/* * Copyright © 2006-2007 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt */ #include #include #include #include #include #include #include #include #include #include "intel_drv.h" #include #include "i915_drv.h" #include "i915_trace.h" #include #include #include #include #include /* Primary plane formats supported by all gen */ #define COMMON_PRIMARY_FORMATS \ DRM_FORMAT_C8, \ DRM_FORMAT_RGB565, \ DRM_FORMAT_XRGB8888, \ DRM_FORMAT_ARGB8888 /* Primary plane formats for gen <= 3 */ static const uint32_t intel_primary_formats_gen2[] = { COMMON_PRIMARY_FORMATS, DRM_FORMAT_XRGB1555, DRM_FORMAT_ARGB1555, }; /* Primary plane formats for gen >= 4 */ static const uint32_t intel_primary_formats_gen4[] = { COMMON_PRIMARY_FORMATS, \ DRM_FORMAT_XBGR8888, DRM_FORMAT_ABGR8888, DRM_FORMAT_XRGB2101010, DRM_FORMAT_ARGB2101010, DRM_FORMAT_XBGR2101010, DRM_FORMAT_ABGR2101010, }; /* Cursor formats */ static const uint32_t intel_cursor_formats[] = { DRM_FORMAT_ARGB8888, }; #define DIV_ROUND_CLOSEST_ULL(ll, d) \ ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; }) static void intel_increase_pllclock(struct drm_device *dev, enum pipe pipe); static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on); static void i9xx_crtc_clock_get(struct intel_crtc *crtc, struct intel_crtc_config *pipe_config); static void ironlake_pch_clock_get(struct intel_crtc *crtc, struct intel_crtc_config *pipe_config); static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode, int x, int y, struct drm_framebuffer *old_fb); static int intel_framebuffer_init(struct drm_device *dev, struct intel_framebuffer *ifb, struct drm_mode_fb_cmd2 *mode_cmd, struct drm_i915_gem_object *obj); static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc); static void intel_set_pipe_timings(struct intel_crtc *intel_crtc); static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc, struct intel_link_m_n *m_n, struct intel_link_m_n *m2_n2); static void ironlake_set_pipeconf(struct drm_crtc *crtc); static void haswell_set_pipeconf(struct drm_crtc *crtc); static void intel_set_pipe_csc(struct drm_crtc *crtc); static void vlv_prepare_pll(struct intel_crtc *crtc); static void chv_prepare_pll(struct intel_crtc *crtc); static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe) { if (!connector->mst_port) return connector->encoder; else return &connector->mst_port->mst_encoders[pipe]->base; } typedef struct { int min, max; } intel_range_t; typedef struct { int dot_limit; int p2_slow, p2_fast; } intel_p2_t; typedef struct intel_limit intel_limit_t; struct intel_limit { intel_range_t dot, vco, n, m, m1, m2, p, p1; intel_p2_t p2; }; int intel_pch_rawclk(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; WARN_ON(!HAS_PCH_SPLIT(dev)); return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK; } static inline u32 /* units of 100MHz */ intel_fdi_link_freq(struct drm_device *dev) { if (IS_GEN5(dev)) { struct drm_i915_private *dev_priv = dev->dev_private; return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2; } else return 27; } static const intel_limit_t intel_limits_i8xx_dac = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 908000, .max = 1512000 }, .n = { .min = 2, .max = 16 }, .m = { .min = 96, .max = 140 }, .m1 = { .min = 18, .max = 26 }, .m2 = { .min = 6, .max = 16 }, .p = { .min = 4, .max = 128 }, .p1 = { .min = 2, .max = 33 }, .p2 = { .dot_limit = 165000, .p2_slow = 4, .p2_fast = 2 }, }; static const intel_limit_t intel_limits_i8xx_dvo = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 908000, .max = 1512000 }, .n = { .min = 2, .max = 16 }, .m = { .min = 96, .max = 140 }, .m1 = { .min = 18, .max = 26 }, .m2 = { .min = 6, .max = 16 }, .p = { .min = 4, .max = 128 }, .p1 = { .min = 2, .max = 33 }, .p2 = { .dot_limit = 165000, .p2_slow = 4, .p2_fast = 4 }, }; static const intel_limit_t intel_limits_i8xx_lvds = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 908000, .max = 1512000 }, .n = { .min = 2, .max = 16 }, .m = { .min = 96, .max = 140 }, .m1 = { .min = 18, .max = 26 }, .m2 = { .min = 6, .max = 16 }, .p = { .min = 4, .max = 128 }, .p1 = { .min = 1, .max = 6 }, .p2 = { .dot_limit = 165000, .p2_slow = 14, .p2_fast = 7 }, }; static const intel_limit_t intel_limits_i9xx_sdvo = { .dot = { .min = 20000, .max = 400000 }, .vco = { .min = 1400000, .max = 2800000 }, .n = { .min = 1, .max = 6 }, .m = { .min = 70, .max = 120 }, .m1 = { .min = 8, .max = 18 }, .m2 = { .min = 3, .max = 7 }, .p = { .min = 5, .max = 80 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 200000, .p2_slow = 10, .p2_fast = 5 }, }; static const intel_limit_t intel_limits_i9xx_lvds = { .dot = { .min = 20000, .max = 400000 }, .vco = { .min = 1400000, .max = 2800000 }, .n = { .min = 1, .max = 6 }, .m = { .min = 70, .max = 120 }, .m1 = { .min = 8, .max = 18 }, .m2 = { .min = 3, .max = 7 }, .p = { .min = 7, .max = 98 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 112000, .p2_slow = 14, .p2_fast = 7 }, }; static const intel_limit_t intel_limits_g4x_sdvo = { .dot = { .min = 25000, .max = 270000 }, .vco = { .min = 1750000, .max = 3500000}, .n = { .min = 1, .max = 4 }, .m = { .min = 104, .max = 138 }, .m1 = { .min = 17, .max = 23 }, .m2 = { .min = 5, .max = 11 }, .p = { .min = 10, .max = 30 }, .p1 = { .min = 1, .max = 3}, .p2 = { .dot_limit = 270000, .p2_slow = 10, .p2_fast = 10 }, }; static const intel_limit_t intel_limits_g4x_hdmi = { .dot = { .min = 22000, .max = 400000 }, .vco = { .min = 1750000, .max = 3500000}, .n = { .min = 1, .max = 4 }, .m = { .min = 104, .max = 138 }, .m1 = { .min = 16, .max = 23 }, .m2 = { .min = 5, .max = 11 }, .p = { .min = 5, .max = 80 }, .p1 = { .min = 1, .max = 8}, .p2 = { .dot_limit = 165000, .p2_slow = 10, .p2_fast = 5 }, }; static const intel_limit_t intel_limits_g4x_single_channel_lvds = { .dot = { .min = 20000, .max = 115000 }, .vco = { .min = 1750000, .max = 3500000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 104, .max = 138 }, .m1 = { .min = 17, .max = 23 }, .m2 = { .min = 5, .max = 11 }, .p = { .min = 28, .max = 112 }, .p1 = { .min = 2, .max = 8 }, .p2 = { .dot_limit = 0, .p2_slow = 14, .p2_fast = 14 }, }; static const intel_limit_t intel_limits_g4x_dual_channel_lvds = { .dot = { .min = 80000, .max = 224000 }, .vco = { .min = 1750000, .max = 3500000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 104, .max = 138 }, .m1 = { .min = 17, .max = 23 }, .m2 = { .min = 5, .max = 11 }, .p = { .min = 14, .max = 42 }, .p1 = { .min = 2, .max = 6 }, .p2 = { .dot_limit = 0, .p2_slow = 7, .p2_fast = 7 }, }; static const intel_limit_t intel_limits_pineview_sdvo = { .dot = { .min = 20000, .max = 400000}, .vco = { .min = 1700000, .max = 3500000 }, /* Pineview's Ncounter is a ring counter */ .n = { .min = 3, .max = 6 }, .m = { .min = 2, .max = 256 }, /* Pineview only has one combined m divider, which we treat as m2. */ .m1 = { .min = 0, .max = 0 }, .m2 = { .min = 0, .max = 254 }, .p = { .min = 5, .max = 80 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 200000, .p2_slow = 10, .p2_fast = 5 }, }; static const intel_limit_t intel_limits_pineview_lvds = { .dot = { .min = 20000, .max = 400000 }, .vco = { .min = 1700000, .max = 3500000 }, .n = { .min = 3, .max = 6 }, .m = { .min = 2, .max = 256 }, .m1 = { .min = 0, .max = 0 }, .m2 = { .min = 0, .max = 254 }, .p = { .min = 7, .max = 112 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 112000, .p2_slow = 14, .p2_fast = 14 }, }; /* Ironlake / Sandybridge * * We calculate clock using (register_value + 2) for N/M1/M2, so here * the range value for them is (actual_value - 2). */ static const intel_limit_t intel_limits_ironlake_dac = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 5 }, .m = { .min = 79, .max = 127 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 5, .max = 80 }, .p1 = { .min = 1, .max = 8 }, .p2 = { .dot_limit = 225000, .p2_slow = 10, .p2_fast = 5 }, }; static const intel_limit_t intel_limits_ironlake_single_lvds = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 79, .max = 118 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 28, .max = 112 }, .p1 = { .min = 2, .max = 8 }, .p2 = { .dot_limit = 225000, .p2_slow = 14, .p2_fast = 14 }, }; static const intel_limit_t intel_limits_ironlake_dual_lvds = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 79, .max = 127 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 14, .max = 56 }, .p1 = { .min = 2, .max = 8 }, .p2 = { .dot_limit = 225000, .p2_slow = 7, .p2_fast = 7 }, }; /* LVDS 100mhz refclk limits. */ static const intel_limit_t intel_limits_ironlake_single_lvds_100m = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 2 }, .m = { .min = 79, .max = 126 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 28, .max = 112 }, .p1 = { .min = 2, .max = 8 }, .p2 = { .dot_limit = 225000, .p2_slow = 14, .p2_fast = 14 }, }; static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = { .dot = { .min = 25000, .max = 350000 }, .vco = { .min = 1760000, .max = 3510000 }, .n = { .min = 1, .max = 3 }, .m = { .min = 79, .max = 126 }, .m1 = { .min = 12, .max = 22 }, .m2 = { .min = 5, .max = 9 }, .p = { .min = 14, .max = 42 }, .p1 = { .min = 2, .max = 6 }, .p2 = { .dot_limit = 225000, .p2_slow = 7, .p2_fast = 7 }, }; static const intel_limit_t intel_limits_vlv = { /* * These are the data rate limits (measured in fast clocks) * since those are the strictest limits we have. The fast * clock and actual rate limits are more relaxed, so checking * them would make no difference. */ .dot = { .min = 25000 * 5, .max = 270000 * 5 }, .vco = { .min = 4000000, .max = 6000000 }, .n = { .min = 1, .max = 7 }, .m1 = { .min = 2, .max = 3 }, .m2 = { .min = 11, .max = 156 }, .p1 = { .min = 2, .max = 3 }, .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */ }; static const intel_limit_t intel_limits_chv = { /* * These are the data rate limits (measured in fast clocks) * since those are the strictest limits we have. The fast * clock and actual rate limits are more relaxed, so checking * them would make no difference. */ .dot = { .min = 25000 * 5, .max = 540000 * 5}, .vco = { .min = 4860000, .max = 6700000 }, .n = { .min = 1, .max = 1 }, .m1 = { .min = 2, .max = 2 }, .m2 = { .min = 24 << 22, .max = 175 << 22 }, .p1 = { .min = 2, .max = 4 }, .p2 = { .p2_slow = 1, .p2_fast = 14 }, }; static void vlv_clock(int refclk, intel_clock_t *clock) { clock->m = clock->m1 * clock->m2; clock->p = clock->p1 * clock->p2; if (WARN_ON(clock->n == 0 || clock->p == 0)) return; clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); } /** * Returns whether any output on the specified pipe is of the specified type */ static bool intel_pipe_has_type(struct drm_crtc *crtc, int type) { struct drm_device *dev = crtc->dev; struct intel_encoder *encoder; for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->type == type) return true; return false; } static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc, int refclk) { struct drm_device *dev = crtc->dev; const intel_limit_t *limit; if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { if (intel_is_dual_link_lvds(dev)) { if (refclk == 100000) limit = &intel_limits_ironlake_dual_lvds_100m; else limit = &intel_limits_ironlake_dual_lvds; } else { if (refclk == 100000) limit = &intel_limits_ironlake_single_lvds_100m; else limit = &intel_limits_ironlake_single_lvds; } } else limit = &intel_limits_ironlake_dac; return limit; } static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; const intel_limit_t *limit; if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { if (intel_is_dual_link_lvds(dev)) limit = &intel_limits_g4x_dual_channel_lvds; else limit = &intel_limits_g4x_single_channel_lvds; } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) || intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) { limit = &intel_limits_g4x_hdmi; } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) { limit = &intel_limits_g4x_sdvo; } else /* The option is for other outputs */ limit = &intel_limits_i9xx_sdvo; return limit; } static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk) { struct drm_device *dev = crtc->dev; const intel_limit_t *limit; if (HAS_PCH_SPLIT(dev)) limit = intel_ironlake_limit(crtc, refclk); else if (IS_G4X(dev)) { limit = intel_g4x_limit(crtc); } else if (IS_PINEVIEW(dev)) { if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) limit = &intel_limits_pineview_lvds; else limit = &intel_limits_pineview_sdvo; } else if (IS_CHERRYVIEW(dev)) { limit = &intel_limits_chv; } else if (IS_VALLEYVIEW(dev)) { limit = &intel_limits_vlv; } else if (!IS_GEN2(dev)) { if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) limit = &intel_limits_i9xx_lvds; else limit = &intel_limits_i9xx_sdvo; } else { if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) limit = &intel_limits_i8xx_lvds; else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO)) limit = &intel_limits_i8xx_dvo; else limit = &intel_limits_i8xx_dac; } return limit; } /* m1 is reserved as 0 in Pineview, n is a ring counter */ static void pineview_clock(int refclk, intel_clock_t *clock) { clock->m = clock->m2 + 2; clock->p = clock->p1 * clock->p2; if (WARN_ON(clock->n == 0 || clock->p == 0)) return; clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n); clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); } static uint32_t i9xx_dpll_compute_m(struct dpll *dpll) { return 5 * (dpll->m1 + 2) + (dpll->m2 + 2); } static void i9xx_clock(int refclk, intel_clock_t *clock) { clock->m = i9xx_dpll_compute_m(clock); clock->p = clock->p1 * clock->p2; if (WARN_ON(clock->n + 2 == 0 || clock->p == 0)) return; clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2); clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); } static void chv_clock(int refclk, intel_clock_t *clock) { clock->m = clock->m1 * clock->m2; clock->p = clock->p1 * clock->p2; if (WARN_ON(clock->n == 0 || clock->p == 0)) return; clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m, clock->n << 22); clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p); } #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0) /** * Returns whether the given set of divisors are valid for a given refclk with * the given connectors. */ static bool intel_PLL_is_valid(struct drm_device *dev, const intel_limit_t *limit, const intel_clock_t *clock) { if (clock->n < limit->n.min || limit->n.max < clock->n) INTELPllInvalid("n out of range\n"); if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1) INTELPllInvalid("p1 out of range\n"); if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2) INTELPllInvalid("m2 out of range\n"); if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1) INTELPllInvalid("m1 out of range\n"); if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev)) if (clock->m1 <= clock->m2) INTELPllInvalid("m1 <= m2\n"); if (!IS_VALLEYVIEW(dev)) { if (clock->p < limit->p.min || limit->p.max < clock->p) INTELPllInvalid("p out of range\n"); if (clock->m < limit->m.min || limit->m.max < clock->m) INTELPllInvalid("m out of range\n"); } if (clock->vco < limit->vco.min || limit->vco.max < clock->vco) INTELPllInvalid("vco out of range\n"); /* XXX: We may need to be checking "Dot clock" depending on the multiplier, * connector, etc., rather than just a single range. */ if (clock->dot < limit->dot.min || limit->dot.max < clock->dot) INTELPllInvalid("dot out of range\n"); return true; } static bool i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock) { struct drm_device *dev = crtc->dev; intel_clock_t clock; int err = target; if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { /* * For LVDS just rely on its current settings for dual-channel. * We haven't figured out how to reliably set up different * single/dual channel state, if we even can. */ if (intel_is_dual_link_lvds(dev)) clock.p2 = limit->p2.p2_fast; else clock.p2 = limit->p2.p2_slow; } else { if (target < limit->p2.dot_limit) clock.p2 = limit->p2.p2_slow; else clock.p2 = limit->p2.p2_fast; } memset(best_clock, 0, sizeof(*best_clock)); for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) { if (clock.m2 >= clock.m1) break; for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) { for (clock.p1 = limit->p1.min; clock.p1 <= limit->p1.max; clock.p1++) { int this_err; i9xx_clock(refclk, &clock); if (!intel_PLL_is_valid(dev, limit, &clock)) continue; if (match_clock && clock.p != match_clock->p) continue; this_err = abs(clock.dot - target); if (this_err < err) { *best_clock = clock; err = this_err; } } } } } return (err != target); } static bool pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock) { struct drm_device *dev = crtc->dev; intel_clock_t clock; int err = target; if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { /* * For LVDS just rely on its current settings for dual-channel. * We haven't figured out how to reliably set up different * single/dual channel state, if we even can. */ if (intel_is_dual_link_lvds(dev)) clock.p2 = limit->p2.p2_fast; else clock.p2 = limit->p2.p2_slow; } else { if (target < limit->p2.dot_limit) clock.p2 = limit->p2.p2_slow; else clock.p2 = limit->p2.p2_fast; } memset(best_clock, 0, sizeof(*best_clock)); for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) { for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) { for (clock.p1 = limit->p1.min; clock.p1 <= limit->p1.max; clock.p1++) { int this_err; pineview_clock(refclk, &clock); if (!intel_PLL_is_valid(dev, limit, &clock)) continue; if (match_clock && clock.p != match_clock->p) continue; this_err = abs(clock.dot - target); if (this_err < err) { *best_clock = clock; err = this_err; } } } } } return (err != target); } static bool g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock) { struct drm_device *dev = crtc->dev; intel_clock_t clock; int max_n; bool found; /* approximately equals target * 0.00585 */ int err_most = (target >> 8) + (target >> 9); found = false; if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) { if (intel_is_dual_link_lvds(dev)) clock.p2 = limit->p2.p2_fast; else clock.p2 = limit->p2.p2_slow; } else { if (target < limit->p2.dot_limit) clock.p2 = limit->p2.p2_slow; else clock.p2 = limit->p2.p2_fast; } memset(best_clock, 0, sizeof(*best_clock)); max_n = limit->n.max; /* based on hardware requirement, prefer smaller n to precision */ for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { /* based on hardware requirement, prefere larger m1,m2 */ for (clock.m1 = limit->m1.max; clock.m1 >= limit->m1.min; clock.m1--) { for (clock.m2 = limit->m2.max; clock.m2 >= limit->m2.min; clock.m2--) { for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { int this_err; i9xx_clock(refclk, &clock); if (!intel_PLL_is_valid(dev, limit, &clock)) continue; this_err = abs(clock.dot - target); if (this_err < err_most) { *best_clock = clock; err_most = this_err; max_n = clock.n; found = true; } } } } } return found; } static bool vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock) { struct drm_device *dev = crtc->dev; intel_clock_t clock; unsigned int bestppm = 1000000; /* min update 19.2 MHz */ int max_n = min(limit->n.max, refclk / 19200); bool found = false; target *= 5; /* fast clock */ memset(best_clock, 0, sizeof(*best_clock)); /* based on hardware requirement, prefer smaller n to precision */ for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) { for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; clock.p2 -= clock.p2 > 10 ? 2 : 1) { clock.p = clock.p1 * clock.p2; /* based on hardware requirement, prefer bigger m1,m2 values */ for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) { unsigned int ppm, diff; clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n, refclk * clock.m1); vlv_clock(refclk, &clock); if (!intel_PLL_is_valid(dev, limit, &clock)) continue; diff = abs(clock.dot - target); ppm = div_u64(1000000ULL * diff, target); if (ppm < 100 && clock.p > best_clock->p) { bestppm = 0; *best_clock = clock; found = true; } if (bestppm >= 10 && ppm < bestppm - 10) { bestppm = ppm; *best_clock = clock; found = true; } } } } } return found; } static bool chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc, int target, int refclk, intel_clock_t *match_clock, intel_clock_t *best_clock) { struct drm_device *dev = crtc->dev; intel_clock_t clock; uint64_t m2; int found = false; memset(best_clock, 0, sizeof(*best_clock)); /* * Based on hardware doc, the n always set to 1, and m1 always * set to 2. If requires to support 200Mhz refclk, we need to * revisit this because n may not 1 anymore. */ clock.n = 1, clock.m1 = 2; target *= 5; /* fast clock */ for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) { for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow; clock.p2 -= clock.p2 > 10 ? 