/* * Copyright 2012 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs * Roy Spliet */ #include "gt215.h" #include "pll.h" #include #include #include #include struct gt215_clk { struct nvkm_clk base; struct gt215_clk_info eng[nv_clk_src_max]; }; static u32 read_clk(struct gt215_clk *, int, bool); static u32 read_pll(struct gt215_clk *, int, u32); static u32 read_vco(struct gt215_clk *clk, int idx) { struct nvkm_device *device = clk->base.subdev.device; u32 sctl = nvkm_rd32(device, 0x4120 + (idx * 4)); switch (sctl & 0x00000030) { case 0x00000000: return device->crystal; case 0x00000020: return read_pll(clk, 0x41, 0x00e820); case 0x00000030: return read_pll(clk, 0x42, 0x00e8a0); default: return 0; } } static u32 read_clk(struct gt215_clk *clk, int idx, bool ignore_en) { struct nvkm_device *device = clk->base.subdev.device; u32 sctl, sdiv, sclk; /* refclk for the 0xe8xx plls is a fixed frequency */ if (idx >= 0x40) { if (device->chipset == 0xaf) { /* no joke.. seriously.. sigh.. */ return nvkm_rd32(device, 0x00471c) * 1000; } return device->crystal; } sctl = nvkm_rd32(device, 0x4120 + (idx * 4)); if (!ignore_en && !(sctl & 0x00000100)) return 0; /* out_alt */ if (sctl & 0x00000400) return 108000; /* vco_out */ switch (sctl & 0x00003000) { case 0x00000000: if (!(sctl & 0x00000200)) return device->crystal; return 0; case 0x00002000: if (sctl & 0x00000040) return 108000; return 100000; case 0x00003000: /* vco_enable */ if (!(sctl & 0x00000001)) return 0; sclk = read_vco(clk, idx); sdiv = ((sctl & 0x003f0000) >> 16) + 2; return (sclk * 2) / sdiv; default: return 0; } } static u32 read_pll(struct gt215_clk *clk, int idx, u32 pll) { struct nvkm_device *device = clk->base.subdev.device; u32 ctrl = nvkm_rd32(device, pll + 0); u32 sclk = 0, P = 1, N = 1, M = 1; if (!(ctrl & 0x00000008)) { if (ctrl & 0x00000001) { u32 coef = nvkm_rd32(device, pll + 4); M = (coef & 0x000000ff) >> 0; N = (coef & 0x0000ff00) >> 8; P = (coef & 0x003f0000) >> 16; /* no post-divider on these.. * XXX: it looks more like two post-"dividers" that * cross each other out in the default RPLL config */ if ((pll & 0x00ff00) == 0x00e800) P = 1; sclk = read_clk(clk, 0x00 + idx, false); } } else { sclk = read_clk(clk, 0x10 + idx, false); } if (M * P) return sclk * N / (M * P); return 0; } static int gt215_clk_read(struct nvkm_clk *obj, enum nv_clk_src src) { struct gt215_clk *clk = container_of(obj, typeof(*clk), base); struct nvkm_subdev *subdev = &clk->base.subdev; struct nvkm_device *device = subdev->device; u32 hsrc; switch (src) { case nv_clk_src_crystal: return device->crystal; case nv_clk_src_core: case nv_clk_src_core_intm: return read_pll(clk, 0x00, 0x4200); case nv_clk_src_shader: return read_pll(clk, 0x01, 0x4220); case nv_clk_src_mem: return read_pll(clk, 0x02, 0x4000); case nv_clk_src_disp: return read_clk(clk, 0x20, false); case nv_clk_src_vdec: return read_clk(clk, 0x21, false); case nv_clk_src_daemon: return read_clk(clk, 0x25, false); case nv_clk_src_host: hsrc = (nvkm_rd32(device, 0xc040) & 0x30000000) >> 28; switch (hsrc) { case 0: return read_clk(clk, 0x1d, false); case 2: case 3: return 277000; default: nvkm_error(subdev, "unknown HOST clock source %d\n", hsrc); return -EINVAL; } default: nvkm_error(subdev, "invalid clock source %d\n", src); return -EINVAL; } return 0; } int gt215_clk_info(struct nvkm_clk *obj, int idx, u32 khz, struct gt215_clk_info *info) { struct gt215_clk *clk = container_of(obj, typeof(*clk), base); u32 oclk, sclk, sdiv; s32 diff; info->clk = 0; switch (khz) { case 27000: info->clk = 0x00000100; return khz; case 100000: info->clk = 0x00002100; return khz; case 108000: info->clk = 0x00002140; return khz; default: sclk = read_vco(clk, idx); sdiv = min((sclk * 2) / khz, (u32)65); oclk = (sclk * 2) / sdiv; diff = ((khz + 3000) - oclk); /* When imprecise, play it safe and aim for a clock lower than * desired rather than higher */ if (diff < 0) { sdiv++; oclk = (sclk * 2) / sdiv; } /* divider can go as low as 2, limited here because NVIDIA * and the VBIOS on my NVA8 seem to prefer using the PLL * for 810MHz - is there a good reason? * XXX: PLLs with refclk 810MHz? */ if (sdiv > 4) { info->clk = (((sdiv - 2) << 16) | 0x00003100); return oclk; } break; } return -ERANGE; } int gt215_pll_info(struct nvkm_clk *clock, int idx, u32 pll, u32 khz, struct gt215_clk_info *info) { struct nvkm_bios *bios = nvkm_bios(clock); struct gt215_clk *clk = (void *)clock; struct nvbios_pll limits; int P, N, M, diff; int ret; info->pll = 0; /* If we can get a within [-2, 3) MHz of a divider, we'll disable the * PLL and use the divider instead. */ ret = gt215_clk_info(clock, idx, khz, info); diff = khz - ret; if (!pll || (diff >= -2000 && diff < 3000)) { goto out; } /* Try with PLL */ ret = nvbios_pll_parse(bios, pll, &limits); if (ret) return ret; ret = gt215_clk_info(clock, idx - 0x10, limits.refclk, info); if (ret != limits.refclk) return -EINVAL; ret = gt215_pll_calc(nv_subdev(clk), &limits, khz, &N, NULL, &M, &P); if (ret >= 0) { info->pll = (P << 16) | (N << 8) | M; } out: info->fb_delay = max(((khz + 7566) / 15133), (u32) 18); return ret ? ret : -ERANGE; } static int calc_clk(struct gt215_clk *clk, struct nvkm_cstate *cstate, int idx, u32 pll, int dom) { int ret = gt215_pll_info(&clk->base, idx, pll, cstate->domain[dom], &clk->eng[dom]); if (ret >= 0) return 0; return ret; } static int calc_host(struct gt215_clk *clk, struct nvkm_cstate *cstate) { int ret = 0; u32 kHz = cstate->domain[nv_clk_src_host]; struct gt215_clk_info *info = &clk->eng[nv_clk_src_host]; if (kHz == 277000) { info->clk = 0; info->host_out = NVA3_HOST_277; return 0; } info->host_out = NVA3_HOST_CLK; ret = gt215_clk_info(&clk->base, 0x1d, kHz, info); if (ret >= 0) return 0; return ret; } int gt215_clk_pre(struct nvkm_clk *clk, unsigned long *flags) { struct nvkm_device *device = clk->subdev.device; struct nvkm_fifo *fifo = device->fifo; /* halt and idle execution engines */ nvkm_mask(device, 0x020060, 0x00070000, 0x00000000); nvkm_mask(device, 