep color support */ args.v3.sInput.usPixelClock = cpu_to_le16((mode->clock * bpc / 8) / 10); } if (dig->coherent_mode) args.v3.sInput.ucDispPllConfig |= DISPPLL_CONFIG_COHERENT_MODE; if (mode->clock > 165000) args.v3.sInput.ucDispPllConfig |= DISPPLL_CONFIG_DUAL_LINK; } } else if (radeon_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) { if (encoder_mode == ATOM_ENCODER_MODE_DP) { if (ss_enabled) args.v3.sInput.ucDispPllConfig |= DISPPLL_CONFIG_SS_ENABLE; args.v3.sInput.ucDispPllConfig |= DISPPLL_CONFIG_COHERENT_MODE; /* 16200 or 27000 */ args.v3.sInput.usPixelClock = cpu_to_le16(dp_clock / 10); } else if (encoder_mode == ATOM_ENCODER_MODE_LVDS) { if (ss_enabled) args.v3.sInput.ucDispPllConfig |= DISPPLL_CONFIG_SS_ENABLE; } else { if (mode->clock > 165000) args.v3.sInput.ucDispPllConfig |= DISPPLL_CONFIG_DUAL_LINK; } } atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); adjusted_clock = le32_to_cpu(args.v3.sOutput.ulDispPllFreq) * 10; if (args.v3.sOutput.ucRefDiv) { pll->flags |= RADEON_PLL_USE_REF_DIV; pll->reference_div = args.v3.sOutput.ucRefDiv; } if (args.v3.sOutput.ucPostDiv) { pll->flags |= RADEON_PLL_USE_POST_DIV; pll->post_div = args.v3.sOutput.ucPostDiv; } break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return adjusted_clock; } break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return adjusted_clock; } } return adjusted_clock; } union set_pixel_clock { SET_PIXEL_CLOCK_PS_ALLOCATION base; PIXEL_CLOCK_PARAMETERS v1; PIXEL_CLOCK_PARAMETERS_V2 v2; PIXEL_CLOCK_PARAMETERS_V3 v3; PIXEL_CLOCK_PARAMETERS_V5 v5; }; static void atombios_crtc_set_dcpll(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; u8 frev, crev; int index; union set_pixel_clock args; memset(&args, 0, sizeof(args)); index = GetIndexIntoMasterTable(COMMAND, SetPixelClock); if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev)) return; switch (frev) { case 1: switch (crev) { case 5: /* if the default dcpll clock is specified, * SetPixelClock provides the dividers */ args.v5.ucCRTC = ATOM_CRTC_INVALID; args.v5.usPixelClock = rdev->clock.default_dispclk; args.v5.ucPpll = ATOM_DCPLL; break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return; } break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return; } atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_crtc_program_pll(struct drm_crtc *crtc, int crtc_id, int pll_id, u32 encoder_mode, u32 encoder_id, u32 clock, u32 ref_div, u32 fb_div, u32 frac_fb_div, u32 post_div) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; u8 frev, crev; int index = GetIndexIntoMasterTable(COMMAND, SetPixelClock); union set_pixel_clock args; memset(&args, 0, sizeof(args)); if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev, &crev)) return; switch (frev) { case 1: switch (crev) { case 1: if (clock == ATOM_DISABLE) return; args.v1.usPixelClock = cpu_to_le16(clock / 10); args.v1.usRefDiv = cpu_to_le16(ref_div); args.v1.usFbDiv = cpu_to_le16(fb_div); args.v1.ucFracFbDiv = frac_fb_div; args.v1.ucPostDiv = post_div; args.v1.ucPpll = pll_id; args.v1.ucCRTC = crtc_id; args.v1.ucRefDivSrc = 1; break; case 2: args.v2.usPixelClock = cpu_to_le16(clock / 10); args.v2.usRefDiv = cpu_to_le16(ref_div); args.v2.usFbDiv = cpu_to_le16(fb_div); args.v2.ucFracFbDiv = frac_fb_div; args.v2.ucPostDiv = post_div; args.v2.ucPpll = pll_id; args.v2.ucCRTC = crtc_id; args.v2.ucRefDivSrc = 1; break; case 3: args.v3.usPixelClock = cpu_to_le16(clock / 10); args.v3.usRefDiv = cpu_to_le16(ref_div); args.v3.usFbDiv = cpu_to_le16(fb_div); args.v3.ucFracFbDiv = frac_fb_div; args.v3.ucPostDiv = post_div; args.v3.ucPpll = pll_id; args.v3.ucMiscInfo = (pll_id << 2); args.v3.ucTransmitterId = encoder_id; args.v3.ucEncoderMode = encoder_mode; break; case 5: args.v5.ucCRTC = crtc_id; args.v5.usPixelClock = cpu_to_le16(clock / 10); args.v5.ucRefDiv = ref_div; args.v5.usFbDiv = cpu_to_le16(fb_div); args.v5.ulFbDivDecFrac = cpu_to_le32(frac_fb_div * 100000); args.v5.ucPostDiv = post_div; args.v5.ucMiscInfo = 0; /* HDMI depth, etc. */ args.v5.ucTransmitterID = encoder_id; args.v5.ucEncoderMode = encoder_mode; args.v5.ucPpll = pll_id; break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return; } break; default: DRM_ERROR("Unknown table version %d %d\n", frev, crev); return; } atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args); } static void atombios_crtc_set_pll(struct drm_crtc *crtc, struct drm_display_mode *mode) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct drm_encoder *encoder = NULL; struct radeon_encoder *radeon_encoder = NULL; u32 pll_clock = mode->clock; u32 ref_div = 0, fb_div = 0, frac_fb_div = 0, post_div = 0; struct radeon_pll *pll; u32 adjusted_clock; int encoder_mode = 0; struct radeon_atom_ss ss; bool ss_enabled = false; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->crtc == crtc) { radeon_encoder = to_radeon_encoder(encoder); encoder_mode = atombios_get_encoder_mode(encoder); break; } } if (!radeon_encoder) return; switch (radeon_crtc->pll_id) { case ATOM_PPLL1: pll = &rdev->clock.p1pll; break; case ATOM_PPLL2: pll = &rdev->clock.p2pll; break; case ATOM_DCPLL: case ATOM_PPLL_INVALID: default: pll = &rdev->clock.dcpll; break; } if (radeon_encoder->active_device & (ATOM_DEVICE_LCD_SUPPORT | ATOM_DEVICE_DFP_SUPPORT)) { struct radeon_encoder_atom_dig *dig = radeon_encoder->enc_priv; struct drm_connector *connector = radeon_get_connector_for_encoder(encoder); struct radeon_connector *radeon_connector = to_radeon_connector(connector); struct radeon_connector_atom_dig *dig_connector = radeon_connector->con_priv; int dp_clock; switch (encoder_mode) { case ATOM_ENCODER_MODE_DP: /* DP/eDP */ dp_clock = dig_connector->dp_clock / 10; if (radeon_encoder->active_device & (ATOM_DEVICE_LCD_SUPPORT)) { if (ASIC_IS_DCE4(rdev)) ss_enabled = radeon_atombios_get_asic_ss_info(rdev, &ss, dig->lcd_ss_id, dp_clock); else ss_enabled = radeon_atombios_get_ppll_ss_info(rdev, &ss, dig->lcd_ss_id); } else { if (ASIC_IS_DCE4(rdev)) ss_enabled = radeon_atombios_get_asic_ss_info(rdev, &ss, ASIC_INTERNAL_SS_ON_DP, dp_clock); else { if (dp_clock == 16200) { ss_enabled = radeon_atombios_get_ppll_ss_info(rdev, &ss, ATOM_DP_SS_ID2); if (!ss_enabled) ss_enabled = radeon_atombios_get_ppll_ss_info(rdev, &ss, ATOM_DP_SS_ID1); } else ss_enabled = radeon_atombios_get_ppll_ss_info(rdev, &ss, ATOM_DP_SS_ID1); } } break; case ATOM_ENCODER_MODE_LVDS: if (ASIC_IS_DCE4(rdev)) ss_enabled = radeon_atombios_get_asic_ss_info(rdev, &ss, dig->lcd_ss_id, mode->clock / 10); else ss_enabled = radeon_atombios_get_ppll_ss_info(rdev, &ss, dig->lcd_ss_id); break; case ATOM_ENCODER_MODE_DVI: if (ASIC_IS_DCE4(rdev)) ss_enabled = radeon_atombios_get_asic_ss_info(rdev, &ss, ASIC_INTERNAL_SS_ON_TMDS, mode->clock / 10); break; case ATOM_ENCODER_MODE_HDMI: if (ASIC_IS_DCE4(rdev)) ss_enabled = radeon_atombios_get_asic_ss_info(rdev, &ss, ASIC_INTERNAL_SS_ON_HDMI, mode->clock / 10); break; default: break; } } /* adjust pixel clock as needed */ adjusted_clock = atombios_adjust_pll(crtc, mode, pll, ss_enabled, &ss); radeon_compute_pll(pll, adjusted_clock, &pll_clock, &fb_div, &frac_fb_div, &ref_div, &post_div); atombios_crtc_program_ss(crtc, ATOM_DISABLE, radeon_crtc->pll_id, &ss); atombios_crtc_program_pll(crtc, radeon_crtc->crtc_id, radeon_crtc->pll_id, encoder_mode, radeon_encoder->encoder_id, mode->clock, ref_div, fb_div, frac_fb_div, post_div); if (ss_enabled) { /* calculate ss amount and step size */ if (ASIC_IS_DCE4(rdev)) { u32 step_size; u32 amount = (((fb_div * 10) + frac_fb_div) * ss.percentage) / 10000; ss.amount = (amount / 10) & ATOM_PPLL_SS_AMOUNT_V2_FBDIV_MASK; ss.amount |= ((amount - (ss.amount * 10)) << ATOM_PPLL_SS_AMOUNT_V2_NFRAC_SHIFT) & ATOM_PPLL_SS_AMOUNT_V2_NFRAC_MASK; if (ss.type & ATOM_PPLL_SS_TYPE_V2_CENTRE_SPREAD) step_size = (4 * amount * ref_div * (ss.rate * 2048)) / (125 * 25 * pll->reference_freq / 100); else step_size = (2 * amount * ref_div * (ss.rate * 2048)) / (125 * 25 * pll->reference_freq / 100); ss.step = step_size; } atombios_crtc_program_ss(crtc, ATOM_ENABLE, radeon_crtc->pll_id, &ss); } } static int evergreen_crtc_do_set_base(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, int atomic) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_framebuffer *radeon_fb; struct drm_framebuffer *target_fb; struct drm_gem_object *obj; struct radeon_bo *rbo; uint64_t fb_location; uint32_t fb_format, fb_pitch_pixels, tiling_flags; int r; /* no fb bound */ if (!atomic && !crtc->fb) { DRM_DEBUG_KMS("No FB bound\n"); return 0; } if (atomic) { radeon_fb = to_radeon_framebuffer(fb); target_fb = fb; } else { radeon_fb = to_radeon_framebuffer(crtc->fb); target_fb = crtc->fb; } /* If atomic, assume fb object is pinned & idle & fenced and * just update base pointers */ obj = radeon_fb->obj; rbo = obj->driver_private; r = radeon_bo_reserve(rbo, false); if (unlikely(r != 0)) return r; if (atomic) fb_location = radeon_bo_gpu_offset(rbo); else { r = radeon_bo_pin(rbo, RADEON_GEM_DOMAIN_VRAM, &fb_location); if (unlikely(r != 0)) { radeon_bo_unreserve(rbo); return -EINVAL; } } radeon_bo_get_tiling_flags(rbo, &tiling_flags, NULL); radeon_bo_unreserve(rbo); switch (target_fb->bits_per_pixel) { case 8: fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_8BPP) | EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_INDEXED)); break; case 15: fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_16BPP) | EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB1555)); break; case 16: fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_16BPP) | EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB565)); break; case 24: case 32: fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_32BPP) | EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB8888)); break; default: DRM_ERROR("Unsupported