2 : 1) { clock.p = clock.p1 * clock.p2; m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p * clock.n) << 22, refclk * clock.m1); if (m2 > INT_MAX/clock.m1) continue; clock.m2 = m2; chv_clock(refclk, &clock); if (!intel_PLL_is_valid(dev, limit, &clock)) continue; /* based on hardware requirement, prefer bigger p */ if (clock.p > best_clock->p) { *best_clock = clock; found = true; } } } return found; } bool intel_crtc_active(struct drm_crtc *crtc) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); /* Be paranoid as we can arrive here with only partial * state retrieved from the hardware during setup. * * We can ditch the adjusted_mode.crtc_clock check as soon * as Haswell has gained clock readout/fastboot support. * * We can ditch the crtc->primary->fb check as soon as we can * properly reconstruct framebuffers. */ return intel_crtc->active && crtc->primary->fb && intel_crtc->config.adjusted_mode.crtc_clock; } enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv, enum pipe pipe) { struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); return intel_crtc->config.cpu_transcoder; } static void g4x_wait_for_vblank(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe); frame = I915_READ(frame_reg); if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50)) WARN(1, "vblank wait timed out\n"); } /** * intel_wait_for_vblank - wait for vblank on a given pipe * @dev: drm device * @pipe: pipe to wait for * * Wait for vblank to occur on a given pipe. Needed for various bits of * mode setting code. */ void intel_wait_for_vblank(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; int pipestat_reg = PIPESTAT(pipe); if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) { g4x_wait_for_vblank(dev, pipe); return; } /* Clear existing vblank status. Note this will clear any other * sticky status fields as well. * * This races with i915_driver_irq_handler() with the result * that either function could miss a vblank event. Here it is not * fatal, as we will either wait upon the next vblank interrupt or * timeout. Generally speaking intel_wait_for_vblank() is only * called during modeset at which time the GPU should be idle and * should *not* be performing page flips and thus not waiting on * vblanks... * Currently, the result of us stealing a vblank from the irq * handler is that a single frame will be skipped during swapbuffers. */ I915_WRITE(pipestat_reg, I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS); /* Wait for vblank interrupt bit to set */ if (wait_for(I915_READ(pipestat_reg) & PIPE_VBLANK_INTERRUPT_STATUS, 50)) DRM_DEBUG_KMS("vblank wait timed out\n"); } static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe) { struct drm_i915_private *dev_priv = dev->dev_private; u32 reg = PIPEDSL(pipe); u32 line1, line2; u32 line_mask; if (IS_GEN2(dev)) line_mask = DSL_LINEMASK_GEN2; else line_mask = DSL_LINEMASK_GEN3; line1 = I915_READ(reg) & line_mask; mdelay(5); line2 = I915_READ(reg) & line_mask; return line1 == line2; } /* * intel_wait_for_pipe_off - wait for pipe to turn off * @dev: drm device * @pipe: pipe to wait for * * After disabling a pipe, we can't wait for vblank in the usual way, * spinning on the vblank interrupt status bit, since we won't actually * see an interrupt when the pipe is disabled. * * On Gen4 and above: * wait for the pipe register state bit to turn off * * Otherwise: * wait for the display line value to settle (it usually * ends up stopping at the start of the next frame). * */ void intel_wait_for_pipe_off(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, pipe); if (INTEL_INFO(dev)->gen >= 4) { int reg = PIPECONF(cpu_transcoder); /* Wait for the Pipe State to go off */ if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, 100)) WARN(1, "pipe_off wait timed out\n"); } else { /* Wait for the display line to settle */ if (wait_for(pipe_dsl_stopped(dev, pipe), 100)) WARN(1, "pipe_off wait timed out\n"); } } /* * ibx_digital_port_connected - is the specified port connected? * @dev_priv: i915 private structure * @port: the port to test * * Returns true if @port is connected, false otherwise. */ bool ibx_digital_port_connected(struct drm_i915_private *dev_priv, struct intel_digital_port *port) { u32 bit; if (HAS_PCH_IBX(dev_priv->dev)) { switch (port->port) { case PORT_B: bit = SDE_PORTB_HOTPLUG; break; case PORT_C: bit = SDE_PORTC_HOTPLUG; break; case PORT_D: bit = SDE_PORTD_HOTPLUG; break; default: return true; } } else { switch (port->port) { case PORT_B: bit = SDE_PORTB_HOTPLUG_CPT; break; case PORT_C: bit = SDE_PORTC_HOTPLUG_CPT; break; case PORT_D: bit = SDE_PORTD_HOTPLUG_CPT; break; default: return true; } } return I915_READ(SDEISR) & bit; } static const char *state_string(bool enabled) { return enabled ? "on" : "off"; } /* Only for pre-ILK configs */ void assert_pll(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { int reg; u32 val; bool cur_state; reg = DPLL(pipe); val = I915_READ(reg); cur_state = !!(val & DPLL_VCO_ENABLE); WARN(cur_state != state, "PLL state assertion failure (expected %s, current %s)\n", state_string(state), state_string(cur_state)); } /* XXX: the dsi pll is shared between MIPI DSI ports */ static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state) { u32 val; bool cur_state; mutex_lock(&dev_priv->dpio_lock); val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL); mutex_unlock(&dev_priv->dpio_lock); cur_state = val & DSI_PLL_VCO_EN; WARN(cur_state != state, "DSI PLL state assertion failure (expected %s, current %s)\n", state_string(state), state_string(cur_state)); } #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true) #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false) struct intel_shared_dpll * intel_crtc_to_shared_dpll(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; if (crtc->config.shared_dpll < 0) return NULL; return &dev_priv->shared_dplls[crtc->config.shared_dpll]; } /* For ILK+ */ void assert_shared_dpll(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, bool state) { bool cur_state; struct intel_dpll_hw_state hw_state; if (WARN (!pll, "asserting DPLL %s with no DPLL\n", state_string(state))) return; cur_state = pll->get_hw_state(dev_priv, pll, &hw_state); WARN(cur_state != state, "%s assertion failure (expected %s, current %s)\n", pll->name, state_string(state), state_string(cur_state)); } static void assert_fdi_tx(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { int reg; u32 val; bool cur_state; enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, pipe); if (HAS_DDI(dev_priv->dev)) { /* DDI does not have a specific FDI_TX register */ reg = TRANS_DDI_FUNC_CTL(cpu_transcoder); val = I915_READ(reg); cur_state = !!(val & TRANS_DDI_FUNC_ENABLE); } else { reg = FDI_TX_CTL(pipe); val = I915_READ(reg); cur_state = !!(val & FDI_TX_ENABLE); } WARN(cur_state != state, "FDI TX state assertion failure (expected %s, current %s)\n", state_string(state), state_string(cur_state)); } #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true) #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false) static void assert_fdi_rx(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { int reg; u32 val; bool cur_state; reg = FDI_RX_CTL(pipe); val = I915_READ(reg); cur_state = !!(val & FDI_RX_ENABLE); WARN(cur_state != state, "FDI RX state assertion failure (expected %s, current %s)\n", state_string(state), state_string(cur_state)); } #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true) #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false) static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv, enum pipe pipe) { int reg; u32 val; /* ILK FDI PLL is always enabled */ if (INTEL_INFO(dev_priv->dev)->gen == 5) return; /* On Haswell, DDI ports are responsible for the FDI PLL setup */ if (HAS_DDI(dev_priv->dev)) return; reg = FDI_TX_CTL(pipe); val = I915_READ(reg); WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n"); } void assert_fdi_rx_pll(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { int reg; u32 val; bool cur_state; reg = FDI_RX_CTL(pipe); val = I915_READ(reg); cur_state = !!(val & FDI_RX_PLL_ENABLE); WARN(cur_state != state, "FDI RX PLL assertion failure (expected %s, current %s)\n", state_string(state), state_string(cur_state)); } static void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe) { int pp_reg, lvds_reg; u32 val; enum pipe panel_pipe = PIPE_A; bool locked = true; if (HAS_PCH_SPLIT(dev_priv->dev)) { pp_reg = PCH_PP_CONTROL; lvds_reg = PCH_LVDS; } else { pp_reg = PP_CONTROL; lvds_reg = LVDS; } val = I915_READ(pp_reg); if (!(val & PANEL_POWER_ON) || ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS)) locked = false; if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT) panel_pipe = PIPE_B; WARN(panel_pipe == pipe && locked, "panel assertion failure, pipe %c regs locked\n", pipe_name(pipe)); } static void assert_cursor(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { struct drm_device *dev = dev_priv->dev; bool cur_state; if (IS_845G(dev) || IS_I865G(dev)) cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE; else cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE; WARN(cur_state != state, "cursor on pipe %c assertion failure (expected %s, current %s)\n", pipe_name(pipe), state_string(state), state_string(cur_state)); } #define assert_cursor_enabled(d, p) assert_cursor(d, p, true) #define assert_cursor_disabled(d, p) assert_cursor(d, p, false) void assert_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, bool state) { int reg; u32 val; bool cur_state; enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, pipe); /* if we need the pipe A quirk it must be always on */ if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) state = true; if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_TRANSCODER(cpu_transcoder))) { cur_state = false; } else { reg = PIPECONF(cpu_transcoder); val = I915_READ(reg); cur_state = !!(val & PIPECONF_ENABLE); } WARN(cur_state != state, "pipe %c assertion failure (expected %s, current %s)\n", pipe_name(pipe), state_string(state), state_string(cur_state)); } static void assert_plane(struct drm_i915_private *dev_priv, enum plane plane, bool state) { int reg; u32 val; bool cur_state; reg = DSPCNTR(plane); val = I915_READ(reg); cur_state = !!(val & DISPLAY_PLANE_ENABLE); WARN(cur_state != state, "plane %c assertion failure (expected %s, current %s)\n", plane_name(plane), state_string(state), state_string(cur_state)); } #define assert_plane_enabled(d, p) assert_plane(d, p, true) #define assert_plane_disabled(d, p) assert_plane(d, p, false) static void assert_planes_disabled(struct drm_i915_private *dev_priv, enum pipe pipe) { struct drm_device *dev = dev_priv->dev; int reg, i; u32 val; int cur_pipe; /* Primary planes are fixed to pipes on gen4+ */ if (INTEL_INFO(dev)->gen >= 4) { reg = DSPCNTR(pipe); val = I915_READ(reg); WARN(val & DISPLAY_PLANE_ENABLE, "plane %c assertion failure, should be disabled but not\n", plane_name(pipe)); return; } /* Need to check both planes against the pipe */ for_each_pipe(i) { reg = DSPCNTR(i); val = I915_READ(reg); cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >> DISPPLANE_SEL_PIPE_SHIFT; WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe, "plane %c assertion failure, should be off on pipe %c but is still active\n", plane_name(i), pipe_name(pipe)); } } static void assert_sprites_disabled(struct drm_i915_private *dev_priv, enum pipe pipe) { struct drm_device *dev = dev_priv->dev; int reg, sprite; u32 val; if (IS_VALLEYVIEW(dev)) { for_each_sprite(pipe, sprite) { reg = SPCNTR(pipe, sprite); val = I915_READ(reg); WARN(val & SP_ENABLE, "sprite %c assertion failure, should be off on pipe %c but is still active\n", sprite_name(pipe, sprite), pipe_name(pipe)); } } else if (INTEL_INFO(dev)->gen >= 7) { reg = SPRCTL(pipe); val = I915_READ(reg); WARN(val & SPRITE_ENABLE, "sprite %c assertion failure, should be off on pipe %c but is still active\n", plane_name(pipe), pipe_name(pipe)); } else if (INTEL_INFO(dev)->gen >= 5) { reg = DVSCNTR(pipe); val = I915_READ(reg); WARN(val & DVS_ENABLE, "sprite %c assertion failure, should be off on pipe %c but is still active\n", plane_name(pipe), pipe_name(pipe)); } } static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv) { u32 val; bool enabled; WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev))); val = I915_READ(PCH_DREF_CONTROL); enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK | DREF_SUPERSPREAD_SOURCE_MASK)); WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n"); } static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv, enum pipe pipe) { int reg; u32 val; bool enabled; reg = PCH_TRANSCONF(pipe); val = I915_READ(reg); enabled = !!(val & TRANS_ENABLE); WARN(enabled, "transcoder assertion failed, should be off on pipe %c but is still active\n", pipe_name(pipe)); } static bool dp_pipe_enabled(struct drm_i915_private *dev_priv, enum pipe pipe, u32 port_sel, u32 val) { if ((val & DP_PORT_EN) == 0) return false; if (HAS_PCH_CPT(dev_priv->dev)) { u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe); u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg); if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel) return false; } else if (IS_CHERRYVIEW(dev_priv->dev)) { if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe)) return false; } else { if ((val & DP_PIPE_MASK) != (pipe << 30)) return false; } return true; } static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv, enum pipe pipe, u32 val) { if ((val & SDVO_ENABLE) == 0) return false; if (HAS_PCH_CPT(dev_priv->dev)) { if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe)) return false; } else if (IS_CHERRYVIEW(dev_priv->dev)) { if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe)) return false; } else { if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe)) return false; } return true; } static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv, enum pipe pipe, u32 val) { if ((val & LVDS_PORT_EN) == 0) return false; if (HAS_PCH_CPT(dev_priv->dev)) { if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) return false; } else { if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe)) return false; } return true; } static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv, enum pipe pipe, u32 val) { if ((val & ADPA_DAC_ENABLE) == 0) return false; if (HAS_PCH_CPT(dev_priv->dev)) { if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe)) return false; } else { if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe)) return false; } return true; } static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 port_sel) { u32 val = I915_READ(reg); WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val), "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n", reg, pipe_name(pipe)); WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0 && (val & DP_PIPEB_SELECT), "IBX PCH dp port still using transcoder B\n"); } static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv, enum pipe pipe, int reg) { u32 val = I915_READ(reg); WARN(hdmi_pipe_enabled(dev_priv, pipe, val), "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n", reg, pipe_name(pipe)); WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0 && (val & SDVO_PIPE_B_SELECT), "IBX PCH hdmi port still using transcoder B\n"); } static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv, enum pipe pipe) { int reg; u32 val; assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B); assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C); assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D); reg = PCH_ADPA; val = I915_READ(reg); WARN(adpa_pipe_enabled(dev_priv, pipe, val), "PCH VGA enabled on transcoder %c, should be disabled\n", pipe_name(pipe)); reg = PCH_LVDS; val = I915_READ(reg); WARN(lvds_pipe_enabled(dev_priv, pipe, val), "PCH LVDS enabled on transcoder %c, should be disabled\n", pipe_name(pipe)); assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB); assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC); assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID); } static void intel_init_dpio(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (!IS_VALLEYVIEW(dev)) return; /* * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C), * CHV x1 PHY (DP/HDMI D) * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C) */ if (IS_CHERRYVIEW(dev)) { DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2; DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO; } else { DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO; } } static void vlv_enable_pll(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int reg = DPLL(crtc->pipe); u32 dpll = crtc->config.dpll_hw_state.dpll; assert_pipe_disabled(dev_priv, crtc->pipe); /* No really, not for ILK+ */ BUG_ON(!IS_VALLEYVIEW(dev_priv->dev)); /* PLL is protected by panel, make sure we can write it */ if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev)) assert_panel_unlocked(dev_priv, crtc->pipe); I915_WRITE(reg, dpll); POSTING_READ(reg); udelay(150); if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1)) DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe); I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md); POSTING_READ(DPLL_MD(crtc->pipe)); /* We do this three times for luck */ I915_WRITE(reg, dpll); POSTING_READ(reg); udelay(150); /* wait for warmup */ I915_WRITE(reg, dpll); POSTING_READ(reg); udelay(150); /* wait for warmup */ I915_WRITE(reg, dpll); POSTING_READ(reg); udelay(150); /* wait for warmup */ } static void chv_enable_pll(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = crtc->pipe; enum dpio_channel port = vlv_pipe_to_channel(pipe); u32 tmp; assert_pipe_disabled(dev_priv, crtc->pipe); BUG_ON(!IS_CHERRYVIEW(dev_priv->dev)); mutex_lock(&dev_priv->dpio_lock); /* Enable back the 10bit clock to display controller */ tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); tmp |= DPIO_DCLKP_EN; vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp); /* * Need to wait > 100ns between dclkp clock enable bit and PLL enable. */ udelay(1); /* Enable PLL */ I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll); /* Check PLL is locked */ if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1)) DRM_ERROR("PLL %d failed to lock\n", pipe); /* not sure when this should be written */ I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md); POSTING_READ(DPLL_MD(pipe)); mutex_unlock(&dev_priv->dpio_lock); } static void i9xx_enable_pll(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int reg = DPLL(crtc->pipe); u32 dpll = crtc->config.dpll_hw_state.dpll; assert_pipe_disabled(dev_priv, crtc->pipe); /* No really, not for ILK+ */ BUG_ON(INTEL_INFO(dev)->gen >= 5); /* PLL is protected by panel, make sure we can write it */ if (IS_MOBILE(dev) && !IS_I830(dev)) assert_panel_unlocked(dev_priv, crtc->pipe); I915_WRITE(reg, dpll); /* Wait for the clocks to stabilize. */ POSTING_READ(reg); udelay(150); if (INTEL_INFO(dev)->gen >= 4) { I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md); } else { /* The pixel multiplier can only be updated once the * DPLL is enabled and the clocks are stable. * * So write it again. */ I915_WRITE(reg, dpll); } /* We do this three times for luck */ I915_WRITE(reg, dpll); POSTING_READ(reg); udelay(150); /* wait for warmup */ I915_WRITE(reg, dpll); POSTING_READ(reg); udelay(150); /* wait for warmup */ I915_WRITE(reg, dpll); POSTING_READ(reg); udelay(150); /* wait for warmup */ } /** * i9xx_disable_pll - disable a PLL * @dev_priv: i915 private structure * @pipe: pipe PLL to disable * * Disable the PLL for @pipe, making sure the pipe is off first. * * Note! This is for pre-ILK only. */ static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) { /* Don't disable pipe A or pipe A PLLs if needed */ if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE)) return; /* Make sure the pipe isn't still relying on us */ assert_pipe_disabled(dev_priv, pipe); I915_WRITE(DPLL(pipe), 0); POSTING_READ(DPLL(pipe)); } static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) { u32 val = 0; /* Make sure the pipe isn't still relying on us */ assert_pipe_disabled(dev_priv, pipe); /* * Leave integrated clock source and reference clock enabled for pipe B. * The latter is needed for VGA hotplug / manual detection. */ if (pipe == PIPE_B) val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV; I915_WRITE(DPLL(pipe), val); POSTING_READ(DPLL(pipe)); } static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe) { enum dpio_channel port = vlv_pipe_to_channel(pipe); u32 val; /* Make sure the pipe isn't still relying on us */ assert_pipe_disabled(dev_priv, pipe); /* Set PLL en = 0 */ val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV; if (pipe != PIPE_A) val |= DPLL_INTEGRATED_CRI_CLK_VLV; I915_WRITE(DPLL(pipe), val); POSTING_READ(DPLL(pipe)); mutex_lock(&dev_priv->dpio_lock); /* Disable 10bit clock to display controller */ val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)); val &= ~DPIO_DCLKP_EN; vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val); /* disable left/right clock distribution */ if (pipe != PIPE_B) { val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0); val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK); vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val); } else { val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1); val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK); vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val); } mutex_unlock(&dev_priv->dpio_lock); } void vlv_wait_port_ready(struct drm_i915_private *dev_priv, struct intel_digital_port *dport) { u32 port_mask; int dpll_reg; switch (dport->port) { case PORT_B: port_mask = DPLL_PORTB_READY_MASK; dpll_reg = DPLL(0); break; case PORT_C: port_mask = DPLL_PORTC_READY_MASK; dpll_reg = DPLL(0); break; case PORT_D: port_mask = DPLL_PORTD_READY_MASK; dpll_reg = DPIO_PHY_STATUS; break; default: BUG(); } if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000)) WARN(1, "timed out waiting for port %c ready: 0x%08x\n", port_name(dport->port), I915_READ(dpll_reg)); } static void intel_prepare_shared_dpll(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc); if (WARN_ON(pll == NULL)) return; WARN_ON(!pll->refcount); if (pll->active == 0) { DRM_DEBUG_DRIVER("setting up %s\n", pll->name); WARN_ON(pll->on); assert_shared_dpll_disabled(dev_priv, pll); pll->mode_set(dev_priv, pll); } } /** * intel_enable_shared_dpll - enable PCH PLL * @dev_priv: i915 private structure * @pipe: pipe PLL to enable * * The PCH PLL needs to be enabled before the PCH transcoder, since it * drives the transcoder clock. */ static void intel_enable_shared_dpll(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc); if (WARN_ON(pll == NULL)) return; if (WARN_ON(pll->refcount == 0)) return; DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n", pll->name, pll->active, pll->on, crtc->base.base.id); if (pll->active++) { WARN_ON(!pll->on); assert_shared_dpll_enabled(dev_priv, pll); return; } WARN_ON(pll->on); intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS); DRM_DEBUG_KMS("enabling %s\n", pll->name); pll->enable(dev_priv, pll); pll->on = true; } static void intel_disable_shared_dpll(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc); /* PCH only available on ILK+ */ BUG_ON(INTEL_INFO(dev)->gen < 5); if (WARN_ON(pll == NULL)) return; if (WARN_ON(pll->refcount == 0)) return; DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n", pll->name, pll->active, pll->on, crtc->base.base.id); if (WARN_ON(pll->active == 0)) { assert_shared_dpll_disabled(dev_priv, pll); return; } assert_shared_dpll_enabled(dev_priv, pll); WARN_ON(!pll->on); if (--pll->active) return; DRM_DEBUG_KMS("disabling %s\n", pll->name); pll->disable(dev_priv, pll); pll->on = false; intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS); } static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv, enum pipe pipe) { struct drm_device *dev = dev_priv->dev; struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); uint32_t reg, val, pipeconf_val; /* PCH only available on ILK+ */ BUG_ON(INTEL_INFO(dev)->gen < 5); /* Make sure PCH DPLL is enabled */ assert_shared_dpll_enabled(dev_priv, intel_crtc_to_shared_dpll(intel_crtc)); /* FDI must be feeding us bits for PCH ports */ assert_fdi_tx_enabled(dev_priv, pipe); assert_fdi_rx_enabled(dev_priv, pipe); if (HAS_PCH_CPT(dev)) { /* Workaround: Set the timing override bit before enabling the * pch transcoder. */ reg = TRANS_CHICKEN2(pipe); val = I915_READ(reg); val |= TRANS_CHICKEN2_TIMING_OVERRIDE; I915_WRITE(reg, val); } reg = PCH_TRANSCONF(pipe); val = I915_READ(reg); pipeconf_val = I915_READ(PIPECONF(pipe)); if (HAS_PCH_IBX(dev_priv->dev)) { /* * make the BPC in transcoder be consistent with * that in pipeconf reg. */ val &= ~PIPECONF_BPC_MASK; val |= pipeconf_val & PIPECONF_BPC_MASK; } val &= ~TRANS_INTERLACE_MASK; if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) if (HAS_PCH_IBX(dev_priv->dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) val |= TRANS_LEGACY_INTERLACED_ILK; else val |= TRANS_INTERLACED; else val |= TRANS_PROGRESSIVE; I915_WRITE(reg, val | TRANS_ENABLE); if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100)) DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe)); } static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder) { u32 