0x002504, 0x00000001, 0x00000001); /* Wait until the interrupt handler is finished */ if (nvkm_msec(device, 2000, if (!nvkm_rd32(device, 0x000100)) break; ) < 0) return -EBUSY; if (fifo) fifo->pause(fifo, flags); if (nvkm_msec(device, 2000, if (nvkm_rd32(device, 0x002504) & 0x00000010) break; ) < 0) return -EIO; if (nvkm_msec(device, 2000, u32 tmp = nvkm_rd32(device, 0x002504) & 0x0000003f; if (tmp == 0x0000003f) break; ) < 0) return -EIO; return 0; } void gt215_clk_post(struct nvkm_clk *clk, unsigned long *flags) { struct nvkm_device *device = clk->subdev.device; struct nvkm_fifo *fifo = nvkm_fifo(clk); if (fifo && flags) fifo->start(fifo, flags); nvkm_mask(device, 0x002504, 0x00000001, 0x00000000); nvkm_mask(device, 0x020060, 0x00070000, 0x00040000); } static void disable_clk_src(struct gt215_clk *clk, u32 src) { struct nvkm_device *device = clk->base.subdev.device; nvkm_mask(device, src, 0x00000100, 0x00000000); nvkm_mask(device, src, 0x00000001, 0x00000000); } static void prog_pll(struct gt215_clk *clk, int idx, u32 pll, int dom) { struct gt215_clk_info *info = &clk->eng[dom]; struct nvkm_device *device = clk->base.subdev.device; const u32 src0 = 0x004120 + (idx * 4); const u32 src1 = 0x004160 + (idx * 4); const u32 ctrl = pll + 0; const u32 coef = pll + 4; u32 bypass; if (info->pll) { /* Always start from a non-PLL clock */ bypass = nvkm_rd32(device, ctrl) & 0x00000008; if (!bypass) { nvkm_mask(device, src1, 0x00000101, 0x00000101); nvkm_mask(device, ctrl, 0x00000008, 0x00000008); udelay(20); } nvkm_mask(device, src0, 0x003f3141, 0x00000101 | info->clk); nvkm_wr32(device, coef, info->pll); nvkm_mask(device, ctrl, 0x00000015, 0x00000015); nvkm_mask(device, ctrl, 0x00000010, 0x00000000); if (nvkm_msec(device, 2000, if (nvkm_rd32(device, ctrl) & 0x00020000) break; ) < 0) { nvkm_mask(device, ctrl, 0x00000010, 0x00000010); nvkm_mask(device, src0, 0x00000101, 0x00000000); return; } nvkm_mask(device, ctrl, 0x00000010, 0x00000010); nvkm_mask(device, ctrl, 0x00000008, 0x00000000); disable_clk_src(clk, src1); } else { nvkm_mask(device, src1, 0x003f3141, 0x00000101 | info->clk); nvkm_mask(device, ctrl, 0x00000018, 0x00000018); udelay(20); nvkm_mask(device, ctrl, 0x00000001, 0x00000000); disable_clk_src(clk, src0); } } static void prog_clk(struct gt215_clk *clk, int idx, int dom) { struct gt215_clk_info *info = &clk->eng[dom]; struct nvkm_device *device = clk->base.subdev.device; nvkm_mask(device, 0x004120 + (idx * 4), 0x003f3141, 0x00000101 | info->clk); } static void prog_host(struct gt215_clk *clk) { struct gt215_clk_info *info = &clk->eng[nv_clk_src_host]; struct nvkm_device *device = clk->base.subdev.device; u32 hsrc = (nvkm_rd32(device, 0xc040)); switch (info->host_out) { case NVA3_HOST_277: if ((hsrc & 0x30000000) == 0) { nvkm_wr32(device, 0xc040, hsrc | 0x20000000); disable_clk_src(clk, 0x4194); } break; case NVA3_HOST_CLK: prog_clk(clk, 0x1d, nv_clk_src_host); if ((hsrc & 0x30000000) >= 0x20000000) { nvkm_wr32(device, 0xc040, hsrc & ~0x30000000); } break; default: break; } /* This seems to be a clock gating factor on idle, always set to 64 */ nvkm_wr32(device, 0xc044, 0x3e); } static void prog_core(struct gt215_clk *clk, int dom) { struct gt215_clk_info *info = &clk->eng[dom]; struct nvkm_device *device = clk->base.subdev.device; u32 fb_delay = nvkm_rd32(device, 0x10002c); if (fb_delay < info->fb_delay) nvkm_wr32(device, 0x10002c, info->fb_delay); prog_pll(clk, 0x00, 0x004200, dom); if (fb_delay > info->fb_delay) nvkm_wr32(device, 0x10002c, info->fb_delay); } static int gt215_clk_calc(struct nvkm_clk *obj, struct nvkm_cstate *cstate) { struct gt215_clk *clk = container_of(obj, typeof(*clk), base); struct gt215_clk_info *core = &clk->eng[nv_clk_src_core]; int ret; if ((ret = calc_clk(clk, cstate, 0x10, 0x4200, nv_clk_src_core)) || (ret = calc_clk(clk, cstate, 0x11, 0x4220, nv_clk_src_shader)) || (ret = calc_clk(clk, cstate, 0x20, 0x0000, nv_clk_src_disp)) || (ret = calc_clk(clk, cstate, 0x21, 0x0000, nv_clk_src_vdec)) || (ret = calc_host(clk, cstate))) return ret; /* XXX: Should be reading the highest bit in the VBIOS clock to decide * whether to use a PLL or not... but using a PLL defeats the purpose */ if (core->pll) { ret = gt215_clk_info(&clk->base, 0x10, cstate->domain[nv_clk_src_core_intm], &clk->eng[nv_clk_src_core_intm]); if (ret < 0) return ret; } return 0; } static int gt215_clk_prog(struct nvkm_clk *obj) { struct gt215_clk *clk = container_of(obj, typeof(*clk), base); struct gt215_clk_info *core = &clk->eng[nv_clk_src_core]; int ret = 0; unsigned long flags; unsigned long *f = &flags; ret = gt215_clk_pre(&clk->base, f); if (ret) goto out; if (core->pll) prog_core(clk, nv_clk_src_core_intm); prog_core(clk, nv_clk_src_core); prog_pll(clk, 0x01, 0x004220, nv_clk_src_shader); prog_clk(clk, 0x20, nv_clk_src_disp); prog_clk(clk, 0x21, nv_clk_src_vdec); prog_host(clk); out: if (ret == -EBUSY) f = NULL; gt215_clk_post(&clk->base, f); return ret; } static void gt215_clk_tidy(struct nvkm_clk *obj) { } static struct nvkm_domain gt215_domain[] = { { nv_clk_src_crystal , 0xff }, { nv_clk_src_core , 0x00, 0, "core", 1000 }, { nv_clk_src_shader , 0x01, 0, "shader", 1000 }, { nv_clk_src_mem , 0x02, 0, "memory", 1000 }, { nv_clk_src_vdec , 0x03 }, { nv_clk_src_disp , 0x04 }, { nv_clk_src_host , 0x05 }, { nv_clk_src_core_intm, 0x06 }, { nv_clk_src_max } }; static int gt215_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, void *data, u32 size, struct nvkm_object **pobject) { struct gt215_clk *clk; int ret; ret = nvkm_clk_create(parent, engine, oclass, gt215_domain, NULL, 0, true, &clk); *pobject = nv_object(clk); if (ret) return ret; clk->base.read = gt215_clk_read; clk->base.calc = gt215_clk_calc; clk->base.prog = gt215_clk_prog; clk->base.tidy = gt215_clk_tidy; return 0; } struct nvkm_oclass gt215_clk_oclass = { .handle = NV_SUBDEV(CLK, 0xa3), .ofuncs = &(struct nvkm_ofuncs) { .ctor = gt215_clk_ctor, .dtor = _nvkm_clk_dtor, .init = _nvkm_clk_init, .fini = _nvkm_clk_fini, }, };