screen depth %d\n", target_fb->bits_per_pixel); return -EINVAL; } if (tiling_flags & RADEON_TILING_MACRO) fb_format |= EVERGREEN_GRPH_ARRAY_MODE(EVERGREEN_GRPH_ARRAY_2D_TILED_THIN1); else if (tiling_flags & RADEON_TILING_MICRO) fb_format |= EVERGREEN_GRPH_ARRAY_MODE(EVERGREEN_GRPH_ARRAY_1D_TILED_THIN1); switch (radeon_crtc->crtc_id) { case 0: WREG32(AVIVO_D1VGA_CONTROL, 0); break; case 1: WREG32(AVIVO_D2VGA_CONTROL, 0); break; case 2: WREG32(EVERGREEN_D3VGA_CONTROL, 0); break; case 3: WREG32(EVERGREEN_D4VGA_CONTROL, 0); break; case 4: WREG32(EVERGREEN_D5VGA_CONTROL, 0); break; case 5: WREG32(EVERGREEN_D6VGA_CONTROL, 0); break; default: break; } WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH + radeon_crtc->crtc_offset, upper_32_bits(fb_location)); WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS_HIGH + radeon_crtc->crtc_offset, upper_32_bits(fb_location)); WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset, (u32)fb_location & EVERGREEN_GRPH_SURFACE_ADDRESS_MASK); WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset, (u32) fb_location & EVERGREEN_GRPH_SURFACE_ADDRESS_MASK); WREG32(EVERGREEN_GRPH_CONTROL + radeon_crtc->crtc_offset, fb_format); WREG32(EVERGREEN_GRPH_SURFACE_OFFSET_X + radeon_crtc->crtc_offset, 0); WREG32(EVERGREEN_GRPH_SURFACE_OFFSET_Y + radeon_crtc->crtc_offset, 0); WREG32(EVERGREEN_GRPH_X_START + radeon_crtc->crtc_offset, 0); WREG32(EVERGREEN_GRPH_Y_START + radeon_crtc->crtc_offset, 0); WREG32(EVERGREEN_GRPH_X_END + radeon_crtc->crtc_offset, target_fb->width); WREG32(EVERGREEN_GRPH_Y_END + radeon_crtc->crtc_offset, target_fb->height); fb_pitch_pixels = target_fb->pitch / (target_fb->bits_per_pixel / 8); WREG32(EVERGREEN_GRPH_PITCH + radeon_crtc->crtc_offset, fb_pitch_pixels); WREG32(EVERGREEN_GRPH_ENABLE + radeon_crtc->crtc_offset, 1); WREG32(EVERGREEN_DESKTOP_HEIGHT + radeon_crtc->crtc_offset, crtc->mode.vdisplay); x &= ~3; y &= ~1; WREG32(EVERGREEN_VIEWPORT_START + radeon_crtc->crtc_offset, (x << 16) | y); WREG32(EVERGREEN_VIEWPORT_SIZE + radeon_crtc->crtc_offset, (crtc->mode.hdisplay << 16) | crtc->mode.vdisplay); if (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) WREG32(EVERGREEN_DATA_FORMAT + radeon_crtc->crtc_offset, EVERGREEN_INTERLEAVE_EN); else WREG32(EVERGREEN_DATA_FORMAT + radeon_crtc->crtc_offset, 0); if (!atomic && fb && fb != crtc->fb) { radeon_fb = to_radeon_framebuffer(fb); rbo = radeon_fb->obj->driver_private; r = radeon_bo_reserve(rbo, false); if (unlikely(r != 0)) return r; radeon_bo_unpin(rbo); radeon_bo_unreserve(rbo); } /* Bytes per pixel may have changed */ radeon_bandwidth_update(rdev); return 0; } static int avivo_crtc_do_set_base(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, int atomic) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_framebuffer *radeon_fb; struct drm_gem_object *obj; struct radeon_bo *rbo; struct drm_framebuffer *target_fb; uint64_t fb_location; uint32_t fb_format, fb_pitch_pixels, tiling_flags; int r; /* no fb bound */ if (!atomic && !crtc->fb) { DRM_DEBUG_KMS("No FB bound\n"); return 0; } if (atomic) { radeon_fb = to_radeon_framebuffer(fb); target_fb = fb; } else { radeon_fb = to_radeon_framebuffer(crtc->fb); target_fb = crtc->fb; } obj = radeon_fb->obj; rbo = obj->driver_private; r = radeon_bo_reserve(rbo, false); if (unlikely(r != 0)) return r; /* If atomic, assume fb object is pinned & idle & fenced and * just update base pointers */ if (atomic) fb_location = radeon_bo_gpu_offset(rbo); else { r = radeon_bo_pin(rbo, RADEON_GEM_DOMAIN_VRAM, &fb_location); if (unlikely(r != 0)) { radeon_bo_unreserve(rbo); return -EINVAL; } } radeon_bo_get_tiling_flags(rbo, &tiling_flags, NULL); radeon_bo_unreserve(rbo); switch (target_fb->bits_per_pixel) { case 8: fb_format = AVIVO_D1GRPH_CONTROL_DEPTH_8BPP | AVIVO_D1GRPH_CONTROL_8BPP_INDEXED; break; case 15: fb_format = AVIVO_D1GRPH_CONTROL_DEPTH_16BPP | AVIVO_D1GRPH_CONTROL_16BPP_ARGB1555; break; case 16: fb_format = AVIVO_D1GRPH_CONTROL_DEPTH_16BPP | AVIVO_D1GRPH_CONTROL_16BPP_RGB565; break; case 24: case 32: fb_format = AVIVO_D1GRPH_CONTROL_DEPTH_32BPP | AVIVO_D1GRPH_CONTROL_32BPP_ARGB8888; break; default: DRM_ERROR("Unsupported screen depth %d\n", target_fb->bits_per_pixel); return -EINVAL; } if (rdev->family >= CHIP_R600) { if (tiling_flags & RADEON_TILING_MACRO) fb_format |= R600_D1GRPH_ARRAY_MODE_2D_TILED_THIN1; else if (tiling_flags & RADEON_TILING_MICRO) fb_format |= R600_D1GRPH_ARRAY_MODE_1D_TILED_THIN1; } else { if (tiling_flags & RADEON_TILING_MACRO) fb_format |= AVIVO_D1GRPH_MACRO_ADDRESS_MODE; if (tiling_flags & RADEON_TILING_MICRO) fb_format |= AVIVO_D1GRPH_TILED; } if (radeon_crtc->crtc_id == 0) WREG32(AVIVO_D1VGA_CONTROL, 0); else WREG32(AVIVO_D2VGA_CONTROL, 0); if (rdev->family >= CHIP_RV770) { if (radeon_crtc->crtc_id) { WREG32(R700_D2GRPH_PRIMARY_SURFACE_ADDRESS_HIGH, upper_32_bits(fb_location)); WREG32(R700_D2GRPH_SECONDARY_SURFACE_ADDRESS_HIGH, upper_32_bits(fb_location)); } else { WREG32(R700_D1GRPH_PRIMARY_SURFACE_ADDRESS_HIGH, upper_32_bits(fb_location)); WREG32(R700_D1GRPH_SECONDARY_SURFACE_ADDRESS_HIGH, upper_32_bits(fb_location)); } } WREG32(AVIVO_D1GRPH_PRIMARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset, (u32) fb_location); WREG32(AVIVO_D1GRPH_SECONDARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset, (u32) fb_location); WREG32(AVIVO_D1GRPH_CONTROL + radeon_crtc->crtc_offset, fb_format); WREG32(AVIVO_D1GRPH_SURFACE_OFFSET_X + radeon_crtc->crtc_offset, 0); WREG32(AVIVO_D1GRPH_SURFACE_OFFSET_Y + radeon_crtc->crtc_offset, 0); WREG32(AVIVO_D1GRPH_X_START + radeon_crtc->crtc_offset, 0); WREG32(AVIVO_D1GRPH_Y_START + radeon_crtc->crtc_offset, 0); WREG32(AVIVO_D1GRPH_X_END + radeon_crtc->crtc_offset, target_fb->width); WREG32(AVIVO_D1GRPH_Y_END + radeon_crtc->crtc_offset, target_fb->height); fb_pitch_pixels = target_fb->pitch / (target_fb->bits_per_pixel / 8); WREG32(AVIVO_D1GRPH_PITCH + radeon_crtc->crtc_offset, fb_pitch_pixels); WREG32(AVIVO_D1GRPH_ENABLE + radeon_crtc->crtc_offset, 1); WREG32(AVIVO_D1MODE_DESKTOP_HEIGHT + radeon_crtc->crtc_offset, crtc->mode.vdisplay); x &= ~3; y &= ~1; WREG32(AVIVO_D1MODE_VIEWPORT_START + radeon_crtc->crtc_offset, (x << 16) | y); WREG32(AVIVO_D1MODE_VIEWPORT_SIZE + radeon_crtc->crtc_offset, (crtc->mode.hdisplay << 16) | crtc->mode.vdisplay); if (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) WREG32(AVIVO_D1MODE_DATA_FORMAT + radeon_crtc->crtc_offset, AVIVO_D1MODE_INTERLEAVE_EN); else WREG32(AVIVO_D1MODE_DATA_FORMAT + radeon_crtc->crtc_offset, 0); if (!atomic && fb && fb != crtc->fb) { radeon_fb = to_radeon_framebuffer(fb); rbo = radeon_fb->obj->driver_private; r = radeon_bo_reserve(rbo, false); if (unlikely(r != 0)) return r; radeon_bo_unpin(rbo); radeon_bo_unreserve(rbo); } /* Bytes per pixel may have changed */ radeon_bandwidth_update(rdev); return 0; } int atombios_crtc_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; if (ASIC_IS_DCE4(rdev)) return evergreen_crtc_do_set_base(crtc, old_fb, x, y, 0); else if (ASIC_IS_AVIVO(rdev)) return avivo_crtc_do_set_base(crtc, old_fb, x, y, 0); else return radeon_crtc_do_set_base(crtc, old_fb, x, y, 0); } int atombios_crtc_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, int enter) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; if (ASIC_IS_DCE4(rdev)) return evergreen_crtc_do_set_base(crtc, fb, x, y, 1); else if (ASIC_IS_AVIVO(rdev)) return avivo_crtc_do_set_base(crtc, fb, x, y, 1); else return radeon_crtc_do_set_base(crtc, fb, x, y, 1); } /* properly set additional regs when using atombios */ static void radeon_legacy_atom_fixup(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); u32 disp_merge_cntl; switch (radeon_crtc->crtc_id) { case 0: disp_merge_cntl = RREG32(RADEON_DISP_MERGE_CNTL); disp_merge_cntl &= ~RADEON_DISP_RGB_OFFSET_EN; WREG32(RADEON_DISP_MERGE_CNTL, disp_merge_cntl); break; case 1: disp_merge_cntl = RREG32(RADEON_DISP2_MERGE_CNTL); disp_merge_cntl &= ~RADEON_DISP2_RGB_OFFSET_EN; WREG32(RADEON_DISP2_MERGE_CNTL, disp_merge_cntl); WREG32(RADEON_FP_H2_SYNC_STRT_WID, RREG32(RADEON_CRTC2_H_SYNC_STRT_WID)); WREG32(RADEON_FP_V2_SYNC_STRT_WID, RREG32(RADEON_CRTC2_V_SYNC_STRT_WID)); break; } } static int radeon_atom_pick_pll(struct drm_crtc *crtc) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct drm_encoder *test_encoder; struct drm_crtc *test_crtc; uint32_t pll_in_use = 0; if (ASIC_IS_DCE4(rdev)) { /* if crtc is driving DP and we have an ext clock, use that */ list_for_each_entry(test_encoder, &dev->mode_config.encoder_list, head) { if (test_encoder->crtc && (test_encoder->crtc == crtc)) { if (atombios_get_encoder_mode(test_encoder) == ATOM_ENCODER_MODE_DP) { if (rdev->clock.dp_extclk) return ATOM_PPLL_INVALID; } } } /* otherwise, pick one of the plls */ list_for_each_entry(test_crtc, &dev->mode_config.crtc_list, head) { struct radeon_crtc *radeon_test_crtc; if (crtc == test_crtc) continue; radeon_test_crtc = to_radeon_crtc(test_crtc); if ((radeon_test_crtc->pll_id >= ATOM_PPLL1) && (radeon_test_crtc->pll_id <= ATOM_PPLL2)) pll_in_use |= (1 << radeon_test_crtc->pll_id); } if (!(pll_in_use & 1)) return ATOM_PPLL1; return ATOM_PPLL2; } else return radeon_crtc->crtc_id; } int atombios_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode, int x, int y, struct drm_framebuffer *old_fb) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; struct drm_encoder *encoder; bool is_tvcv = false; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { /* find tv std */ if (encoder->crtc == crtc) { struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder); if (radeon_encoder->active_device & (ATOM_DEVICE_TV_SUPPORT | ATOM_DEVICE_CV_SUPPORT)) is_tvcv = true; } } /* always set DCPLL */ if (ASIC_IS_DCE4(rdev)) { struct radeon_atom_ss ss; bool ss_enabled = radeon_atombios_get_asic_ss_info(rdev, &ss, ASIC_INTERNAL_SS_ON_DCPLL, rdev->clock.default_dispclk); if (ss_enabled) atombios_crtc_program_ss(crtc, ATOM_DISABLE, ATOM_DCPLL, &ss); atombios_crtc_set_dcpll(crtc); if (ss_enabled) atombios_crtc_program_ss(crtc, ATOM_ENABLE, ATOM_DCPLL, &ss); } atombios_crtc_set_pll(crtc, adjusted_mode); if (ASIC_IS_DCE4(rdev)) atombios_set_crtc_dtd_timing(crtc, adjusted_mode); else if (ASIC_IS_AVIVO(rdev)) { if (is_tvcv) atombios_crtc_set_timing(crtc, adjusted_mode); else atombios_set_crtc_dtd_timing(crtc, adjusted_mode); } else { atombios_crtc_set_timing(crtc, adjusted_mode); if (radeon_crtc->crtc_id == 0) atombios_set_crtc_dtd_timing(crtc, adjusted_mode); radeon_legacy_atom_fixup(crtc); } atombios_crtc_set_base(crtc, x, y, old_fb); atombios_overscan_setup(crtc, mode, adjusted_mode); atombios_scaler_setup(crtc); return 0; } static bool atombios_crtc_mode_fixup(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = crtc->dev; struct radeon_device *rdev = dev->dev_private; /* adjust pm to upcoming mode change */ radeon_pm_compute_clocks(rdev); if (!radeon_crtc_scaling_mode_fixup(crtc, mode, adjusted_mode)) return false; return true; } static void atombios_crtc_prepare(struct drm_crtc *crtc) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); /* pick pll */ radeon_crtc->pll_id = radeon_atom_pick_pll(crtc); atombios_lock_crtc(crtc, ATOM_ENABLE); atombios_crtc_dpms(crtc, DRM_MODE_DPMS_OFF); } static void atombios_crtc_commit(struct drm_crtc *crtc) { atombios_crtc_dpms(crtc, DRM_MODE_DPMS_ON); atombios_lock_crtc(crtc, ATOM_DISABLE); } static void atombios_crtc_disable(struct drm_crtc *crtc) { struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc); atombios_crtc_dpms(crtc, DRM_MODE_DPMS_OFF); switch (radeon_crtc->pll_id) { case ATOM_PPLL1: case ATOM_PPLL2: /* disable the ppll */ atombios_crtc_program_pll(crtc, radeon_crtc->crtc_id, radeon_crtc->pll_id, 0, 0, ATOM_DISABLE, 0, 0, 0, 0); break; default: break; } radeon_crtc->pll_id = -1; } static const struct drm_crtc_helper_funcs atombios_helper_funcs = { .dpms = atombios_crtc_dpms, .mode_fixup = atombios_crtc_mode_fixup, .mode_set = atombios_crtc_mode_set, .mode_set_base = atombios_crtc_set_base, .mode_set_base_atomic = atombios_crtc_set_base_atomic, .prepare = atombios_crtc_prepare, .commit = atombios_crtc_commit, .load_lut = radeon_crtc_load_lut, .disable = atombios_crtc_disable, }; void radeon_atombios_init_crtc(struct drm_device *dev, struct radeon_crtc *radeon_crtc) { struct radeon_device *rdev = dev->dev_private; if (ASIC_IS_DCE4(rdev)) { switch (radeon_crtc->crtc_id) { case 0: default: radeon_crtc->crtc_offset = EVERGREEN_CRTC0_REGISTER_OFFSET; break; case 1: radeon_crtc->crtc_offset = EVERGREEN_CRTC1_REGISTER_OFFSET; break; case 2: radeon_crtc->crtc_offset = EVERGREEN_CRTC2_REGISTER_OFFSET; break; case 3: radeon_crtc->crtc_offset = EVERGREEN_CRTC3_REGISTER_OFFSET; break; case 4: radeon_crtc->crtc_offset = EVERGREEN_CRTC4_REGISTER_OFFSET; break; case 5: radeon_crtc->crtc_offset = EVERGREEN_CRTC5_REGISTER_OFFSET; break; } } else { if (radeon_crtc->crtc_id == 1) radeon_crtc->crtc_offset = AVIVO_D2CRTC_H_TOTAL - AVIVO_D1CRTC_H_TOTAL; else radeon_crtc->crtc_offset = 0; } radeon_crtc->pll_id = -1; drm_crtc_helper_add(&radeon_crtc->base, &atombios_helper_funcs); }