val, pipeconf_val; /* PCH only available on ILK+ */ BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5); /* FDI must be feeding us bits for PCH ports */ assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder); assert_fdi_rx_enabled(dev_priv, TRANSCODER_A); /* Workaround: set timing override bit. */ val = I915_READ(_TRANSA_CHICKEN2); val |= TRANS_CHICKEN2_TIMING_OVERRIDE; I915_WRITE(_TRANSA_CHICKEN2, val); val = TRANS_ENABLE; pipeconf_val = I915_READ(PIPECONF(cpu_transcoder)); if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) == PIPECONF_INTERLACED_ILK) val |= TRANS_INTERLACED; else val |= TRANS_PROGRESSIVE; I915_WRITE(LPT_TRANSCONF, val); if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100)) DRM_ERROR("Failed to enable PCH transcoder\n"); } static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv, enum pipe pipe) { struct drm_device *dev = dev_priv->dev; uint32_t reg, val; /* FDI relies on the transcoder */ assert_fdi_tx_disabled(dev_priv, pipe); assert_fdi_rx_disabled(dev_priv, pipe); /* Ports must be off as well */ assert_pch_ports_disabled(dev_priv, pipe); reg = PCH_TRANSCONF(pipe); val = I915_READ(reg); val &= ~TRANS_ENABLE; I915_WRITE(reg, val); /* wait for PCH transcoder off, transcoder state */ if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50)) DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe)); if (!HAS_PCH_IBX(dev)) { /* Workaround: Clear the timing override chicken bit again. */ reg = TRANS_CHICKEN2(pipe); val = I915_READ(reg); val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; I915_WRITE(reg, val); } } static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv) { u32 val; val = I915_READ(LPT_TRANSCONF); val &= ~TRANS_ENABLE; I915_WRITE(LPT_TRANSCONF, val); /* wait for PCH transcoder off, transcoder state */ if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50)) DRM_ERROR("Failed to disable PCH transcoder\n"); /* Workaround: clear timing override bit. */ val = I915_READ(_TRANSA_CHICKEN2); val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE; I915_WRITE(_TRANSA_CHICKEN2, val); } /** * intel_enable_pipe - enable a pipe, asserting requirements * @crtc: crtc responsible for the pipe * * Enable @crtc's pipe, making sure that various hardware specific requirements * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc. */ static void intel_enable_pipe(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe = crtc->pipe; enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, pipe); enum pipe pch_transcoder; int reg; u32 val; assert_planes_disabled(dev_priv, pipe); assert_cursor_disabled(dev_priv, pipe); assert_sprites_disabled(dev_priv, pipe); if (HAS_PCH_LPT(dev_priv->dev)) pch_transcoder = TRANSCODER_A; else pch_transcoder = pipe; /* * A pipe without a PLL won't actually be able to drive bits from * a plane. On ILK+ the pipe PLLs are integrated, so we don't * need the check. */ if (!HAS_PCH_SPLIT(dev_priv->dev)) if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI)) assert_dsi_pll_enabled(dev_priv); else assert_pll_enabled(dev_priv, pipe); else { if (crtc->config.has_pch_encoder) { /* if driving the PCH, we need FDI enabled */ assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder); assert_fdi_tx_pll_enabled(dev_priv, (enum pipe) cpu_transcoder); } /* FIXME: assert CPU port conditions for SNB+ */ } reg = PIPECONF(cpu_transcoder); val = I915_READ(reg); if (val & PIPECONF_ENABLE) { WARN_ON(!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)); return; } I915_WRITE(reg, val | PIPECONF_ENABLE); POSTING_READ(reg); } /** * intel_disable_pipe - disable a pipe, asserting requirements * @dev_priv: i915 private structure * @pipe: pipe to disable * * Disable @pipe, making sure that various hardware specific requirements * are met, if applicable, e.g. plane disabled, panel fitter off, etc. * * @pipe should be %PIPE_A or %PIPE_B. * * Will wait until the pipe has shut down before returning. */ static void intel_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) { enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, pipe); int reg; u32 val; /* * Make sure planes won't keep trying to pump pixels to us, * or we might hang the display. */ assert_planes_disabled(dev_priv, pipe); assert_cursor_disabled(dev_priv, pipe); assert_sprites_disabled(dev_priv, pipe); /* Don't disable pipe A or pipe A PLLs if needed */ if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE)) return; reg = PIPECONF(cpu_transcoder); val = I915_READ(reg); if ((val & PIPECONF_ENABLE) == 0) return; I915_WRITE(reg, val & ~PIPECONF_ENABLE); intel_wait_for_pipe_off(dev_priv->dev, pipe); } /* * Plane regs are double buffered, going from enabled->disabled needs a * trigger in order to latch. The display address reg provides this. */ void intel_flush_primary_plane(struct drm_i915_private *dev_priv, enum plane plane) { struct drm_device *dev = dev_priv->dev; u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane); I915_WRITE(reg, I915_READ(reg)); POSTING_READ(reg); } /** * intel_enable_primary_hw_plane - enable the primary plane on a given pipe * @plane: plane to be enabled * @crtc: crtc for the plane * * Enable @plane on @crtc, making sure that the pipe is running first. */ static void intel_enable_primary_hw_plane(struct drm_plane *plane, struct drm_crtc *crtc) { struct drm_device *dev = plane->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); /* If the pipe isn't enabled, we can't pump pixels and may hang */ assert_pipe_enabled(dev_priv, intel_crtc->pipe); if (intel_crtc->primary_enabled) return; intel_crtc->primary_enabled = true; dev_priv->display.update_primary_plane(crtc, plane->fb, crtc->x, crtc->y); /* * BDW signals flip done immediately if the plane * is disabled, even if the plane enable is already * armed to occur at the next vblank :( */ if (IS_BROADWELL(dev)) intel_wait_for_vblank(dev, intel_crtc->pipe); } /** * intel_disable_primary_hw_plane - disable the primary hardware plane * @plane: plane to be disabled * @crtc: crtc for the plane * * Disable @plane on @crtc, making sure that the pipe is running first. */ static void intel_disable_primary_hw_plane(struct drm_plane *plane, struct drm_crtc *crtc) { struct drm_device *dev = plane->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); assert_pipe_enabled(dev_priv, intel_crtc->pipe); if (!intel_crtc->primary_enabled) return; intel_crtc->primary_enabled = false; dev_priv->display.update_primary_plane(crtc, plane->fb, crtc->x, crtc->y); } static bool need_vtd_wa(struct drm_device *dev) { #ifdef CONFIG_INTEL_IOMMU if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped) return true; #endif return false; } static int intel_align_height(struct drm_device *dev, int height, bool tiled) { int tile_height; tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1; return ALIGN(height, tile_height); } int intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_i915_gem_object *obj, struct intel_engine_cs *pipelined) { struct drm_i915_private *dev_priv = dev->dev_private; u32 alignment; int ret; WARN_ON(!mutex_is_locked(&dev->struct_mutex)); switch (obj->tiling_mode) { case I915_TILING_NONE: if (IS_BROADWATER(dev) || IS_CRESTLINE(dev)) alignment = 128 * 1024; else if (INTEL_INFO(dev)->gen >= 4) alignment = 4 * 1024; else alignment = 64 * 1024; break; case I915_TILING_X: /* pin() will align the object as required by fence */ alignment = 0; break; case I915_TILING_Y: WARN(1, "Y tiled bo slipped through, driver bug!\n"); return -EINVAL; default: BUG(); } /* Note that the w/a also requires 64 PTE of padding following the * bo. We currently fill all unused PTE with the shadow page and so * we should always have valid PTE following the scanout preventing * the VT-d warning. */ if (need_vtd_wa(dev) && alignment < 256 * 1024) alignment = 256 * 1024; dev_priv->mm.interruptible = false; ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined); if (ret) goto err_interruptible; /* Install a fence for tiled scan-out. Pre-i965 always needs a * fence, whereas 965+ only requires a fence if using * framebuffer compression. For simplicity, we always install * a fence as the cost is not that onerous. */ ret = i915_gem_object_get_fence(obj); if (ret) goto err_unpin; i915_gem_object_pin_fence(obj); dev_priv->mm.interruptible = true; return 0; err_unpin: i915_gem_object_unpin_from_display_plane(obj); err_interruptible: dev_priv->mm.interruptible = true; return ret; } void intel_unpin_fb_obj(struct drm_i915_gem_object *obj) { WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex)); i915_gem_object_unpin_fence(obj); i915_gem_object_unpin_from_display_plane(obj); } /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel * is assumed to be a power-of-two. */ unsigned long intel_gen4_compute_page_offset(int *x, int *y, unsigned int tiling_mode, unsigned int cpp, unsigned int pitch) { if (tiling_mode != I915_TILING_NONE) { unsigned int tile_rows, tiles; tile_rows = *y / 8; *y %= 8; tiles = *x / (512/cpp); *x %= 512/cpp; return tile_rows * pitch * 8 + tiles * 4096; } else { unsigned int offset; offset = *y * pitch + *x * cpp; *y = 0; *x = (offset & 4095) / cpp; return offset & -4096; } } int intel_format_to_fourcc(int format) { switch (format) { case DISPPLANE_8BPP: return DRM_FORMAT_C8; case DISPPLANE_BGRX555: return DRM_FORMAT_XRGB1555; case DISPPLANE_BGRX565: return DRM_FORMAT_RGB565; default: case DISPPLANE_BGRX888: return DRM_FORMAT_XRGB8888; case DISPPLANE_RGBX888: return DRM_FORMAT_XBGR8888; case DISPPLANE_BGRX101010: return DRM_FORMAT_XRGB2101010; case DISPPLANE_RGBX101010: return DRM_FORMAT_XBGR2101010; } } static bool intel_alloc_plane_obj(struct intel_crtc *crtc, struct intel_plane_config *plane_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_gem_object *obj = NULL; struct drm_mode_fb_cmd2 mode_cmd = { 0 }; u32 base = plane_config->base; if (plane_config->size == 0) return false; obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base, plane_config->size); if (!obj) return false; if (plane_config->tiled) { obj->tiling_mode = I915_TILING_X; obj->stride = crtc->base.primary->fb->pitches[0]; } mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format; mode_cmd.width = crtc->base.primary->fb->width; mode_cmd.height = crtc->base.primary->fb->height; mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0]; mutex_lock(&dev->struct_mutex); if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb), &mode_cmd, obj)) { DRM_DEBUG_KMS("intel fb init failed\n"); goto out_unref_obj; } obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe); mutex_unlock(&dev->struct_mutex); DRM_DEBUG_KMS("plane fb obj %p\n", obj); return true; out_unref_obj: drm_gem_object_unreference(&obj->base); mutex_unlock(&dev->struct_mutex); return false; } static void intel_find_plane_obj(struct intel_crtc *intel_crtc, struct intel_plane_config *plane_config) { struct drm_device *dev = intel_crtc->base.dev; struct drm_crtc *c; struct intel_crtc *i; struct drm_i915_gem_object *obj; if (!intel_crtc->base.primary->fb) return; if (intel_alloc_plane_obj(intel_crtc, plane_config)) return; kfree(intel_crtc->base.primary->fb); intel_crtc->base.primary->fb = NULL; /* * Failed to alloc the obj, check to see if we should share * an fb with another CRTC instead */ for_each_crtc(dev, c) { i = to_intel_crtc(c); if (c == &intel_crtc->base) continue; if (!i->active) continue; obj = intel_fb_obj(c->primary->fb); if (obj == NULL) continue; if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) { drm_framebuffer_reference(c->primary->fb); intel_crtc->base.primary->fb = c->primary->fb; obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe); break; } } } static void i9xx_update_primary_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_i915_gem_object *obj = intel_fb_obj(fb); int plane = intel_crtc->plane; unsigned long linear_offset; u32 dspcntr; u32 reg = DSPCNTR(plane); if (!intel_crtc->primary_enabled) { I915_WRITE(reg, 0); if (INTEL_INFO(dev)->gen >= 4) I915_WRITE(DSPSURF(plane), 0); else I915_WRITE(DSPADDR(plane), 0); POSTING_READ(reg); return; } dspcntr = DISPPLANE_GAMMA_ENABLE; dspcntr |= DISPLAY_PLANE_ENABLE; if (INTEL_INFO(dev)->gen < 4) { if (intel_crtc->pipe == PIPE_B) dspcntr |= DISPPLANE_SEL_PIPE_B; /* pipesrc and dspsize control the size that is scaled from, * which should always be the user's requested size. */ I915_WRITE(DSPSIZE(plane), ((intel_crtc->config.pipe_src_h - 1) << 16) | (intel_crtc->config.pipe_src_w - 1)); I915_WRITE(DSPPOS(plane), 0); } switch (fb->pixel_format) { case DRM_FORMAT_C8: dspcntr |= DISPPLANE_8BPP; break; case DRM_FORMAT_XRGB1555: case DRM_FORMAT_ARGB1555: dspcntr |= DISPPLANE_BGRX555; break; case DRM_FORMAT_RGB565: dspcntr |= DISPPLANE_BGRX565; break; case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: dspcntr |= DISPPLANE_BGRX888; break; case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: dspcntr |= DISPPLANE_RGBX888; break; case DRM_FORMAT_XRGB2101010: case DRM_FORMAT_ARGB2101010: dspcntr |= DISPPLANE_BGRX101010; break; case DRM_FORMAT_XBGR2101010: case DRM_FORMAT_ABGR2101010: dspcntr |= DISPPLANE_RGBX101010; break; default: BUG(); } if (INTEL_INFO(dev)->gen >= 4 && obj->tiling_mode != I915_TILING_NONE) dspcntr |= DISPPLANE_TILED; if (IS_G4X(dev)) dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; I915_WRITE(reg, dspcntr); linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8); if (INTEL_INFO(dev)->gen >= 4) { intel_crtc->dspaddr_offset = intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode, fb->bits_per_pixel / 8, fb->pitches[0]); linear_offset -= intel_crtc->dspaddr_offset; } else { intel_crtc->dspaddr_offset = linear_offset; } DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n", i915_gem_obj_ggtt_offset(obj), linear_offset, x, y, fb->pitches[0]); I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]); if (INTEL_INFO(dev)->gen >= 4) { I915_WRITE(DSPSURF(plane), i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset); I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); I915_WRITE(DSPLINOFF(plane), linear_offset); } else I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset); POSTING_READ(reg); } static void ironlake_update_primary_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_i915_gem_object *obj = intel_fb_obj(fb); int plane = intel_crtc->plane; unsigned long linear_offset; u32 dspcntr; u32 reg = DSPCNTR(plane); if (!intel_crtc->primary_enabled) { I915_WRITE(reg, 0); I915_WRITE(DSPSURF(plane), 0); POSTING_READ(reg); return; } dspcntr = DISPPLANE_GAMMA_ENABLE; dspcntr |= DISPLAY_PLANE_ENABLE; if (IS_HASWELL(dev) || IS_BROADWELL(dev)) dspcntr |= DISPPLANE_PIPE_CSC_ENABLE; switch (fb->pixel_format) { case DRM_FORMAT_C8: dspcntr |= DISPPLANE_8BPP; break; case DRM_FORMAT_RGB565: dspcntr |= DISPPLANE_BGRX565; break; case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: dspcntr |= DISPPLANE_BGRX888; break; case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: dspcntr |= DISPPLANE_RGBX888; break; case DRM_FORMAT_XRGB2101010: case DRM_FORMAT_ARGB2101010: dspcntr |= DISPPLANE_BGRX101010; break; case DRM_FORMAT_XBGR2101010: case DRM_FORMAT_ABGR2101010: dspcntr |= DISPPLANE_RGBX101010; break; default: BUG(); } if (obj->tiling_mode != I915_TILING_NONE) dspcntr |= DISPPLANE_TILED; if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE; I915_WRITE(reg, dspcntr); linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8); intel_crtc->dspaddr_offset = intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode, fb->bits_per_pixel / 8, fb->pitches[0]); linear_offset -= intel_crtc->dspaddr_offset; DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n", i915_gem_obj_ggtt_offset(obj), linear_offset, x, y, fb->pitches[0]); I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]); I915_WRITE(DSPSURF(plane), i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset); if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { I915_WRITE(DSPOFFSET(plane), (y << 16) | x); } else { I915_WRITE(DSPTILEOFF(plane), (y << 16) | x); I915_WRITE(DSPLINOFF(plane), linear_offset); } POSTING_READ(reg); } /* Assume fb object is pinned & idle & fenced and just update base pointers */ static int intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, enum mode_set_atomic state) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; if (dev_priv->display.disable_fbc) dev_priv->display.disable_fbc(dev); intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe); dev_priv->display.update_primary_plane(crtc, fb, x, y); return 0; } void intel_display_handle_reset(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc; /* * Flips in the rings have been nuked by the reset, * so complete all pending flips so that user space * will get its events and not get stuck. * * Also update the base address of all primary * planes to the the last fb to make sure we're * showing the correct fb after a reset. * * Need to make two loops over the crtcs so that we * don't try to grab a crtc mutex before the * pending_flip_queue really got woken up. */ for_each_crtc(dev, crtc) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum plane plane = intel_crtc->plane; intel_prepare_page_flip(dev, plane); intel_finish_page_flip_plane(dev, plane); } for_each_crtc(dev, crtc) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); drm_modeset_lock(&crtc->mutex, NULL); /* * FIXME: Once we have proper support for primary planes (and * disabling them without disabling the entire crtc) allow again * a NULL crtc->primary->fb. */ if (intel_crtc->active && crtc->primary->fb) dev_priv->display.update_primary_plane(crtc, crtc->primary->fb, crtc->x, crtc->y); drm_modeset_unlock(&crtc->mutex); } } static int intel_finish_fb(struct drm_framebuffer *old_fb) { struct drm_i915_gem_object *obj = intel_fb_obj(old_fb); struct drm_i915_private *dev_priv = obj->base.dev->dev_private; bool was_interruptible = dev_priv->mm.interruptible; int ret; /* Big Hammer, we also need to ensure that any pending * MI_WAIT_FOR_EVENT inside a user batch buffer on the * current scanout is retired before unpinning the old * framebuffer. * * This should only fail upon a hung GPU, in which case we * can safely continue. */ dev_priv->mm.interruptible = false; ret = i915_gem_object_finish_gpu(obj); dev_priv->mm.interruptible = was_interruptible; return ret; } static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); unsigned long flags; bool pending; if (i915_reset_in_progress(&dev_priv->gpu_error) || intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) return false; spin_lock_irqsave(&dev->event_lock, flags); pending = to_intel_crtc(crtc)->unpin_work != NULL; spin_unlock_irqrestore(&dev->event_lock, flags); return pending; } static int intel_pipe_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *fb) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum pipe pipe = intel_crtc->pipe; struct drm_framebuffer *old_fb = crtc->primary->fb; struct drm_i915_gem_object *obj = intel_fb_obj(fb); struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb); int ret; if (intel_crtc_has_pending_flip(crtc)) { DRM_ERROR("pipe is still busy with an old pageflip\n"); return -EBUSY; } /* no fb bound */ if (!fb) { DRM_ERROR("No FB bound\n"); return 0; } if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) { DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n", plane_name(intel_crtc->plane), INTEL_INFO(dev)->num_pipes); return -EINVAL; } mutex_lock(&dev->struct_mutex); ret = intel_pin_and_fence_fb_obj(dev, obj, NULL); if (ret == 0) i915_gem_track_fb(old_obj, obj, INTEL_FRONTBUFFER_PRIMARY(pipe)); mutex_unlock(&dev->struct_mutex); if (ret != 0) { DRM_ERROR("pin & fence failed\n"); return ret; } /* * Update pipe size and adjust fitter if needed: the reason for this is * that in compute_mode_changes we check the native mode (not the pfit * mode) to see if we can flip rather than do a full mode set. In the * fastboot case, we'll flip, but if we don't update the pipesrc and * pfit state, we'll end up with a big fb scanned out into the wrong * sized surface. * * To fix this properly, we need to hoist the checks up into * compute_mode_changes (or above), check the actual pfit state and * whether the platform allows pfit disable with pipe active, and only * then update the pipesrc and pfit state, even on the flip path. */ if (i915.fastboot) { const struct drm_display_mode *adjusted_mode = &intel_crtc->config.adjusted_mode; I915_WRITE(PIPESRC(intel_crtc->pipe), ((adjusted_mode->crtc_hdisplay - 1) << 16) | (adjusted_mode->crtc_vdisplay - 1)); if (!intel_crtc->config.pch_pfit.enabled && (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) { I915_WRITE(PF_CTL(intel_crtc->pipe), 0); I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0); I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0); } intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay; intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay; } dev_priv->display.update_primary_plane(crtc, fb, x, y); if (intel_crtc->active) intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe)); crtc->primary->fb = fb; crtc->x = x; crtc->y = y; if (old_fb) { if (intel_crtc->active && old_fb != fb) intel_wait_for_vblank(dev, intel_crtc->pipe); mutex_lock(&dev->struct_mutex); intel_unpin_fb_obj(old_obj); mutex_unlock(&dev->struct_mutex); } mutex_lock(&dev->struct_mutex); intel_update_fbc(dev); mutex_unlock(&dev->struct_mutex); return 0; } static void intel_fdi_normal_train(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; u32 reg, temp; /* enable normal train */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); if (IS_IVYBRIDGE(dev)) { temp &= ~FDI_LINK_TRAIN_NONE_IVB; temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE; } I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); if (HAS_PCH_CPT(dev)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_NORMAL_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_NONE; } I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE); /* wait one idle pattern time */ POSTING_READ(reg); udelay(1000); /* IVB wants error correction enabled */ if (IS_IVYBRIDGE(dev)) I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE | FDI_FE_ERRC_ENABLE); } static bool pipe_has_enabled_pch(struct intel_crtc *crtc) { return crtc->base.enabled && crtc->active && crtc->config.has_pch_encoder; } static void ivb_modeset_global_resources(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *pipe_B_crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]); struct intel_crtc *pipe_C_crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]); uint32_t temp; /* * When everything is off disable fdi C so that we could enable fdi B * with all lanes. Note that we don't care about enabled pipes without * an enabled pch encoder. */ if (!pipe_has_enabled_pch(pipe_B_crtc) && !pipe_has_enabled_pch(pipe_C_crtc)) { WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE); WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE); temp = I915_READ(SOUTH_CHICKEN1); temp &= ~FDI_BC_BIFURCATION_SELECT; DRM_DEBUG_KMS("disabling fdi C rx\n"); I915_WRITE(SOUTH_CHICKEN1, temp); } } /* The FDI link training functions for ILK/Ibexpeak. */ static void ironlake_fdi_link_train(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; u32 reg, temp, tries; /* FDI needs bits from pipe first */ assert_pipe_enabled(dev_priv, pipe); /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit for train result */ reg = FDI_RX_IMR(pipe); temp = I915_READ(reg); temp &= ~FDI_RX_SYMBOL_LOCK; temp &= ~FDI_RX_BIT_LOCK; I915_WRITE(reg, temp); I915_READ(reg); udelay(150); /* enable CPU FDI TX and PCH FDI RX */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_DP_PORT_WIDTH_MASK; temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; I915_WRITE(reg, temp | FDI_TX_ENABLE); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; I915_WRITE(reg, temp | FDI_RX_ENABLE); POSTING_READ(reg); udelay(150); /* Ironlake workaround, enable clock pointer after FDI enable*/ I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR | FDI_RX_PHASE_SYNC_POINTER_EN); reg = FDI_RX_IIR(pipe); for (tries = 0; tries < 5; tries++) { temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if ((temp & FDI_RX_BIT_LOCK)) { DRM_DEBUG_KMS("FDI train 1 done.\n"); I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); break; } } if (tries == 5) DRM_ERROR("FDI train 1 fail!\n"); /* Train 2 */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(150); reg = FDI_RX_IIR(pipe); for (tries = 0; tries < 5; tries++) { temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_SYMBOL_LOCK) { I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); DRM_DEBUG_KMS("FDI train 2 done.\n"); break; } } if (tries == 5) DRM_ERROR("FDI train 2 fail!\n"); DRM_DEBUG_KMS("FDI train done\n"); } static const int snb_b_fdi_train_param[] = { FDI_LINK_TRAIN_400MV_0DB_SNB_B, FDI_LINK_TRAIN_400MV_6DB_SNB_B, FDI_LINK_TRAIN_600MV_3_5DB_SNB_B, FDI_LINK_TRAIN_800MV_0DB_SNB_B, }; /* The FDI link training functions for SNB/Cougarpoint. */ static void gen6_fdi_link_train(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; u32 reg, temp, i, retry; /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit for train result */ reg = FDI_RX_IMR(pipe); temp = I915_READ(reg); temp &= ~FDI_RX_SYMBOL_LOCK; temp &= ~FDI_RX_BIT_LOCK; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(150); /* enable CPU FDI TX and PCH FDI RX */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_DP_PORT_WIDTH_MASK; temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; /* SNB-B */ temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; I915_WRITE(reg, temp | FDI_TX_ENABLE); I915_WRITE(FDI_RX_MISC(pipe), FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); if (HAS_PCH_CPT(dev)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; } I915_WRITE(reg, temp | FDI_RX_ENABLE); POSTING_READ(reg); udelay(150); for (i = 0; i < 4; i++) { reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; temp |= snb_b_fdi_train_param[i]; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(500); for (retry = 0; retry < 5; retry++) { reg = FDI_RX_IIR(pipe); temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_BIT_LOCK) { I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); DRM_DEBUG_KMS("FDI train 1 done.\n"); break; } udelay(50); } if (retry < 5) break; } if (i == 4) DRM_ERROR("FDI train 1 fail!\n"); /* Train 2 */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; if (IS_GEN6(dev)) { temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; /* SNB-B */ temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B; } I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); if (HAS_PCH_CPT(dev)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_2; } I915_WRITE(reg, temp); POSTING_READ(reg); udelay(150); for (i = 0; i < 4; i++) { reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; temp |= snb_b_fdi_train_param[i]; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(500); for (retry = 0; retry < 5; retry++) { reg = FDI_RX_IIR(pipe); temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_SYMBOL_LOCK) { I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); DRM_DEBUG_KMS("FDI train 2 done.\n"); break; } udelay(50); } if (retry < 5) break; } if (i == 4) DRM_ERROR("FDI train 2 fail!\n"); DRM_DEBUG_KMS("FDI train done.\n"); } /* Manual link training for Ivy Bridge A0 parts */ static void ivb_manual_fdi_link_train(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; u32 reg, temp, i, j; /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit for train result */ reg = FDI_RX_IMR(pipe); temp = I915_READ(reg); temp &= ~FDI_RX_SYMBOL_LOCK; temp &= ~FDI_RX_BIT_LOCK; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(150); DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n", I915_READ(FDI_RX_IIR(pipe))); /* Try each vswing and preemphasis setting twice before moving on */ for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) { /* disable first in case we need to retry */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB); temp &= ~FDI_TX_ENABLE; I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_AUTO; temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp &= ~FDI_RX_ENABLE; I915_WRITE(reg, temp); /* enable CPU FDI TX and PCH FDI RX */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_DP_PORT_WIDTH_MASK; temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes); temp |= FDI_LINK_TRAIN_PATTERN_1_IVB; temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK; temp |= snb_b_fdi_train_param[j/2]; temp |= FDI_COMPOSITE_SYNC; I915_WRITE(reg, temp | FDI_TX_ENABLE); I915_WRITE(FDI_RX_MISC(pipe), FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; temp |= FDI_COMPOSITE_SYNC; I915_WRITE(reg, temp | FDI_RX_ENABLE); POSTING_READ(reg); udelay(1); /* should be 0.5us */ for (i = 0; i < 4; i++) { reg = FDI_RX_IIR(pipe); temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_BIT_LOCK || (I915_READ(reg) & FDI_RX_BIT_LOCK)) { I915_WRITE(reg, temp | FDI_RX_BIT_LOCK); DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i); break; } udelay(1); /* should be 0.5us */ } if (i == 4) { DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2); continue; } /* Train 2 */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE_IVB; temp |= FDI_LINK_TRAIN_PATTERN_2_IVB; I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_2_CPT; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(2); /* should be 1.5us */ for (i = 0; i < 4; i++) { reg = FDI_RX_IIR(pipe); temp = I915_READ(reg); DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp); if (temp & FDI_RX_SYMBOL_LOCK || (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) { I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK); DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i); goto train_done; } udelay(2); /* should be 1.5us */ } if (i == 4) DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2); } train_done: DRM_DEBUG_KMS("FDI train done.\n"); } static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = intel_crtc->pipe; u32 reg, temp; /* enable PCH FDI RX PLL, wait warmup plus DMI latency */ reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16)); temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes); temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE); POSTING_READ(reg); udelay(200); /* Switch from Rawclk to PCDclk */ temp = I915_READ(reg); I915_WRITE(reg, temp | FDI_PCDCLK); POSTING_READ(reg); udelay(200); /* Enable CPU FDI TX PLL, always on for Ironlake */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); if ((temp & FDI_TX_PLL_ENABLE) == 0) { I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE); POSTING_READ(reg); udelay(100); } } static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = intel_crtc->pipe; u32 reg, temp; /* Switch from PCDclk to Rawclk */ reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); I915_WRITE(reg, temp & ~FDI_PCDCLK); /* Disable CPU FDI TX PLL */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE); POSTING_READ(reg); udelay(100); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE); /* Wait for the clocks to turn off. */ POSTING_READ(reg); udelay(100); } static void ironlake_fdi_disable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; u32 reg, temp; /* disable CPU FDI tx and PCH FDI rx */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); I915_WRITE(reg, temp & ~FDI_TX_ENABLE); POSTING_READ(reg); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); temp &= ~(0x7 << 16); temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; I915_WRITE(reg, temp & ~FDI_RX_ENABLE); POSTING_READ(reg); udelay(100); /* Ironlake workaround, disable clock pointer after downing FDI */ if (HAS_PCH_IBX(dev)) I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR); /* still set train pattern 1 */ reg = FDI_TX_CTL(pipe); temp = I915_READ(reg); temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; I915_WRITE(reg, temp); reg = FDI_RX_CTL(pipe); temp = I915_READ(reg); if (HAS_PCH_CPT(dev)) { temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT; temp |= FDI_LINK_TRAIN_PATTERN_1_CPT; } else { temp &= ~FDI_LINK_TRAIN_NONE; temp |= FDI_LINK_TRAIN_PATTERN_1; } /* BPC in FDI rx is consistent with that in PIPECONF */ temp &= ~(0x07 << 16); temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11; I915_WRITE(reg, temp); POSTING_READ(reg); udelay(100); } bool intel_has_pending_fb_unpin(struct drm_device *dev) { struct intel_crtc *crtc; /* Note that we don't need to be called with mode_config.lock here * as our list of CRTC objects is static for the lifetime of the * device and so cannot disappear as we iterate. Similarly, we can * happily treat the predicates as racy, atomic checks as userspace * cannot claim and pin a new fb without at least acquring the * struct_mutex and so serialising with us. */ for_each_intel_crtc(dev, crtc) { if (atomic_read(&crtc->unpin_work_count) == 0) continue; if (crtc->unpin_work) intel_wait_for_vblank(dev, crtc->pipe); return true; } return false; } void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; if (crtc->primary->fb == NULL) return; WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue)); WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue, !intel_crtc_has_pending_flip(crtc), 60*HZ) == 0); mutex_lock(&dev->struct_mutex); intel_finish_fb(crtc->primary->fb); mutex_unlock(&dev->struct_mutex); } /* Program iCLKIP clock to the desired frequency */ static void lpt_program_iclkip(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock; u32 divsel, phaseinc, auxdiv, phasedir = 0; u32 temp; mutex_lock(&dev_priv->dpio_lock); /* It is necessary to ungate the pixclk gate prior to programming * the divisors, and gate it back when it is done. */ I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE); /* Disable SSCCTL */ intel_sbi_write(dev_priv, SBI_SSCCTL6, intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) | SBI_SSCCTL_DISABLE, SBI_ICLK); /* 20MHz is a corner case which is out of range for the 7-bit divisor */ if (clock == 20000) { auxdiv = 1; divsel = 0x41; phaseinc = 0x20; } else { /* The iCLK virtual clock root frequency is in MHz, * but the adjusted_mode->crtc_clock in in KHz. To get the * divisors, it is necessary to divide one by another, so we * convert the virtual clock precision to KHz here for higher * precision. */ u32 iclk_virtual_root_freq = 172800 * 1000; u32 iclk_pi_range = 64; u32 desired_divisor, msb_divisor_value, pi_value; desired_divisor = (iclk_virtual_root_freq / clock); msb_divisor_value = desired_divisor / iclk_pi_range; pi_value = desired_divisor % iclk_pi_range; auxdiv = 0; divsel = msb_divisor_value - 2; phaseinc = pi_value; } /* This should not happen with any sane values */ WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) & ~SBI_SSCDIVINTPHASE_DIVSEL_MASK); WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) & ~SBI_SSCDIVINTPHASE_INCVAL_MASK); DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n", clock, auxdiv, divsel, phasedir, phaseinc); /* Program SSCDIVINTPHASE6 */ temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK); temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK; temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel); temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK; temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc); temp |= SBI_SSCDIVINTPHASE_DIR(phasedir); temp |= SBI_SSCDIVINTPHASE_PROPAGATE; intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK); /* Program SSCAUXDIV */ temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK); temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1); temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv); intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK); /* Enable modulator and associated divider */ temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK); temp &= ~SBI_SSCCTL_DISABLE; intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK); /* Wait for initialization time */ udelay(24); I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE); mutex_unlock(&dev_priv->dpio_lock); } static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc, enum pipe pch_transcoder) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum transcoder cpu_transcoder = crtc->config.cpu_transcoder; I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder), I915_READ(HTOTAL(cpu_transcoder))); I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder), I915_READ(HBLANK(cpu_transcoder))); I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder), I915_READ(HSYNC(cpu_transcoder))); I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder), I915_READ(VTOTAL(cpu_transcoder))); I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder), I915_READ(VBLANK(cpu_transcoder))); I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder), I915_READ(VSYNC(cpu_transcoder))); I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder), I915_READ(VSYNCSHIFT(cpu_transcoder))); } static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t temp; temp = I915_READ(SOUTH_CHICKEN1); if (temp & FDI_BC_BIFURCATION_SELECT) return; WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE); WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE); temp |= FDI_BC_BIFURCATION_SELECT; DRM_DEBUG_KMS("enabling fdi C rx\n"); I915_WRITE(SOUTH_CHICKEN1, temp); POSTING_READ(SOUTH_CHICKEN1); } static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; switch (intel_crtc->pipe) { case PIPE_A: break; case PIPE_B: if (intel_crtc->config.fdi_lanes > 2) WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT); else cpt_enable_fdi_bc_bifurcation(dev); break; case PIPE_C: cpt_enable_fdi_bc_bifurcation(dev); break; default: BUG(); } } /* * Enable PCH resources required for PCH ports: * - PCH PLLs * - FDI training & RX/TX * - update transcoder timings * - DP transcoding bits * - transcoder */ static void ironlake_pch_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; u32 reg, temp; assert_pch_transcoder_disabled(dev_priv, pipe); if (IS_IVYBRIDGE(dev)) ivybridge_update_fdi_bc_bifurcation(intel_crtc); /* Write the TU size bits before fdi link training, so that error * detection works. */ I915_WRITE(FDI_RX_TUSIZE1(pipe), I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK); /* For PCH output, training FDI link */ dev_priv->display.fdi_link_train(crtc); /* We need to program the right clock selection before writing the pixel * mutliplier into the DPLL. */ if (HAS_PCH_CPT(dev)) { u32 sel; temp = I915_READ(PCH_DPLL_SEL); temp |= TRANS_DPLL_ENABLE(pipe); sel = TRANS_DPLLB_SEL(pipe); if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B) temp |= sel; else temp &= ~sel; I915_WRITE(PCH_DPLL_SEL, temp); } /* XXX: pch pll's can be enabled any time before we enable the PCH * transcoder, and we actually should do this to not upset any PCH * transcoder that already use the clock when we share it. * * Note that enable_shared_dpll tries to do the right thing, but * get_shared_dpll unconditionally resets the pll - we need that to have * the right LVDS enable sequence. */ intel_enable_shared_dpll(intel_crtc); /* set transcoder timing, panel must allow it */ assert_panel_unlocked(dev_priv, pipe); ironlake_pch_transcoder_set_timings(intel_crtc, pipe); intel_fdi_normal_train(crtc); /* For PCH DP, enable TRANS_DP_CTL */ if (HAS_PCH_CPT(dev) && (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) || intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) { u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5; reg = TRANS_DP_CTL(pipe); temp = I915_READ(reg); temp &= ~(TRANS_DP_PORT_SEL_MASK | TRANS_DP_SYNC_MASK | TRANS_DP_BPC_MASK); temp |= (TRANS_DP_OUTPUT_ENABLE | TRANS_DP_ENH_FRAMING); temp |= bpc << 9; /* same format but at 11:9 */ if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC) temp |= TRANS_DP_HSYNC_ACTIVE_HIGH; if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC) temp |= TRANS_DP_VSYNC_ACTIVE_HIGH; switch (intel_trans_dp_port_sel(crtc)) { case PCH_DP_B: temp |= TRANS_DP_PORT_SEL_B; break; case PCH_DP_C: temp |= TRANS_DP_PORT_SEL_C; break; case PCH_DP_D: temp |= TRANS_DP_PORT_SEL_D; break; default: BUG(); } I915_WRITE(reg, temp); } ironlake_enable_pch_transcoder(dev_priv, pipe); } static void lpt_pch_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A); lpt_program_iclkip(crtc); /* Set transcoder timing. */ ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A); lpt_enable_pch_transcoder(dev_priv, cpu_transcoder); } void intel_put_shared_dpll(struct intel_crtc *crtc) { struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc); if (pll == NULL) return; if (pll->refcount == 0) { WARN(1, "bad %s refcount\n", pll->name); return; } if (--pll->refcount == 0) { WARN_ON(pll->on); WARN_ON(pll->active); } crtc->config.shared_dpll = DPLL_ID_PRIVATE; } struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc); enum intel_dpll_id i; if (pll) { DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n", crtc->base.base.id, pll->name); intel_put_shared_dpll(crtc); } if (HAS_PCH_IBX(dev_priv->dev)) { /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */ i = (enum intel_dpll_id) crtc->pipe; pll = &dev_priv->shared_dplls[i]; DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n", crtc->base.base.id, pll->name); WARN_ON(pll->refcount); goto found; } for (i = 0; i < dev_priv->num_shared_dpll; i++) { pll = &dev_priv->shared_dplls[i]; /* Only want to check enabled timings first */ if (pll->refcount == 0) continue; if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state, sizeof(pll->hw_state)) == 0) { DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n", crtc->base.base.id, pll->name, pll->refcount, pll->active); goto found; } } /* Ok no matching timings, maybe there's a free one? */ for (i = 0; i < dev_priv->num_shared_dpll; i++) { pll = &dev_priv->shared_dplls[i]; if (pll->refcount == 0) { DRM_DEBUG_KMS("CRTC:%d allocated %s\n", crtc->base.base.id, pll->name); goto found; } } return NULL; found: if (pll->refcount == 0) pll->hw_state = crtc->config.dpll_hw_state; crtc->config.shared_dpll = i; DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name, pipe_name(crtc->pipe)); pll->refcount++; return pll; } static void cpt_verify_modeset(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; int dslreg = PIPEDSL(pipe); u32 temp; temp = I915_READ(dslreg); udelay(500); if (wait_for(I915_READ(dslreg) != temp, 5)) { if (wait_for(I915_READ(dslreg) != temp, 5)) DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe)); } } static void ironlake_pfit_enable(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = crtc->pipe; if (crtc->config.pch_pfit.enabled) { /* Force use of hard-coded filter coefficients * as some pre-programmed values are broken, * e.g. x201. */ if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); else I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3); I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos); I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size); } } static void intel_enable_planes(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; enum pipe pipe = to_intel_crtc(crtc)->pipe; struct drm_plane *plane; struct intel_plane *intel_plane; drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) { intel_plane = to_intel_plane(plane); if (intel_plane->pipe == pipe) intel_plane_restore(&intel_plane->base); } } static void intel_disable_planes(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; enum pipe pipe = to_intel_crtc(crtc)->pipe; struct drm_plane *plane; struct intel_plane *intel_plane; drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) { intel_plane = to_intel_plane(plane); if (intel_plane->pipe == pipe) intel_plane_disable(&intel_plane->base); } } void hsw_enable_ips(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; if (!crtc->config.ips_enabled) return; /* We can only enable IPS after we enable a plane and wait for a vblank */ intel_wait_for_vblank(dev, crtc->pipe); assert_plane_enabled(dev_priv, crtc->plane); if (IS_BROADWELL(dev)) { mutex_lock(&dev_priv->rps.hw_lock); WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000)); mutex_unlock(&dev_priv->rps.hw_lock); /* Quoting Art Runyan: "its not safe to expect any particular * value in IPS_CTL bit 31 after enabling IPS through the * mailbox." Moreover, the mailbox may return a bogus state, * so we need to just enable it and continue on. */ } else { I915_WRITE(IPS_CTL, IPS_ENABLE); /* The bit only becomes 1 in the next vblank, so this wait here * is essentially intel_wait_for_vblank. If we don't have this * and don't wait for vblanks until the end of crtc_enable, then * the HW state readout code will complain that the expected * IPS_CTL value is not the one we read. */ if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50)) DRM_ERROR("Timed out waiting for IPS enable\n"); } } void hsw_disable_ips(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; if (!crtc->config.ips_enabled) return; assert_plane_enabled(dev_priv, crtc->plane); if (IS_BROADWELL(dev)) { mutex_lock(&dev_priv->rps.hw_lock); WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0)); mutex_unlock(&dev_priv->rps.hw_lock); /* wait for pcode to finish disabling IPS, which may take up to 42ms */ if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42)) DRM_ERROR("Timed out waiting for IPS disable\n"); } else { I915_WRITE(IPS_CTL, 0); POSTING_READ(IPS_CTL); } /* We need to wait for a vblank before we can disable the plane. */ intel_wait_for_vblank(dev, crtc->pipe); } /** Loads the palette/gamma unit for the CRTC with the prepared values */ static void intel_crtc_load_lut(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum pipe pipe = intel_crtc->pipe; int palreg = PALETTE(pipe); int i; bool reenable_ips = false; /* The clocks have to be on to load the palette. */ if (!crtc->enabled || !intel_crtc->active) return; if (!HAS_PCH_SPLIT(dev_priv->dev)) { if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) assert_dsi_pll_enabled(dev_priv); else assert_pll_enabled(dev_priv, pipe); } /* use legacy palette for Ironlake */ if (!HAS_GMCH_DISPLAY(dev)) palreg = LGC_PALETTE(pipe); /* Workaround : Do not read or write the pipe palette/gamma data while * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled. */ if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled && ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) == GAMMA_MODE_MODE_SPLIT)) { hsw_disable_ips(intel_crtc); reenable_ips = true; } for (i = 0; i < 256; i++) { I915_WRITE(palreg + 4 * i, (intel_crtc->lut_r[i] << 16) | (intel_crtc->lut_g[i] << 8) | intel_crtc->lut_b[i]); } if (reenable_ips) hsw_enable_ips(intel_crtc); } static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable) { if (!enable && intel_crtc->overlay) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; mutex_lock(&dev->struct_mutex); dev_priv->mm.interruptible = false; (void) intel_overlay_switch_off(intel_crtc->overlay); dev_priv->mm.interruptible = true; mutex_unlock(&dev->struct_mutex); } /* Let userspace switch the overlay on again. In most cases userspace * has to recompute where to put it anyway. */ } static void intel_crtc_enable_planes(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; drm_vblank_on(dev, pipe); intel_enable_primary_hw_plane(crtc->primary, crtc); intel_enable_planes(crtc); intel_crtc_update_cursor(crtc, true); intel_crtc_dpms_overlay(intel_crtc, true); hsw_enable_ips(intel_crtc); mutex_lock(&dev->struct_mutex); intel_update_fbc(dev); mutex_unlock(&dev->struct_mutex); /* * FIXME: Once we grow proper nuclear flip support out of this we need * to compute the mask of flip planes precisely. For the time being * consider this a flip from a NULL plane. */ intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe)); } static void intel_crtc_disable_planes(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; int plane = intel_crtc->plane; intel_crtc_wait_for_pending_flips(crtc); if (dev_priv->fbc.plane == plane) intel_disable_fbc(dev); hsw_disable_ips(intel_crtc); intel_crtc_dpms_overlay(intel_crtc, false); intel_crtc_update_cursor(crtc, false); intel_disable_planes(crtc); intel_disable_primary_hw_plane(crtc->primary, crtc); /* * FIXME: Once we grow proper nuclear flip support out of this we need * to compute the mask of flip planes precisely. For the time being * consider this a flip to a NULL plane. */ intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe)); drm_vblank_off(dev, pipe); } static void ironlake_crtc_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; int pipe = intel_crtc->pipe; WARN_ON(!crtc->enabled); if (intel_crtc->active) return; if (intel_crtc->config.has_pch_encoder) intel_prepare_shared_dpll(intel_crtc); if (intel_crtc->config.has_dp_encoder) intel_dp_set_m_n(intel_crtc); intel_set_pipe_timings(intel_crtc); if (intel_crtc->config.has_pch_encoder) { intel_cpu_transcoder_set_m_n(intel_crtc, &intel_crtc->config.fdi_m_n, NULL); } ironlake_set_pipeconf(crtc); intel_crtc->active = true; intel_set_cpu_fifo_underrun_reporting(dev, pipe, true); intel_set_pch_fifo_underrun_reporting(dev, pipe, true); for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->pre_enable) encoder->pre_enable(encoder); if (intel_crtc->config.has_pch_encoder) { /* Note: FDI PLL enabling _must_ be done before we enable the * cpu pipes, hence this is separate from all the other fdi/pch * enabling. */ ironlake_fdi_pll_enable(intel_crtc); } else { assert_fdi_tx_disabled(dev_priv, pipe); assert_fdi_rx_disabled(dev_priv, pipe); } ironlake_pfit_enable(intel_crtc); /* * On ILK+ LUT must be loaded before the pipe is running but with * clocks enabled */ intel_crtc_load_lut(crtc); intel_update_watermarks(crtc); intel_enable_pipe(intel_crtc); if (intel_crtc->config.has_pch_encoder) ironlake_pch_enable(crtc); for_each_encoder_on_crtc(dev, crtc, encoder) encoder->enable(encoder); if (HAS_PCH_CPT(dev)) cpt_verify_modeset(dev, intel_crtc->pipe); intel_crtc_enable_planes(crtc); } /* IPS only exists on ULT machines and is tied to pipe A. */ static bool hsw_crtc_supports_ips(struct intel_crtc *crtc) { return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A; } /* * This implements the workaround described in the "notes" section of the mode * set sequence documentation. When going from no pipes or single pipe to * multiple pipes, and planes are enabled after the pipe, we need to wait at * least 2 vblanks on the first pipe before enabling planes on the second pipe. */ static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct intel_crtc *crtc_it, *other_active_crtc = NULL; /* We want to get the other_active_crtc only if there's only 1 other * active crtc. */ for_each_intel_crtc(dev, crtc_it) { if (!crtc_it->active || crtc_it == crtc) continue; if (other_active_crtc) return; other_active_crtc = crtc_it; } if (!other_active_crtc) return; intel_wait_for_vblank(dev, other_active_crtc->pipe); intel_wait_for_vblank(dev, other_active_crtc->pipe); } static void haswell_crtc_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; int pipe = intel_crtc->pipe; WARN_ON(!crtc->enabled); if (intel_crtc->active) return; if (intel_crtc_to_shared_dpll(intel_crtc)) intel_enable_shared_dpll(intel_crtc); if (intel_crtc->config.has_dp_encoder) intel_dp_set_m_n(intel_crtc); intel_set_pipe_timings(intel_crtc); if (intel_crtc->config.has_pch_encoder) { intel_cpu_transcoder_set_m_n(intel_crtc, &intel_crtc->config.fdi_m_n, NULL); } haswell_set_pipeconf(crtc); intel_set_pipe_csc(crtc); intel_crtc->active = true; intel_set_cpu_fifo_underrun_reporting(dev, pipe, true); for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->pre_enable) encoder->pre_enable(encoder); if (intel_crtc->config.has_pch_encoder) { intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true); dev_priv->display.fdi_link_train(crtc); } intel_ddi_enable_pipe_clock(intel_crtc); ironlake_pfit_enable(intel_crtc); /* * On ILK+ LUT must be loaded before the pipe is running but with * clocks enabled */ intel_crtc_load_lut(crtc); intel_ddi_set_pipe_settings(crtc); intel_ddi_enable_transcoder_func(crtc); intel_update_watermarks(crtc); intel_enable_pipe(intel_crtc); if (intel_crtc->config.has_pch_encoder) lpt_pch_enable(crtc); if (intel_crtc->config.dp_encoder_is_mst) intel_ddi_set_vc_payload_alloc(crtc, true); for_each_encoder_on_crtc(dev, crtc, encoder) { encoder->enable(encoder); intel_opregion_notify_encoder(encoder, true); } /* If we change the relative order between pipe/planes enabling, we need * to change the workaround. */ haswell_mode_set_planes_workaround(intel_crtc); intel_crtc_enable_planes(crtc); } static void ironlake_pfit_disable(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = crtc->pipe; /* To avoid upsetting the power well on haswell only disable the pfit if * it's in use. The hw state code will make sure we get this right. */ if (crtc->config.pch_pfit.enabled) { I915_WRITE(PF_CTL(pipe), 0); I915_WRITE(PF_WIN_POS(pipe), 0); I915_WRITE(PF_WIN_SZ(pipe), 0); } } static void ironlake_crtc_disable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; int pipe = intel_crtc->pipe; u32 reg, temp; if (!intel_crtc->active) return; intel_crtc_disable_planes(crtc); for_each_encoder_on_crtc(dev, crtc, encoder) encoder->disable(encoder); if (intel_crtc->config.has_pch_encoder) intel_set_pch_fifo_underrun_reporting(dev, pipe, false); intel_disable_pipe(dev_priv, pipe); if (intel_crtc->config.dp_encoder_is_mst) intel_ddi_set_vc_payload_alloc(crtc, false); ironlake_pfit_disable(intel_crtc); for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->post_disable) encoder->post_disable(encoder); if (intel_crtc->config.has_pch_encoder) { ironlake_fdi_disable(crtc); ironlake_disable_pch_transcoder(dev_priv, pipe); intel_set_pch_fifo_underrun_reporting(dev, pipe, true); if (HAS_PCH_CPT(dev)) { /* disable TRANS_DP_CTL */ reg = TRANS_DP_CTL(pipe); temp = I915_READ(reg); temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK); temp |= TRANS_DP_PORT_SEL_NONE; I915_WRITE(reg, temp); /* disable DPLL_SEL */ temp = I915_READ(PCH_DPLL_SEL); temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe)); I915_WRITE(PCH_DPLL_SEL, temp); } /* disable PCH DPLL */ intel_disable_shared_dpll(intel_crtc); ironlake_fdi_pll_disable(intel_crtc); } intel_crtc->active = false; intel_update_watermarks(crtc); mutex_lock(&dev->struct_mutex); intel_update_fbc(dev); mutex_unlock(&dev->struct_mutex); } static void haswell_crtc_disable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; int pipe = intel_crtc->pipe; enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; if (!intel_crtc->active) return; intel_crtc_disable_planes(crtc); for_each_encoder_on_crtc(dev, crtc, encoder) { intel_opregion_notify_encoder(encoder, false); encoder->disable(encoder); } if (intel_crtc->config.has_pch_encoder) intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false); intel_disable_pipe(dev_priv, pipe); intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder); ironlake_pfit_disable(intel_crtc); intel_ddi_disable_pipe_clock(intel_crtc); if (intel_crtc->config.has_pch_encoder) { lpt_disable_pch_transcoder(dev_priv); intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true); intel_ddi_fdi_disable(crtc); } for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->post_disable) encoder->post_disable(encoder); intel_crtc->active = false; intel_update_watermarks(crtc); mutex_lock(&dev->struct_mutex); intel_update_fbc(dev); mutex_unlock(&dev->struct_mutex); if (intel_crtc_to_shared_dpll(intel_crtc)) intel_disable_shared_dpll(intel_crtc); } static void ironlake_crtc_off(struct drm_crtc *crtc) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); intel_put_shared_dpll(intel_crtc); } static void i9xx_pfit_enable(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc_config *pipe_config = &crtc->config; if (!crtc->config.gmch_pfit.control) return; /* * The panel fitter should only be adjusted whilst the pipe is disabled, * according to register description and PRM. */ WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE); assert_pipe_disabled(dev_priv, crtc->pipe); I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios); I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control); /* Border color in case we don't scale up to the full screen. Black by * default, change to something else for debugging. */ I915_WRITE(BCLRPAT(crtc->pipe), 0); } static enum intel_display_power_domain port_to_power_domain(enum port port) { switch (port) { case PORT_A: return POWER_DOMAIN_PORT_DDI_A_4_LANES; case PORT_B: return POWER_DOMAIN_PORT_DDI_B_4_LANES; case PORT_C: return POWER_DOMAIN_PORT_DDI_C_4_LANES; case PORT_D: return POWER_DOMAIN_PORT_DDI_D_4_LANES; default: WARN_ON_ONCE(1); return POWER_DOMAIN_PORT_OTHER; } } #define for_each_power_domain(domain, mask) \ for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \ if ((1 << (domain)) & (mask)) enum intel_display_power_domain intel_display_port_power_domain(struct intel_encoder *intel_encoder) { struct drm_device *dev = intel_encoder->base.dev; struct intel_digital_port *intel_dig_port; switch (intel_encoder->type) { case INTEL_OUTPUT_UNKNOWN: /* Only DDI platforms should ever use this output type */ WARN_ON_ONCE(!HAS_DDI(dev)); case INTEL_OUTPUT_DISPLAYPORT: case INTEL_OUTPUT_HDMI: case INTEL_OUTPUT_EDP: intel_dig_port = enc_to_dig_port(&intel_encoder->base); return port_to_power_domain(intel_dig_port->port); case INTEL_OUTPUT_DP_MST: intel_dig_port = enc_to_mst(&intel_encoder->base)->primary; return port_to_power_domain(intel_dig_port->port); case INTEL_OUTPUT_ANALOG: return POWER_DOMAIN_PORT_CRT; case INTEL_OUTPUT_DSI: return POWER_DOMAIN_PORT_DSI; default: return POWER_DOMAIN_PORT_OTHER; } } static unsigned long get_crtc_power_domains(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct intel_encoder *intel_encoder; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum pipe pipe = intel_crtc->pipe; unsigned long mask; enum transcoder transcoder; transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe); mask = BIT(POWER_DOMAIN_PIPE(pipe)); mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder)); if (intel_crtc->config.pch_pfit.enabled || intel_crtc->config.pch_pfit.force_thru) mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe)); for_each_encoder_on_crtc(dev, crtc, intel_encoder) mask |= BIT(intel_display_port_power_domain(intel_encoder)); return mask; } void intel_display_set_init_power(struct drm_i915_private *dev_priv, bool enable) { if (dev_priv->power_domains.init_power_on == enable) return; if (enable) intel_display_power_get(dev_priv, POWER_DOMAIN_INIT); else intel_display_power_put(dev_priv, POWER_DOMAIN_INIT); dev_priv->power_domains.init_power_on = enable; } static void modeset_update_crtc_power_domains(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long pipe_domains[I915_MAX_PIPES] = { 0, }; struct intel_crtc *crtc; /* * First get all needed power domains, then put all unneeded, to avoid * any unnecessary toggling of the power wells. */ for_each_intel_crtc(dev, crtc) { enum intel_display_power_domain domain; if (!crtc->base.enabled) continue; pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base); for_each_power_domain(domain, pipe_domains[crtc->pipe]) intel_display_power_get(dev_priv, domain); } for_each_intel_crtc(dev, crtc) { enum intel_display_power_domain domain; for_each_power_domain(domain, crtc->enabled_power_domains) intel_display_power_put(dev_priv, domain); crtc->enabled_power_domains = pipe_domains[crtc->pipe]; } intel_display_set_init_power(dev_priv, false); } /* returns HPLL frequency in kHz */ static int valleyview_get_vco(struct drm_i915_private *dev_priv) { int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; /* Obtain SKU information */ mutex_lock(&dev_priv->dpio_lock); hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & CCK_FUSE_HPLL_FREQ_MASK; mutex_unlock(&dev_priv->dpio_lock); return vco_freq[hpll_freq] * 1000; } static void vlv_update_cdclk(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev); DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz", dev_priv->vlv_cdclk_freq); /* * Program the gmbus_freq based on the cdclk frequency. * BSpec erroneously claims we should aim for 4MHz, but * in fact 1MHz is the correct frequency. */ I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq); } /* Adjust CDclk dividers to allow high res or save power if possible */ static void valleyview_set_cdclk(struct drm_device *dev, int cdclk) { struct drm_i915_private *dev_priv = dev->dev_private; u32 val, cmd; WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq); if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */ cmd = 2; else if (cdclk == 266667) cmd = 1; else cmd = 0; mutex_lock(&dev_priv->rps.hw_lock); val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); val &= ~DSPFREQGUAR_MASK; val |= (cmd << DSPFREQGUAR_SHIFT); vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val); if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT), 50)) { DRM_ERROR("timed out waiting for CDclk change\n"); } mutex_unlock(&dev_priv->rps.hw_lock); if (cdclk == 400000) { u32 divider, vco; vco = valleyview_get_vco(dev_priv); divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1; mutex_lock(&dev_priv->dpio_lock); /* adjust cdclk divider */ val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL); val &= ~DISPLAY_FREQUENCY_VALUES; val |= divider; vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val); if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) & DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT), 50)) DRM_ERROR("timed out waiting for CDclk change\n"); mutex_unlock(&dev_priv->dpio_lock); } mutex_lock(&dev_priv->dpio_lock); /* adjust self-refresh exit latency value */ val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC); val &= ~0x7f; /* * For high bandwidth configs, we set a higher latency in the bunit * so that the core display fetch happens in time to avoid underruns. */ if (cdclk == 400000) val |= 4500 / 250; /* 4.5 usec */ else val |= 3000 / 250; /* 3.0 usec */ vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val); mutex_unlock(&dev_priv->dpio_lock); vlv_update_cdclk(dev); } static void cherryview_set_cdclk(struct drm_device *dev, int cdclk) { struct drm_i915_private *dev_priv = dev->dev_private; u32 val, cmd; WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq); switch (cdclk) { case 400000: cmd = 3; break; case 333333: case 320000: cmd = 2; break; case 266667: cmd = 1; break; case 200000: cmd = 0; break; default: WARN_ON(1); return; } mutex_lock(&dev_priv->rps.hw_lock); val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ); val &= ~DSPFREQGUAR_MASK_CHV; val |= (cmd << DSPFREQGUAR_SHIFT_CHV); vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val); if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV), 50)) { DRM_ERROR("timed out waiting for CDclk change\n"); } mutex_unlock(&dev_priv->rps.hw_lock); vlv_update_cdclk(dev); } static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv, int max_pixclk) { int vco = valleyview_get_vco(dev_priv); int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000; /* FIXME: Punit isn't quite ready yet */ if (IS_CHERRYVIEW(dev_priv->dev)) return 400000; /* * Really only a few cases to deal with, as only 4 CDclks are supported: * 200MHz * 267MHz * 320/333MHz (depends on HPLL freq) * 400MHz * So we check to see whether we're above 90% of the lower bin and * adjust if needed. * * We seem to get an unstable or solid color picture at 200MHz. * Not sure what's wrong. For now use 200MHz only when all pipes * are off. */ if (max_pixclk > freq_320*9/10) return 400000; else if (max_pixclk > 266667*9/10) return freq_320; else if (max_pixclk > 0) return 266667; else return 200000; } /* compute the max pixel clock for new configuration */ static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; struct intel_crtc *intel_crtc; int max_pixclk = 0; for_each_intel_crtc(dev, intel_crtc) { if (intel_crtc->new_enabled) max_pixclk = max(max_pixclk, intel_crtc->new_config->adjusted_mode.crtc_clock); } return max_pixclk; } static void valleyview_modeset_global_pipes(struct drm_device *dev, unsigned *prepare_pipes) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc; int max_pixclk = intel_mode_max_pixclk(dev_priv); if (valleyview_calc_cdclk(dev_priv, max_pixclk) == dev_priv->vlv_cdclk_freq) return; /* disable/enable all currently active pipes while we change cdclk */ for_each_intel_crtc(dev, intel_crtc) if (intel_crtc->base.enabled) *prepare_pipes |= (1 << intel_crtc->pipe); } static void valleyview_modeset_global_resources(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int max_pixclk = intel_mode_max_pixclk(dev_priv); int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk); if (req_cdclk != dev_priv->vlv_cdclk_freq) { if (IS_CHERRYVIEW(dev)) cherryview_set_cdclk(dev, req_cdclk); else valleyview_set_cdclk(dev, req_cdclk); } modeset_update_crtc_power_domains(dev); } static void valleyview_crtc_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; int pipe = intel_crtc->pipe; bool is_dsi; WARN_ON(!crtc->enabled); if (intel_crtc->active) return; is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI); if (!is_dsi) { if (IS_CHERRYVIEW(dev)) chv_prepare_pll(intel_crtc); else vlv_prepare_pll(intel_crtc); } if (intel_crtc->config.has_dp_encoder) intel_dp_set_m_n(intel_crtc); intel_set_pipe_timings(intel_crtc); i9xx_set_pipeconf(intel_crtc); intel_crtc->active = true; intel_set_cpu_fifo_underrun_reporting(dev, pipe, true); for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->pre_pll_enable) encoder->pre_pll_enable(encoder); if (!is_dsi) { if (IS_CHERRYVIEW(dev)) chv_enable_pll(intel_crtc); else vlv_enable_pll(intel_crtc); } for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->pre_enable) encoder->pre_enable(encoder); i9xx_pfit_enable(intel_crtc); intel_crtc_load_lut(crtc); intel_update_watermarks(crtc); intel_enable_pipe(intel_crtc); for_each_encoder_on_crtc(dev, crtc, encoder) encoder->enable(encoder); intel_crtc_enable_planes(crtc); /* Underruns don't raise interrupts, so check manually. */ i9xx_check_fifo_underruns(dev); } static void i9xx_set_pll_dividers(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0); I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1); } static void i9xx_crtc_enable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; int pipe = intel_crtc->pipe; WARN_ON(!crtc->enabled); if (intel_crtc->active) return; i9xx_set_pll_dividers(intel_crtc); if (intel_crtc->config.has_dp_encoder) intel_dp_set_m_n(intel_crtc); intel_set_pipe_timings(intel_crtc); i9xx_set_pipeconf(intel_crtc); intel_crtc->active = true; if (!IS_GEN2(dev)) intel_set_cpu_fifo_underrun_reporting(dev, pipe, true); for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->pre_enable) encoder->pre_enable(encoder); i9xx_enable_pll(intel_crtc); i9xx_pfit_enable(intel_crtc); intel_crtc_load_lut(crtc); intel_update_watermarks(crtc); intel_enable_pipe(intel_crtc); for_each_encoder_on_crtc(dev, crtc, encoder) encoder->enable(encoder); intel_crtc_enable_planes(crtc); /* * Gen2 reports pipe underruns whenever all planes are disabled. * So don't enable underrun reporting before at least some planes * are enabled. * FIXME: Need to fix the logic to work when we turn off all planes * but leave the pipe running. */ if (IS_GEN2(dev)) intel_set_cpu_fifo_underrun_reporting(dev, pipe, true); /* Underruns don't raise interrupts, so check manually. */ i9xx_check_fifo_underruns(dev); } static void i9xx_pfit_disable(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; if (!crtc->config.gmch_pfit.control) return; assert_pipe_disabled(dev_priv, crtc->pipe); DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", I915_READ(PFIT_CONTROL)); I915_WRITE(PFIT_CONTROL, 0); } static void i9xx_crtc_disable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *encoder; int pipe = intel_crtc->pipe; if (!intel_crtc->active) return; /* * Gen2 reports pipe underruns whenever all planes are disabled. * So diasble underrun reporting before all the planes get disabled. * FIXME: Need to fix the logic to work when we turn off all planes * but leave the pipe running. */ if (IS_GEN2(dev)) intel_set_cpu_fifo_underrun_reporting(dev, pipe, false); /* * Vblank time updates from the shadow to live plane control register * are blocked if the memory self-refresh mode is active at that * moment. So to make sure the plane gets truly disabled, disable * first the self-refresh mode. The self-refresh enable bit in turn * will be checked/applied by the HW only at the next frame start * event which is after the vblank start event, so we need to have a * wait-for-vblank between disabling the plane and the pipe. */ intel_set_memory_cxsr(dev_priv, false); intel_crtc_disable_planes(crtc); for_each_encoder_on_crtc(dev, crtc, encoder) encoder->disable(encoder); /* * On gen2 planes are double buffered but the pipe isn't, so we must * wait for planes to fully turn off before disabling the pipe. * We also need to wait on all gmch platforms because of the * self-refresh mode constraint explained above. */ intel_wait_for_vblank(dev, pipe); intel_disable_pipe(dev_priv, pipe); i9xx_pfit_disable(intel_crtc); for_each_encoder_on_crtc(dev, crtc, encoder) if (encoder->post_disable) encoder->post_disable(encoder); if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) { if (IS_CHERRYVIEW(dev)) chv_disable_pll(dev_priv, pipe); else if (IS_VALLEYVIEW(dev)) vlv_disable_pll(dev_priv, pipe); else i9xx_disable_pll(dev_priv, pipe); } if (!IS_GEN2(dev)) intel_set_cpu_fifo_underrun_reporting(dev, pipe, false); intel_crtc->active = false; intel_update_watermarks(crtc); mutex_lock(&dev->struct_mutex); intel_update_fbc(dev); mutex_unlock(&dev->struct_mutex); } static void i9xx_crtc_off(struct drm_crtc *crtc) { } static void intel_crtc_update_sarea(struct drm_crtc *crtc, bool enabled) { struct drm_device *dev = crtc->dev; struct drm_i915_master_private *master_priv; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; if (!dev->primary->master) return; master_priv = dev->primary->master->driver_priv; if (!master_priv->sarea_priv) return; switch (pipe) { case 0: master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0; master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0; break; case 1: master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0; master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0; break; default: DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe)); break; } } /* Master function to enable/disable CRTC and corresponding power wells */ void intel_crtc_control(struct drm_crtc *crtc, bool enable) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum intel_display_power_domain domain; unsigned long domains; if (enable) { if (!intel_crtc->active) { domains = get_crtc_power_domains(crtc); for_each_power_domain(domain, domains) intel_display_power_get(dev_priv, domain); intel_crtc->enabled_power_domains = domains; dev_priv->display.crtc_enable(crtc); } } else { if (intel_crtc->active) { dev_priv->display.crtc_disable(crtc); domains = intel_crtc->enabled_power_domains; for_each_power_domain(domain, domains) intel_display_power_put(dev_priv, domain); intel_crtc->enabled_power_domains = 0; } } } /** * Sets the power management mode of the pipe and plane. */ void intel_crtc_update_dpms(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct intel_encoder *intel_encoder; bool enable = false; for_each_encoder_on_crtc(dev, crtc, intel_encoder) enable |= intel_encoder->connectors_active; intel_crtc_control(crtc, enable); intel_crtc_update_sarea(crtc, enable); } static void intel_crtc_disable(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_connector *connector; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb); enum pipe pipe = to_intel_crtc(crtc)->pipe; /* crtc should still be enabled when we disable it. */ WARN_ON(!crtc->enabled); dev_priv->display.crtc_disable(crtc); intel_crtc_update_sarea(crtc, false); dev_priv->display.off(crtc); if (crtc->primary->fb) { mutex_lock(&dev->struct_mutex); intel_unpin_fb_obj(old_obj); i915_gem_track_fb(old_obj, NULL, INTEL_FRONTBUFFER_PRIMARY(pipe)); mutex_unlock(&dev->struct_mutex); crtc->primary->fb = NULL; } /* Update computed state. */ list_for_each_entry(connector, &dev->mode_config.connector_list, head) { if (!connector->encoder || !connector->encoder->crtc) continue; if (connector->encoder->crtc != crtc) continue; connector->dpms = DRM_MODE_DPMS_OFF; to_intel_encoder(connector->encoder)->connectors_active = false; } } void intel_encoder_destroy(struct drm_encoder *encoder) { struct intel_encoder *intel_encoder = to_intel_encoder(encoder); drm_encoder_cleanup(encoder); kfree(intel_encoder); } /* Simple dpms helper for encoders with just one connector, no cloning and only * one kind of off state. It clamps all !ON modes to fully OFF and changes the * state of the entire output pipe. */ static void intel_encoder_dpms(struct intel_encoder *encoder, int mode) { if (mode == DRM_MODE_DPMS_ON) { encoder->connectors_active = true; intel_crtc_update_dpms(encoder->base.crtc); } else { encoder->connectors_active = false; intel_crtc_update_dpms(encoder->base.crtc); } } /* Cross check the actual hw state with our own modeset state tracking (and it's * internal consistency). */ static void intel_connector_check_state(struct intel_connector *connector) { if (connector->get_hw_state(connector)) { struct intel_encoder *encoder = connector->encoder; struct drm_crtc *crtc; bool encoder_enabled; enum pipe pipe; DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.base.id, connector->base.name); /* there is no real hw state for MST connectors */ if (connector->mst_port) return; WARN(connector->base.dpms == DRM_MODE_DPMS_OFF, "wrong connector dpms state\n"); WARN(connector->base.encoder != &encoder->base, "active connector not linked to encoder\n"); if (encoder) { WARN(!encoder->connectors_active, "encoder->connectors_active not set\n"); encoder_enabled = encoder->get_hw_state(encoder, &pipe); WARN(!encoder_enabled, "encoder not enabled\n"); if (WARN_ON(!encoder->base.crtc)) return; crtc = encoder->base.crtc; WARN(!crtc->enabled, "crtc not enabled\n"); WARN(!to_intel_crtc(crtc)->active, "crtc not active\n"); WARN(pipe != to_intel_crtc(crtc)->pipe, "encoder active on the wrong pipe\n"); } } } /* Even simpler default implementation, if there's really no special case to * consider. */ void intel_connector_dpms(struct drm_connector *connector, int mode) { /* All the simple cases only support two dpms states. */ if (mode != DRM_MODE_DPMS_ON) mode = DRM_MODE_DPMS_OFF; if (mode == connector->dpms) return; connector->dpms = mode; /* Only need to change hw state when actually enabled */ if (connector->encoder) intel_encoder_dpms(to_intel_encoder(connector->encoder), mode); intel_modeset_check_state(connector->dev); } /* Simple connector->get_hw_state implementation for encoders that support only * one connector and no cloning and hence the encoder state determines the state * of the connector. */ bool intel_connector_get_hw_state(struct intel_connector *connector) { enum pipe pipe = 0; struct intel_encoder *encoder = connector->encoder; return encoder->get_hw_state(encoder, &pipe); } static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe, struct intel_crtc_config *pipe_config) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *pipe_B_crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]); DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n", pipe_name(pipe), pipe_config->fdi_lanes); if (pipe_config->fdi_lanes > 4) { DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n", pipe_name(pipe), pipe_config->fdi_lanes); return false; } if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { if (pipe_config->fdi_lanes > 2) { DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n", pipe_config->fdi_lanes); return false; } else { return true; } } if (INTEL_INFO(dev)->num_pipes == 2) return true; /* Ivybridge 3 pipe is really complicated */ switch (pipe) { case PIPE_A: return true; case PIPE_B: if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled && pipe_config->fdi_lanes > 2) { DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n", pipe_name(pipe), pipe_config->fdi_lanes); return false; } return true; case PIPE_C: if (!pipe_has_enabled_pch(pipe_B_crtc) || pipe_B_crtc->config.fdi_lanes <= 2) { if (pipe_config->fdi_lanes > 2) { DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n", pipe_name(pipe), pipe_config->fdi_lanes); return false; } } else { DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n"); return false; } return true; default: BUG(); } } #define RETRY 1 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc, struct intel_crtc_config *pipe_config) { struct drm_device *dev = intel_crtc->base.dev; struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode; int lane, link_bw, fdi_dotclock; bool setup_ok, needs_recompute = false; retry: /* FDI is a binary signal running at ~2.7GHz, encoding * each output octet as 10 bits. The actual frequency * is stored as a divider into a 100MHz clock, and the * mode pixel clock is stored in units of 1KHz. * Hence the bw of each lane in terms of the mode signal * is: */ link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10; fdi_dotclock = adjusted_mode->crtc_clock; lane = ironlake_get_lanes_required(fdi_dotclock, link_bw, pipe_config->pipe_bpp); pipe_config->fdi_lanes = lane; intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock, link_bw, &pipe_config->fdi_m_n); setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev, intel_crtc->pipe, pipe_config); if (!setup_ok && pipe_config->pipe_bpp > 6*3) { pipe_config->pipe_bpp -= 2*3; DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n", pipe_config->pipe_bpp); needs_recompute = true; pipe_config->bw_constrained = true; goto retry; } if (needs_recompute) return RETRY; return setup_ok ? 0 : -EINVAL; } static void hsw_compute_ips_config(struct intel_crtc *crtc, struct intel_crtc_config *pipe_config) { pipe_config->ips_enabled = i915.enable_ips && hsw_crtc_supports_ips(crtc) && pipe_config->pipe_bpp <= 24; } static int intel_crtc_compute_config(struct intel_crtc *crtc, struct intel_crtc_config *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode; /* FIXME should check pixel clock limits on all platforms */ if (INTEL_INFO(dev)->gen < 4) { struct drm_i915_private *dev_priv = dev->dev_private; int clock_limit = dev_priv->display.get_display_clock_speed(dev); /* * Enable pixel doubling when the dot clock * is > 90% of the (display) core speed. * * GDG double wide on either pipe, * otherwise pipe A only. */ if ((crtc->pipe == PIPE_A || IS_I915G(dev)) && adjusted_mode->crtc_clock > clock_limit * 9 / 10) { clock_limit *= 2; pipe_config->double_wide = true; } if (adjusted_mode->crtc_clock > clock_limit * 9 / 10) return -EINVAL; } /* * Pipe horizontal size must be even in: * - DVO ganged mode * - LVDS dual channel mode * - Double wide pipe */ if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) && intel_is_dual_link_lvds(dev)) || pipe_config->double_wide) pipe_config->pipe_src_w &= ~1; /* Cantiga+ cannot handle modes with a hsync front porch of 0. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. */ if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) && adjusted_mode->hsync_start == adjusted_mode->hdisplay) return -EINVAL; if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) { pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */ } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) { /* only a 8bpc pipe, with 6bpc dither through the panel fitter * for lvds. */ pipe_config->pipe_bpp = 8*3; } if (HAS_IPS(dev)) hsw_compute_ips_config(crtc, pipe_config); /* * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the * old clock survives for now. */ if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev)) pipe_config->shared_dpll = crtc->config.shared_dpll; if (pipe_config->has_pch_encoder) return ironlake_fdi_compute_config(crtc, pipe_config); return 0; } static int valleyview_get_display_clock_speed(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int vco = valleyview_get_vco(dev_priv); u32 val; int divider; /* FIXME: Punit isn't quite ready yet */ if (IS_CHERRYVIEW(dev)) return 400000; mutex_lock(&dev_priv->dpio_lock); val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL); mutex_unlock(&dev_priv->dpio_lock); divider = val & DISPLAY_FREQUENCY_VALUES; WARN((val & DISPLAY_FREQUENCY_STATUS) != (divider << DISPLAY_FREQUENCY_STATUS_SHIFT), "cdclk change in progress\n"); return DIV_ROUND_CLOSEST(vco << 1, divider + 1); } static int i945_get_display_clock_speed(struct drm_device *dev) { return 400000; } static int i915_get_display_clock_speed(struct drm_device *dev) { return 333000; } static int i9xx_misc_get_display_clock_speed(struct drm_device *dev) { return 200000; } static int pnv_get_display_clock_speed(struct drm_device *dev) { u16 gcfgc = 0; pci_read_config_word(dev->pdev, GCFGC, &gcfgc); switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { case GC_DISPLAY_CLOCK_267_MHZ_PNV: return 267000; case GC_DISPLAY_CLOCK_333_MHZ_PNV: return 333000; case GC_DISPLAY_CLOCK_444_MHZ_PNV: return 444000; case GC_DISPLAY_CLOCK_200_MHZ_PNV: return 200000; default: DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc); case GC_DISPLAY_CLOCK_133_MHZ_PNV: return 133000; case GC_DISPLAY_CLOCK_167_MHZ_PNV: return 167000; } } static int i915gm_get_display_clock_speed(struct drm_device *dev) { u16 gcfgc = 0; pci_read_config_word(dev->pdev, GCFGC, &gcfgc); if (gcfgc & GC_LOW_FREQUENCY_ENABLE) return 133000; else { switch (gcfgc & GC_DISPLAY_CLOCK_MASK) { case GC_DISPLAY_CLOCK_333_MHZ: return 333000; default: case GC_DISPLAY_CLOCK_190_200_MHZ: return 190000; } } } static int i865_get_display_clock_speed(struct drm_device *dev) { return 266000; } static int i855_get_display_clock_speed(struct drm_device *dev) { u16 hpllcc = 0; /* Assume that the hardware is in the high speed state. This * should be the default. */ switch (hpllcc & GC_CLOCK_CONTROL_MASK) { case GC_CLOCK_133_200: case GC_CLOCK_100_200: return 200000; case GC_CLOCK_166_250: return 250000; case GC_CLOCK_100_133: return 133000; } /* Shouldn't happen */ return 0; } static int i830_get_display_clock_speed(struct drm_device *dev) { return 133000; } static void intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den) { while (*num > DATA_LINK_M_N_MASK || *den > DATA_LINK_M_N_MASK) { *num >>= 1; *den >>= 1; } } static void compute_m_n(unsigned int m, unsigned int n, uint32_t *ret_m, uint32_t *ret_n) { *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); *ret_m = div_u64((uint64_t) m * *ret_n, n); intel_reduce_m_n_ratio(ret_m, ret_n); } void intel_link_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock, int link_clock, struct intel_link_m_n *m_n) { m_n->tu = 64; compute_m_n(bits_per_pixel * pixel_clock, link_clock * nlanes * 8, &m_n->gmch_m, &m_n->gmch_n); compute_m_n(pixel_clock, link_clock, &m_n->link_m, &m_n->link_n); } static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv) { if (i915.panel_use_ssc >= 0) return i915.panel_use_ssc != 0; return dev_priv->vbt.lvds_use_ssc && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE); } static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; int refclk; if (IS_VALLEYVIEW(dev)) { refclk = 100000; } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) && intel_panel_use_ssc(dev_priv) && num_connectors < 2) { refclk = dev_priv->vbt.lvds_ssc_freq; DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk); } else if (!IS_GEN2(dev)) { refclk = 96000; } else { refclk = 48000; } return refclk; } static uint32_t pnv_dpll_compute_fp(struct dpll *dpll) { return (1 << dpll->n) << 16 | dpll->m2; } static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll) { return dpll->n << 16 | dpll->m1 << 8 | dpll->m2; } static void i9xx_update_pll_dividers(struct intel_crtc *crtc, intel_clock_t *reduced_clock) { struct drm_device *dev = crtc->base.dev; u32 fp, fp2 = 0; if (IS_PINEVIEW(dev)) { fp = pnv_dpll_compute_fp(&crtc->config.dpll); if (reduced_clock) fp2 = pnv_dpll_compute_fp(reduced_clock); } else { fp = i9xx_dpll_compute_fp(&crtc->config.dpll); if (reduced_clock) fp2 = i9xx_dpll_compute_fp(reduced_clock); } crtc->config.dpll_hw_state.fp0 = fp; crtc->lowfreq_avail = false; if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) && reduced_clock && i915.powersave) { crtc->config.dpll_hw_state.fp1 = fp2; crtc->lowfreq_avail = true; } else { crtc->config.dpll_hw_state.fp1 = fp; } } static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe pipe) { u32 reg_val; /* * PLLB opamp always calibrates to max value of 0x3f, force enable it * and set it to a reasonable value instead. */ reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); reg_val &= 0xffffff00; reg_val |= 0x00000030; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); reg_val &= 0x8cffffff; reg_val = 0x8c000000; vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1)); reg_val &= 0xffffff00; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val); reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13); reg_val &= 0x00ffffff; reg_val |= 0xb0000000; vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val); } static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc, struct intel_link_m_n *m_n) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = crtc->pipe; I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n); I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m); I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n); } static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc, struct intel_link_m_n *m_n, struct intel_link_m_n *m2_n2) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = crtc->pipe; enum transcoder transcoder = crtc->config.cpu_transcoder; if (INTEL_INFO(dev)->gen >= 5) { I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m); I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n); I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m); I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n); /* M2_N2 registers to be set only for gen < 8 (M2_N2 available * for gen < 8) and if DRRS is supported (to make sure the * registers are not unnecessarily accessed). */ if (m2_n2 && INTEL_INFO(dev)->gen < 8 && crtc->config.has_drrs) { I915_WRITE(PIPE_DATA_M2(transcoder), TU_SIZE(m2_n2->tu) | m2_n2->gmch_m); I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n); I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m); I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n); } } else { I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m); I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n); I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m); I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n); } } void intel_dp_set_m_n(struct intel_crtc *crtc) { if (crtc->config.has_pch_encoder) intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n); else intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n, &crtc->config.dp_m2_n2); } static void vlv_update_pll(struct intel_crtc *crtc) { u32 dpll, dpll_md; /* * Enable DPIO clock input. We should never disable the reference * clock for pipe B, since VGA hotplug / manual detection depends * on it. */ dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV; /* We should never disable this, set it here for state tracking */ if (crtc->pipe == PIPE_B) dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; dpll |= DPLL_VCO_ENABLE; crtc->config.dpll_hw_state.dpll = dpll; dpll_md = (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; crtc->config.dpll_hw_state.dpll_md = dpll_md; } static void vlv_prepare_pll(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = crtc->pipe; u32 mdiv; u32 bestn, bestm1, bestm2, bestp1, bestp2; u32 coreclk, reg_val; mutex_lock(&dev_priv->dpio_lock); bestn = crtc->config.dpll.n; bestm1 = crtc->config.dpll.m1; bestm2 = crtc->config.dpll.m2; bestp1 = crtc->config.dpll.p1; bestp2 = crtc->config.dpll.p2; /* See eDP HDMI DPIO driver vbios notes doc */ /* PLL B needs special handling */ if (pipe == PIPE_B) vlv_pllb_recal_opamp(dev_priv, pipe); /* Set up Tx target for periodic Rcomp update */ vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f); /* Disable target IRef on PLL */ reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe)); reg_val &= 0x00ffffff; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val); /* Disable fast lock */ vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610); /* Set idtafcrecal before PLL is enabled */ mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK)); mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT)); mdiv |= ((bestn << DPIO_N_SHIFT)); mdiv |= (1 << DPIO_K_SHIFT); /* * Post divider depends on pixel clock rate, DAC vs digital (and LVDS, * but we don't support that). * Note: don't use the DAC post divider as it seems unstable. */ mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT); vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); mdiv |= DPIO_ENABLE_CALIBRATION; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv); /* Set HBR and RBR LPF coefficients */ if (crtc->config.port_clock == 162000 || intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) || intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 0x009f0003); else vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe), 0x00d0000f); if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) || intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) { /* Use SSC source */ if (pipe == PIPE_A) vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 0x0df40000); else vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 0x0df70000); } else { /* HDMI or VGA */ /* Use bend source */ if (pipe == PIPE_A) vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 0x0df70000); else vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe), 0x0df40000); } coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe)); coreclk = (coreclk & 0x0000ff00) | 0x01c00000; if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) || intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP)) coreclk |= 0x01000000; vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk); vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000); mutex_unlock(&dev_priv->dpio_lock); } static void chv_update_pll(struct intel_crtc *crtc) { crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS | DPLL_VCO_ENABLE; if (crtc->pipe != PIPE_A) crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV; crtc->config.dpll_hw_state.dpll_md = (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; } static void chv_prepare_pll(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = crtc->pipe; int dpll_reg = DPLL(crtc->pipe); enum dpio_channel port = vlv_pipe_to_channel(pipe); u32 loopfilter, intcoeff; u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac; int refclk; bestn = crtc->config.dpll.n; bestm2_frac = crtc->config.dpll.m2 & 0x3fffff; bestm1 = crtc->config.dpll.m1; bestm2 = crtc->config.dpll.m2 >> 22; bestp1 = crtc->config.dpll.p1; bestp2 = crtc->config.dpll.p2; /* * Enable Refclk and SSC */ I915_WRITE(dpll_reg, crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE); mutex_lock(&dev_priv->dpio_lock); /* p1 and p2 divider */ vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port), 5 << DPIO_CHV_S1_DIV_SHIFT | bestp1 << DPIO_CHV_P1_DIV_SHIFT | bestp2 << DPIO_CHV_P2_DIV_SHIFT | 1 << DPIO_CHV_K_DIV_SHIFT); /* Feedback post-divider - m2 */ vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2); /* Feedback refclk divider - n and m1 */ vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port), DPIO_CHV_M1_DIV_BY_2 | 1 << DPIO_CHV_N_DIV_SHIFT); /* M2 fraction division */ vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac); /* M2 fraction division enable */ vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), DPIO_CHV_FRAC_DIV_EN | (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT)); /* Loop filter */ refclk = i9xx_get_refclk(&crtc->base, 0); loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT | 2 << DPIO_CHV_GAIN_CTRL_SHIFT; if (refclk == 100000) intcoeff = 11; else if (refclk == 38400) intcoeff = 10; else intcoeff = 9; loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT; vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter); /* AFC Recal */ vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) | DPIO_AFC_RECAL); mutex_unlock(&dev_priv->dpio_lock); } static void i9xx_update_pll(struct intel_crtc *crtc, intel_clock_t *reduced_clock, int num_connectors) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 dpll; bool is_sdvo; struct dpll *clock = &crtc->config.dpll; i9xx_update_pll_dividers(crtc, reduced_clock); is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) || intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI); dpll = DPLL_VGA_MODE_DIS; if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) dpll |= DPLLB_MODE_LVDS; else dpll |= DPLLB_MODE_DAC_SERIAL; if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) { dpll |= (crtc->config.pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES; } if (is_sdvo) dpll |= DPLL_SDVO_HIGH_SPEED; if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) dpll |= DPLL_SDVO_HIGH_SPEED; /* compute bitmask from p1 value */ if (IS_PINEVIEW(dev)) dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW; else { dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; if (IS_G4X(dev) && reduced_clock) dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; } switch (clock->p2) { case 5: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; break; case 7: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; break; case 10: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; break; case 14: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; break; } if (INTEL_INFO(dev)->gen >= 4) dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT); if (crtc->config.sdvo_tv_clock) dpll |= PLL_REF_INPUT_TVCLKINBC; else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) && intel_panel_use_ssc(dev_priv) && num_connectors < 2) dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; else dpll |= PLL_REF_INPUT_DREFCLK; dpll |= DPLL_VCO_ENABLE; crtc->config.dpll_hw_state.dpll = dpll; if (INTEL_INFO(dev)->gen >= 4) { u32 dpll_md = (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT; crtc->config.dpll_hw_state.dpll_md = dpll_md; } } static void i8xx_update_pll(struct intel_crtc *crtc, intel_clock_t *reduced_clock, int num_connectors) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 dpll; struct dpll *clock = &crtc->config.dpll; i9xx_update_pll_dividers(crtc, reduced_clock); dpll = DPLL_VGA_MODE_DIS; if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) { dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; } else { if (clock->p1 == 2) dpll |= PLL_P1_DIVIDE_BY_TWO; else dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT; if (clock->p2 == 4) dpll |= PLL_P2_DIVIDE_BY_4; } if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO)) dpll |= DPLL_DVO_2X_MODE; if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) && intel_panel_use_ssc(dev_priv) && num_connectors < 2) dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; else dpll |= PLL_REF_INPUT_DREFCLK; dpll |= DPLL_VCO_ENABLE; crtc->config.dpll_hw_state.dpll = dpll; } static void intel_set_pipe_timings(struct intel_crtc *intel_crtc) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe = intel_crtc->pipe; enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; struct drm_display_mode *adjusted_mode = &intel_crtc->config.adjusted_mode; uint32_t crtc_vtotal, crtc_vblank_end; int vsyncshift = 0; /* We need to be careful not to changed the adjusted mode, for otherwise * the hw state checker will get angry at the mismatch. */ crtc_vtotal = adjusted_mode->crtc_vtotal; crtc_vblank_end = adjusted_mode->crtc_vblank_end; if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { /* the chip adds 2 halflines automatically */ crtc_vtotal -= 1; crtc_vblank_end -= 1; if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO)) vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; else vsyncshift = adjusted_mode->crtc_hsync_start - adjusted_mode->crtc_htotal / 2; if (vsyncshift < 0) vsyncshift += adjusted_mode->crtc_htotal; } if (INTEL_INFO(dev)->gen > 3) I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift); I915_WRITE(HTOTAL(cpu_transcoder), (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); I915_WRITE(HBLANK(cpu_transcoder), (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); I915_WRITE(HSYNC(cpu_transcoder), (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); I915_WRITE(VTOTAL(cpu_transcoder), (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); I915_WRITE(VBLANK(cpu_transcoder), (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); I915_WRITE(VSYNC(cpu_transcoder), (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); /* Workaround: when the EDP input selection is B, the VTOTAL_B must be * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is * documented on the DDI_FUNC_CTL register description, EDP Input Select * bits. */ if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP && (pipe == PIPE_B || pipe == PIPE_C)) I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder))); /* pipesrc controls the size that is scaled from, which should * always be the user's requested size. */ I915_WRITE(PIPESRC(pipe), ((intel_crtc->config.pipe_src_w - 1) << 16) | (intel_crtc->config.pipe_src_h - 1)); } static void intel_get_pipe_timings(struct intel_crtc *crtc, struct intel_crtc_config *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; uint32_t tmp; tmp = I915_READ(HTOTAL(cpu_transcoder)); pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; tmp = I915_READ(HBLANK(cpu_transcoder)); pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1; pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1; tmp = I915_READ(HSYNC(cpu_transcoder)); pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; tmp = I915_READ(VTOTAL(cpu_transcoder)); pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; tmp = I915_READ(VBLANK(cpu_transcoder)); pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1; pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1; tmp = I915_READ(VSYNC(cpu_transcoder)); pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) { pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; pipe_config->adjusted_mode.crtc_vtotal += 1; pipe_config->adjusted_mode.crtc_vblank_end += 1; } tmp = I915_READ(PIPESRC(crtc->pipe)); pipe_config->pipe_src_h = (tmp & 0xffff) + 1; pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1; pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h; pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w; } void intel_mode_from_pipe_config(struct drm_display_mode *mode, struct intel_crtc_config *pipe_config) { mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay; mode->htotal = pipe_config->adjusted_mode.crtc_htotal; mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start; mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end; mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay; mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal; mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start; mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end; mode->flags = pipe_config->adjusted_mode.flags; mode->clock = pipe_config->adjusted_mode.crtc_clock; mode->flags |= pipe_config->adjusted_mode.flags; } static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t pipeconf; pipeconf = 0; if (dev_priv->quirks & QUIRK_PIPEA_FORCE && I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE) pipeconf |= PIPECONF_ENABLE; if (intel_crtc->config.double_wide) pipeconf |= PIPECONF_DOUBLE_WIDE; /* only g4x and later have fancy bpc/dither controls */ if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) { /* Bspec claims that we can't use dithering for 30bpp pipes. */ if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30) pipeconf |= PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP; switch (intel_crtc->config.pipe_bpp) { case 18: pipeconf |= PIPECONF_6BPC; break; case 24: pipeconf |= PIPECONF_8BPC; break; case 30: pipeconf |= PIPECONF_10BPC; break; default: /* Case prevented by intel_choose_pipe_bpp_dither. */ BUG(); } } if (HAS_PIPE_CXSR(dev)) { if (intel_crtc->lowfreq_avail) { DRM_DEBUG_KMS("enabling CxSR downclocking\n"); pipeconf |= PIPECONF_CXSR_DOWNCLOCK; } else { DRM_DEBUG_KMS("disabling CxSR downclocking\n"); } } if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { if (INTEL_INFO(dev)->gen < 4 || intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO)) pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; else pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; } else pipeconf |= PIPECONF_PROGRESSIVE; if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range) pipeconf |= PIPECONF_COLOR_RANGE_SELECT; I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf); POSTING_READ(PIPECONF(intel_crtc->pipe)); } static int i9xx_crtc_mode_set(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *fb) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int refclk, num_connectors = 0; intel_clock_t clock, reduced_clock; bool ok, has_reduced_clock = false; bool is_lvds = false, is_dsi = false; struct intel_encoder *encoder; const intel_limit_t *limit; for_each_encoder_on_crtc(dev, crtc, encoder) { switch (encoder->type) { case INTEL_OUTPUT_LVDS: is_lvds = true; break; case INTEL_OUTPUT_DSI: is_dsi = true; break; } num_connectors++; } if (is_dsi) return 0; if (!intel_crtc->config.clock_set) { refclk = i9xx_get_refclk(crtc, num_connectors); /* * Returns a set of divisors for the desired target clock with * the given refclk, or FALSE. The returned values represent * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + * 2) / p1 / p2. */ limit = intel_limit(crtc, refclk); ok = dev_priv->display.find_dpll(limit, crtc, intel_crtc->config.port_clock, refclk, NULL, &clock); if (!ok) { DRM_ERROR("Couldn't find PLL settings for mode!\n"); return -EINVAL; } if (is_lvds && dev_priv->lvds_downclock_avail) { /* * Ensure we match the reduced clock's P to the target * clock. If the clocks don't match, we can't switch * the display clock by using the FP0/FP1. In such case * we will disable the LVDS downclock feature. */ has_reduced_clock = dev_priv->display.find_dpll(limit, crtc, dev_priv->lvds_downclock, refclk, &clock, &reduced_clock); } /* Compat-code for transition, will disappear. */ intel_crtc->config.dpll.n = clock.n; intel_crtc->config.dpll.m1 = clock.m1; intel_crtc->config.dpll.m2 = clock.m2; intel_crtc->config.dpll.p1 = clock.p1; intel_crtc->config.dpll.p2 = clock.p2; } if (IS_GEN2(dev)) { i8xx_update_pll(intel_crtc, has_reduced_clock ? &reduced_clock : NULL, num_connectors); } else if (IS_CHERRYVIEW(dev)) { chv_update_pll(intel_crtc); } else if (IS_VALLEYVIEW(dev)) { vlv_update_pll(intel_crtc); } else { i9xx_update_pll(intel_crtc, has_reduced_clock ? &reduced_clock : NULL, num_connectors); } return 0; } static void i9xx_get_pfit_config(struct intel_crtc *crtc, struct intel_crtc_config *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t tmp; if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev))) return; tmp = I915_READ(PFIT_CONTROL); if (!(tmp & PFIT_ENABLE)) return; /* Check whether the pfit is attached to our pipe. */ if (INTEL_INFO(dev)->gen < 4) { if (crtc->pipe != PIPE_B) return; } else { if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) return; } pipe_config->gmch_pfit.control = tmp; pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS); if (INTEL_INFO(dev)->gen < 5) pipe_config->gmch_pfit.lvds_border_bits = I915_READ(LVDS) & LVDS_BORDER_ENABLE; } static void vlv_crtc_clock_get(struct intel_crtc *crtc, struct intel_crtc_config *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = pipe_config->cpu_transcoder; intel_clock_t clock; u32 mdiv; int refclk = 100000; /* In case of MIPI DPLL will not even be used */ if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)) return; mutex_lock(&dev_priv->dpio_lock); mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); mutex_unlock(&dev_priv->dpio_lock); clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; clock.m2 = mdiv & DPIO_M2DIV_MASK; clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; vlv_clock(refclk, &clock); /* clock.dot is the fast clock */ pipe_config->port_clock = clock.dot / 5; } static void i9xx_get_plane_config(struct intel_crtc *crtc, struct intel_plane_config *plane_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 val, base, offset; int pipe = crtc->pipe, plane = crtc->plane; int fourcc, pixel_format; int aligned_height; crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL); if (!crtc->base.primary->fb) { DRM_DEBUG_KMS("failed to alloc fb\n"); return; } val = I915_READ(DSPCNTR(plane)); if (INTEL_INFO(dev)->gen >= 4) if (val & DISPPLANE_TILED) plane_config->tiled = true; pixel_format = val & DISPPLANE_PIXFORMAT_MASK; fourcc = intel_format_to_fourcc(pixel_format); crtc->base.primary->fb->pixel_format = fourcc; crtc->base.primary->fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8; if (INTEL_INFO(dev)->gen >= 4) { if (plane_config->tiled) offset = I915_READ(DSPTILEOFF(plane)); else offset = I915_READ(DSPLINOFF(plane)); base = I915_READ(DSPSURF(plane)) & 0xfffff000; } else { base = I915_READ(DSPADDR(plane)); } plane_config->base = base; val = I915_READ(PIPESRC(pipe)); crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1; crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1; val = I915_READ(DSPSTRIDE(pipe)); crtc->base.primary->fb->pitches[0] = val & 0xffffffc0; aligned_height = intel_align_height(dev, crtc->base.primary->fb->height, plane_config->tiled); plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] * aligned_height); DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", pipe, plane, crtc->base.primary->fb->width, crtc->base.primary->fb->height, crtc->base.primary->fb->bits_per_pixel, base, crtc->base.primary->fb->pitches[0], plane_config->size); } static void chv_crtc_clock_get(struct intel_crtc *crtc, struct intel_crtc_config *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = pipe_config->cpu_transcoder; enum dpio_channel port = vlv_pipe_to_channel(pipe); intel_clock_t clock; u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2; int refclk = 100000; mutex_lock(&dev_priv->dpio_lock); cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); mutex_unlock(&dev_priv->dpio_lock); clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff); clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; chv_clock(refclk, &clock); /* clock.dot is the fast clock */ pipe_config->port_clock = clock.dot / 5; } static bool i9xx_get_pipe_config(struct intel_crtc *crtc, struct intel_crtc_config *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t tmp; if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PIPE(crtc->pipe))) return false; pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; pipe_config->shared_dpll = DPLL_ID_PRIVATE; tmp = I915_READ(PIPECONF(crtc->pipe)); if (!(tmp & PIPECONF_ENABLE)) return false; if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) { switch (tmp & PIPECONF_BPC_MASK) { case PIPECONF_6BPC: pipe_config->pipe_bpp = 18; break; case PIPECONF_8BPC: pipe_config->pipe_bpp = 24; break; case PIPECONF_10BPC: pipe_config->pipe_bpp = 30; break; default: break; } } if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT)) pipe_config->limited_color_range = true; if (INTEL_INFO(dev)->gen < 4) pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; intel_get_pipe_timings(crtc, pipe_config); i9xx_get_pfit_config(crtc, pipe_config); if (INTEL_INFO(dev)->gen >= 4) { tmp = I915_READ(DPLL_MD(crtc->pipe)); pipe_config->pixel_multiplier = ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; pipe_config->dpll_hw_state.dpll_md = tmp; } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) { tmp = I915_READ(DPLL(crtc->pipe)); pipe_config->pixel_multiplier = ((tmp & SDVO_MULTIPLIER_MASK) >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; } else { /* Note that on i915G/GM the pixel multiplier is in the sdvo * port and will be fixed up in the encoder->get_config * function. */ pipe_config->pixel_multiplier = 1; } pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe)); if (!IS_VALLEYVIEW(dev)) { pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe)); pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe)); } else { /* Mask out read-only status bits. */ pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | DPLL_PORTC_READY_MASK | DPLL_PORTB_READY_MASK); } if (IS_CHERRYVIEW(dev)) chv_crtc_clock_get(crtc, pipe_config); else if (IS_VALLEYVIEW(dev)) vlv_crtc_clock_get(crtc, pipe_config); else i9xx_crtc_clock_get(crtc, pipe_config); return true; } static void ironlake_init_pch_refclk(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *encoder; u32 val, final; bool has_lvds = false; bool has_cpu_edp = false; bool has_panel = false; bool has_ck505 = false; bool can_ssc = false; /* We need to take the global config into account */ for_each_intel_encoder(dev, encoder) { switch (encoder->type) { case INTEL_OUTPUT_LVDS: has_panel = true; has_lvds = true; break; case INTEL_OUTPUT_EDP: has_panel = true; if (enc_to_dig_port(&encoder->base)->port == PORT_A) has_cpu_edp = true; break; } } if (HAS_PCH_IBX(dev)) { has_ck505 = dev_priv->vbt.display_clock_mode; can_ssc = has_ck505; } else { has_ck505 = false; can_ssc = true; } DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n", has_panel, has_lvds, has_ck505); /* Ironlake: try to setup display ref clock before DPLL * enabling. This is only under driver's control after * PCH B stepping, previous chipset stepping should be * ignoring this setting. */ val = I915_READ(PCH_DREF_CONTROL); /* As we must carefully and slowly disable/enable each source in turn, * compute the final state we want first and check if we need to * make any changes at all. */ final = val; final &= ~DREF_NONSPREAD_SOURCE_MASK; if (has_ck505) final |= DREF_NONSPREAD_CK505_ENABLE; else final |= DREF_NONSPREAD_SOURCE_ENABLE; final &= ~DREF_SSC_SOURCE_MASK; final &= ~DREF_CPU_SOURCE_OUTPUT_MASK; final &= ~DREF_SSC1_ENABLE; if (has_panel) { final |= DREF_SSC_SOURCE_ENABLE; if (intel_panel_use_ssc(dev_priv) && can_ssc) final |= DREF_SSC1_ENABLE; if (has_cpu_edp) { if (intel_panel_use_ssc(dev_priv) && can_ssc) final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; else final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; } else final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; } else { final |= DREF_SSC_SOURCE_DISABLE; final |= DREF_CPU_SOURCE_OUTPUT_DISABLE; } if (final == val) return; /* Always enable nonspread source */ val &= ~DREF_NONSPREAD_SOURCE_MASK; if (has_ck505) val |= DREF_NONSPREAD_CK505_ENABLE; else val |= DREF_NONSPREAD_SOURCE_ENABLE; if (has_panel) { val &= ~DREF_SSC_SOURCE_MASK; val |= DREF_SSC_SOURCE_ENABLE; /* SSC must be turned on before enabling the CPU output */ if (intel_panel_use_ssc(dev_priv) && can_ssc) { DRM_DEBUG_KMS("Using SSC on panel\n"); val |= DREF_SSC1_ENABLE; } else val &= ~DREF_SSC1_ENABLE; /* Get SSC going before enabling the outputs */ I915_WRITE(PCH_DREF_CONTROL, val); POSTING_READ(PCH_DREF_CONTROL); udelay(200); val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; /* Enable CPU source on CPU attached eDP */ if (has_cpu_edp) { if (intel_panel_use_ssc(dev_priv) && can_ssc) { DRM_DEBUG_KMS("Using SSC on eDP\n"); val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD; } else val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD; } else val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; I915_WRITE(PCH_DREF_CONTROL, val); POSTING_READ(PCH_DREF_CONTROL); udelay(200); } else { DRM_DEBUG_KMS("Disabling SSC entirely\n"); val &= ~DREF_CPU_SOURCE_OUTPUT_MASK; /* Turn off CPU output */ val |= DREF_CPU_SOURCE_OUTPUT_DISABLE; I915_WRITE(PCH_DREF_CONTROL, val); POSTING_READ(PCH_DREF_CONTROL); udelay(200); /* Turn off the SSC source */ val &= ~DREF_SSC_SOURCE_MASK; val |= DREF_SSC_SOURCE_DISABLE; /* Turn off SSC1 */ val &= ~DREF_SSC1_ENABLE; I915_WRITE(PCH_DREF_CONTROL, val); POSTING_READ(PCH_DREF_CONTROL); udelay(200); } BUG_ON(val != final); } static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv) { uint32_t tmp; tmp = I915_READ(SOUTH_CHICKEN2); tmp |= FDI_MPHY_IOSFSB_RESET_CTL; I915_WRITE(SOUTH_CHICKEN2, tmp); if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) & FDI_MPHY_IOSFSB_RESET_STATUS, 100)) DRM_ERROR("FDI mPHY reset assert timeout\n"); tmp = I915_READ(SOUTH_CHICKEN2); tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL; I915_WRITE(SOUTH_CHICKEN2, tmp); if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) & FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100)) DRM_ERROR("FDI mPHY reset de-assert timeout\n"); } /* WaMPhyProgramming:hsw */ static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv) { uint32_t tmp; tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY); tmp &= ~(0xFF << 24); tmp |= (0x12 << 24); intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY); tmp |= (1 << 11); intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY); tmp |= (1 << 11); intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY); tmp |= (1 << 24) | (1 << 21) | (1 << 18); intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY); tmp |= (1 << 24) | (1 << 21) | (1 << 18); intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY); tmp &= ~(7 << 13); tmp |= (5 << 13); intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY); tmp &= ~(7 << 13); tmp |= (5 << 13); intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY); tmp &= ~0xFF; tmp |= 0x1C; intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY); tmp &= ~0xFF; tmp |= 0x1C; intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY); tmp &= ~(0xFF << 16); tmp |= (0x1C << 16); intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY); tmp &= ~(0xFF << 16); tmp |= (0x1C << 16); intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY); tmp |= (1 << 27); intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY); tmp |= (1 << 27); intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY); tmp &= ~(0xF << 28); tmp |= (4 << 28); intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY); tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY); tmp &= ~(0xF << 28); tmp |= (4 << 28); intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY); } /* Implements 3 different sequences from BSpec chapter "Display iCLK * Programming" based on the parameters passed: * - Sequence to enable CLKOUT_DP * - Sequence to enable CLKOUT_DP without spread * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O */ static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread, bool with_fdi) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t reg, tmp; if (WARN(with_fdi && !with_spread, "FDI requires downspread\n")) with_spread = true; if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE && with_fdi, "LP PCH doesn't have FDI\n")) with_fdi = false; mutex_lock(&dev_priv->dpio_lock); tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); tmp &= ~SBI_SSCCTL_DISABLE; tmp |= SBI_SSCCTL_PATHALT; intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); udelay(24); if (with_spread) { tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); tmp &= ~SBI_SSCCTL_PATHALT; intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); if (with_fdi) { lpt_reset_fdi_mphy(dev_priv); lpt_program_fdi_mphy(dev_priv); } } reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ? SBI_GEN0 : SBI_DBUFF0; tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE; intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); mutex_unlock(&dev_priv->dpio_lock); } /* Sequence to disable CLKOUT_DP */ static void lpt_disable_clkout_dp(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; uint32_t reg, tmp; mutex_lock(&dev_priv->dpio_lock); reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ? SBI_GEN0 : SBI_DBUFF0; tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK); tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE; intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK); tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK); if (!(tmp & SBI_SSCCTL_DISABLE)) { if (!(tmp & SBI_SSCCTL_PATHALT)) { tmp |= SBI_SSCCTL_PATHALT; intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); udelay(32); } tmp |= SBI_SSCCTL_DISABLE; intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK); } mutex_unlock(&dev_priv->dpio_lock); } static void lpt_init_pch_refclk(struct drm_device *dev) { struct intel_encoder *encoder; bool has_vga = false; for_each_intel_encoder(dev, encoder) { switch (encoder->type) { case INTEL_OUTPUT_ANALOG: has_vga = true; break; } } if (has_vga) lpt_enable_clkout_dp(dev, true, true); else lpt_disable_clkout_dp(dev); } /* * Initialize reference clocks when the driver loads */ void intel_init_pch_refclk(struct drm_device *dev) { if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) ironlake_init_pch_refclk(dev); else if (HAS_PCH_LPT(dev)) lpt_init_pch_refclk(dev); } static int ironlake_get_refclk(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *encoder; int num_connectors = 0; bool is_lvds = false; for_each_encoder_on_crtc(dev, crtc, encoder) { switch (encoder->type) { case INTEL_OUTPUT_LVDS: is_lvds = true; break; } num_connectors++; } if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) { DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", dev_priv->vbt.lvds_ssc_freq); return dev_priv->vbt.lvds_ssc_freq; } return 120000; } static void ironlake_set_pipeconf(struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; uint32_t val; val = 0; switch (intel_crtc->config.pipe_bpp) { case 18: val |= PIPECONF_6BPC; break; case 24: val |= PIPECONF_8BPC; break; case 30: val |= PIPECONF_10BPC; break; case 36: val |= PIPECONF_12BPC; break; default: /* Case prevented by intel_choose_pipe_bpp_dither. */ BUG(); } if (intel_crtc->config.dither) val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) val |= PIPECONF_INTERLACED_ILK; else val |= PIPECONF_PROGRESSIVE; if (intel_crtc->config.limited_color_range) val |= PIPECONF_COLOR_RANGE_SELECT; I915_WRITE(PIPECONF(pipe), val); POSTING_READ(PIPECONF(pipe)); } /* * Set up the pipe CSC unit. * * Currently only full range RGB to limited range RGB conversion * is supported, but eventually this should handle various * RGB<->YCbCr scenarios as well. */ static void intel_set_pipe_csc(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; uint16_t coeff = 0x7800; /* 1.0 */ /* * TODO: Check what kind of values actually come out of the pipe * with these coeff/postoff values and adjust to get the best * accuracy. Perhaps we even need to take the bpc value into * consideration. */ if (intel_crtc->config.limited_color_range) coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */ /* * GY/GU and RY/RU should be the other way around according * to BSpec, but reality doesn't agree. Just set them up in * a way that results in the correct picture. */ I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16); I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0); I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff); I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0); I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0); I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16); I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0); I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0); I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0); if (INTEL_INFO(dev)->gen > 6) { uint16_t postoff = 0; if (intel_crtc->config.limited_color_range) postoff = (16 * (1 << 12) / 255) & 0x1fff; I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff); I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff); I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff); I915_WRITE(PIPE_CSC_MODE(pipe), 0); } else { uint32_t mode = CSC_MODE_YUV_TO_RGB; if (intel_crtc->config.limited_color_range) mode |= CSC_BLACK_SCREEN_OFFSET; I915_WRITE(PIPE_CSC_MODE(pipe), mode); } } static void haswell_set_pipeconf(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum pipe pipe = intel_crtc->pipe; enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; uint32_t val; val = 0; if (IS_HASWELL(dev) && intel_crtc->config.dither) val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP); if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) val |= PIPECONF_INTERLACED_ILK; else val |= PIPECONF_PROGRESSIVE; I915_WRITE(PIPECONF(cpu_transcoder), val); POSTING_READ(PIPECONF(cpu_transcoder)); I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT); POSTING_READ(GAMMA_MODE(intel_crtc->pipe)); if (IS_BROADWELL(dev)) { val = 0; switch (intel_crtc->config.pipe_bpp) { case 18: val |= PIPEMISC_DITHER_6_BPC; break; case 24: val |= PIPEMISC_DITHER_8_BPC; break; case 30: val |= PIPEMISC_DITHER_10_BPC; break; case 36: val |= PIPEMISC_DITHER_12_BPC; break; default: /* Case prevented by pipe_config_set_bpp. */ BUG(); } if (intel_crtc->config.dither) val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; I915_WRITE(PIPEMISC(pipe), val); } } static bool ironlake_compute_clocks(struct drm_crtc *crtc, intel_clock_t *clock, bool *has_reduced_clock, intel_clock_t *reduced_clock) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *intel_encoder; int refclk; const intel_limit_t *limit; bool ret, is_lvds = false; for_each_encoder_on_crtc(dev, crtc, intel_encoder) { switch (intel_encoder->type) { case INTEL_OUTPUT_LVDS: is_lvds = true; break; } } refclk = ironlake_get_refclk(crtc); /* * Returns a set of divisors for the desired target clock with the given * refclk, or FALSE. The returned values represent the clock equation: * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2. */ limit = intel_limit(crtc, refclk); ret = dev_priv->display.find_dpll(limit, crtc, to_intel_crtc(crtc)->config.port_clock, refclk, NULL, clock); if (!ret) return false; if (is_lvds && dev_priv->lvds_downclock_avail) { /* * Ensure we match the reduced clock's P to the target clock. * If the clocks don't match, we can't switch the display clock * by using the FP0/FP1. In such case we will disable the LVDS * downclock feature. */ *has_reduced_clock = dev_priv->display.find_dpll(limit, crtc, dev_priv->lvds_downclock, refclk, clock, reduced_clock); } return true; } int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp) { /* * Account for spread spectrum to avoid * oversubscribing the link. Max center spread * is 2.5%; use 5% for safety's sake. */ u32 bps = target_clock * bpp * 21 / 20; return DIV_ROUND_UP(bps, link_bw * 8); } static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor) { return i9xx_dpll_compute_m(dpll) < factor * dpll->n; } static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc, u32 *fp, intel_clock_t *reduced_clock, u32 *fp2) { struct drm_crtc *crtc = &intel_crtc->base; struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *intel_encoder; uint32_t dpll; int factor, num_connectors = 0; bool is_lvds = false, is_sdvo = false; for_each_encoder_on_crtc(dev, crtc, intel_encoder) { switch (intel_encoder->type) { case INTEL_OUTPUT_LVDS: is_lvds = true; break; case INTEL_OUTPUT_SDVO: case INTEL_OUTPUT_HDMI: is_sdvo = true; break; } num_connectors++; } /* Enable autotuning of the PLL clock (if permissible) */ factor = 21; if (is_lvds) { if ((intel_panel_use_ssc(dev_priv) && dev_priv->vbt.lvds_ssc_freq == 100000) || (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev))) factor = 25; } else if (intel_crtc->config.sdvo_tv_clock) factor = 20; if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor)) *fp |= FP_CB_TUNE; if (fp2 && (reduced_clock->m < factor * reduced_clock->n)) *fp2 |= FP_CB_TUNE; dpll = 0; if (is_lvds) dpll |= DPLLB_MODE_LVDS; else dpll |= DPLLB_MODE_DAC_SERIAL; dpll |= (intel_crtc->config.pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT; if (is_sdvo) dpll |= DPLL_SDVO_HIGH_SPEED; if (intel_crtc->config.has_dp_encoder) dpll |= DPLL_SDVO_HIGH_SPEED; /* compute bitmask from p1 value */ dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT; /* also FPA1 */ dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT; switch (intel_crtc->config.dpll.p2) { case 5: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5; break; case 7: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7; break; case 10: dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10; break; case 14: dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14; break; } if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN; else dpll |= PLL_REF_INPUT_DREFCLK; return dpll | DPLL_VCO_ENABLE; } static int ironlake_crtc_mode_set(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *fb) { struct drm_device *dev = crtc->dev; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int num_connectors = 0; intel_clock_t clock, reduced_clock; u32 dpll = 0, fp = 0, fp2 = 0; bool ok, has_reduced_clock = false; bool is_lvds = false; struct intel_encoder *encoder; struct intel_shared_dpll *pll; for_each_encoder_on_crtc(dev, crtc, encoder) { switch (encoder->type) { case INTEL_OUTPUT_LVDS: is_lvds = true; break; } num_connectors++; } WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)), "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev)); ok = ironlake_compute_clocks(crtc, &clock, &has_reduced_clock, &reduced_clock); if (!ok && !intel_crtc->config.clock_set) { DRM_ERROR("Couldn't find PLL settings for mode!\n"); return -EINVAL; } /* Compat-code for transition, will disappear. */ if (!intel_crtc->config.clock_set) { intel_crtc->config.dpll.n = clock.n; intel_crtc->config.dpll.m1 = clock.m1; intel_crtc->config.dpll.m2 = clock.m2; intel_crtc->config.dpll.p1 = clock.p1; intel_crtc->config.dpll.p2 = clock.p2; } /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */ if (intel_crtc->config.has_pch_encoder) { fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll); if (has_reduced_clock) fp2 = i9xx_dpll_compute_fp(&reduced_clock); dpll = ironlake_compute_dpll(intel_crtc, &fp, &reduced_clock, has_reduced_clock ? &fp2 : NULL); intel_crtc->config.dpll_hw_state.dpll = dpll; intel_crtc->config.dpll_hw_state.fp0 = fp; if (has_reduced_clock) intel_crtc->config.dpll_hw_state.fp1 = fp2; else intel_crtc->config.dpll_hw_state.fp1 = fp; pll = intel_get_shared_dpll(intel_crtc); if (pll == NULL) { DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n", pipe_name(intel_crtc->pipe)); return -EINVAL; } } else intel_put_shared_dpll(intel_crtc); if (is_lvds && has_reduced_clock && i915.powersave) intel_crtc->lowfreq_avail = true; else intel_crtc->lowfreq_avail = false; return 0; } static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc, struct intel_link_m_n *m_n) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe = crtc->pipe; m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe)); m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe)); m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe)) & ~TU_SIZE_MASK; m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe)); m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe)) & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; } static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc, enum transcoder transcoder, struct intel_link_m_n *m_n, struct intel_link_m_n *m2_n2) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe = crtc->pipe; if (INTEL_INFO(dev)->gen >= 5) { m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder)); m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder)); m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder)) & ~TU_SIZE_MASK; m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder)); m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder)) & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; /* Read M2_N2 registers only for gen < 8 (M2_N2 available for * gen < 8) and if DRRS is supported (to make sure the * registers are not unnecessarily read). */ if (m2_n2 && INTEL_INFO(dev)->gen < 8 && crtc->config.has_drrs) { m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder)); m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder)); m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder)) & ~TU_SIZE_MASK; m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder)); m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder)) & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; } } else { m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe)); m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe)); m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe)) & ~TU_SIZE_MASK; m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe)); m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe)) & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1; } } void intel_dp_get_m_n(struct intel_crtc *crtc, struct intel_crtc_config *pipe_config) { if (crtc->config.has_pch_encoder) intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n); else intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, &pipe_config->dp_m_n, &pipe_config->dp_m2_n2); } static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc, struct intel_crtc_config *pipe_config) { intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder, &pipe_config->fdi_m_n, NULL); } static void ironlake_get_pfit_config(struct intel_crtc *crtc, struct intel_crtc_config *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t tmp; tmp = I915_READ(PF_CTL(crtc->pipe)); if (tmp & PF_ENABLE) { pipe_config->pch_pfit.enabled = true; pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe)); pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe)); /* We currently do not free assignements of panel fitters on * ivb/hsw (since we don't use the higher upscaling modes which * differentiates them) so just WARN about this case for now. */ if (IS_GEN7(dev)) { WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe)); } } } static void ironlake_get_plane_config(struct intel_crtc *crtc, struct intel_plane_config *plane_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 val, base, offset; int pipe = crtc->pipe, plane = crtc->plane; int fourcc, pixel_format; int aligned_height; crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL); if (!crtc->base.primary->fb) { DRM_DEBUG_KMS("failed to alloc fb\n"); return; } val = I915_READ(DSPCNTR(plane)); if (INTEL_INFO(dev)->gen >= 4) if (val & DISPPLANE_TILED) plane_config->tiled = true; pixel_format = val & DISPPLANE_PIXFORMAT_MASK; fourcc = intel_format_to_fourcc(pixel_format); crtc->base.primary->fb->pixel_format = fourcc; crtc->base.primary->fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8; base = I915_READ(DSPSURF(plane)) & 0xfffff000; if (IS_HASWELL(dev) || IS_BROADWELL(dev)) { offset = I915_READ(DSPOFFSET(plane)); } else { if (plane_config->tiled) offset = I915_READ(DSPTILEOFF(plane)); else offset = I915_READ(DSPLINOFF(plane)); } plane_config->base = base; val = I915_READ(PIPESRC(pipe)); crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1; crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1; val = I915_READ(DSPSTRIDE(pipe)); crtc->base.primary->fb->pitches[0] = val & 0xffffffc0; aligned_height = intel_align_height(dev, crtc->base.primary->fb->height, plane_config->tiled); plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] * aligned_height); DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n", pipe, plane, crtc->base.primary->fb->width, crtc->base.primary->fb->height, crtc->base.primary->fb->bits_per_pixel, base, crtc->base.primary->fb->pitches[0], plane_config->size); } static bool ironlake_get_pipe_config(struct intel_crtc *crtc, struct intel_crtc_config *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; uint32_t tmp; if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PIPE(crtc->pipe))) return false; pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; pipe_config->shared_dpll = DPLL_ID_PRIVATE; tmp = I915_READ(PIPECONF(crtc->pipe)); if (!(tmp & PIPECONF_ENABLE)) return false; switch (tmp & PIPECONF_BPC_MASK) { case PIPECONF_6BPC: pipe_config->pipe_bpp = 18; break; case PIPECONF_8BPC: pipe_config->pipe_bpp = 24; break; case PIPECONF_10BPC: pipe_config->pipe_bpp = 30; break; case PIPECONF_12BPC: pipe_config->pipe_bpp = 36; break; default: break; } if (tmp & PIPECONF_COLOR_RANGE_SELECT) pipe_config->limited_color_range = true; if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) { struct intel_shared_dpll *pll; pipe_config->has_pch_encoder = true; tmp = I915_READ(FDI_RX_CTL(crtc->pipe)); pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> FDI_DP_PORT_WIDTH_SHIFT) + 1; ironlake_get_fdi_m_n_config(crtc, pipe_config); if (HAS_PCH_IBX(dev_priv->dev)) { pipe_config->shared_dpll = (enum intel_dpll_id) crtc->pipe; } else { tmp = I915_READ(PCH_DPLL_SEL); if (tmp & TRANS_DPLLB_SEL(crtc->pipe)) pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B; else pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A; } pll = &dev_priv->shared_dplls[pipe_config->shared_dpll]; WARN_ON(!pll->get_hw_state(dev_priv, pll, &pipe_config->dpll_hw_state)); tmp = pipe_config->dpll_hw_state.dpll; pipe_config->pixel_multiplier = ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK) >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1; ironlake_pch_clock_get(crtc, pipe_config); } else { pipe_config->pixel_multiplier = 1; } intel_get_pipe_timings(crtc, pipe_config); ironlake_get_pfit_config(crtc, pipe_config); return true; } static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; struct intel_crtc *crtc; for_each_intel_crtc(dev, crtc) WARN(crtc->active, "CRTC for pipe %c enabled\n", pipe_name(crtc->pipe)); WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n"); WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n"); WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n"); WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n"); WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n"); WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE, "CPU PWM1 enabled\n"); if (IS_HASWELL(dev)) WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE, "CPU PWM2 enabled\n"); WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE, "PCH PWM1 enabled\n"); WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE, "Utility pin enabled\n"); WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n"); /* * In theory we can still leave IRQs enabled, as long as only the HPD * interrupts remain enabled. We used to check for that, but since it's * gen-specific and since we only disable LCPLL after we fully disable * the interrupts, the check below should be enough. */ WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n"); } static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; if (IS_HASWELL(dev)) return I915_READ(D_COMP_HSW); else return I915_READ(D_COMP_BDW); } static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val) { struct drm_device *dev = dev_priv->dev; if (IS_HASWELL(dev)) { mutex_lock(&dev_priv->rps.hw_lock); if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val)) DRM_ERROR("Failed to write to D_COMP\n"); mutex_unlock(&dev_priv->rps.hw_lock); } else { I915_WRITE(D_COMP_BDW, val); POSTING_READ(D_COMP_BDW); } } /* * This function implements pieces of two sequences from BSpec: * - Sequence for display software to disable LCPLL * - Sequence for display software to allow package C8+ * The steps implemented here are just the steps that actually touch the LCPLL * register. Callers should take care of disabling all the display engine * functions, doing the mode unset, fixing interrupts, etc. */ static void hsw_disable_lcpll(struct drm_i915_private *dev_priv, bool switch_to_fclk, bool allow_power_down) { uint32_t val; assert_can_disable_lcpll(dev_priv); val = I915_READ(LCPLL_CTL); if (switch_to_fclk) { val |= LCPLL_CD_SOURCE_FCLK; I915_WRITE(LCPLL_CTL, val); if (wait_for_atomic_us(I915_READ(LCPLL_CTL) & LCPLL_CD_SOURCE_FCLK_DONE, 1)) DRM_ERROR("Switching to FCLK failed\n"); val = I915_READ(LCPLL_CTL); } val |= LCPLL_PLL_DISABLE; I915_WRITE(LCPLL_CTL, val); POSTING_READ(LCPLL_CTL); if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1)) DRM_ERROR("LCPLL still locked\n"); val = hsw_read_dcomp(dev_priv); val |= D_COMP_COMP_DISABLE; hsw_write_dcomp(dev_priv, val); ndelay(100); if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1)) DRM_ERROR("D_COMP RCOMP still in progress\n"); if (allow_power_down) { val = I915_READ(LCPLL_CTL); val |= LCPLL_POWER_DOWN_ALLOW; I915_WRITE(LCPLL_CTL, val); POSTING_READ(LCPLL_CTL); } } /* * Fully restores LCPLL, disallowing power down and switching back to LCPLL * source. */ static void hsw_restore_lcpll(struct drm_i915_private *dev_priv) { uint32_t val; unsigned long irqflags; val = I915_READ(LCPLL_CTL); if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK | LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK) return; /* * Make sure we're not on PC8 state before disabling PC8, otherwise * we'll hang the machine. To prevent PC8 state, just enable force_wake. * * The other problem is that hsw_restore_lcpll() is called as part of * the runtime PM resume sequence, so we can't just call * gen6_gt_force_wake_get() because that function calls * intel_runtime_pm_get(), and we can't change the runtime PM refcount * while we are on the resume sequence. So to solve this problem we have * to call special forcewake code that doesn't touch runtime PM and * doesn't enable the forcewake delayed work. */ spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); if (dev_priv->uncore.forcewake_count++ == 0) dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL); spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); if (val & LCPLL_POWER_DOWN_ALLOW) { val &= ~LCPLL_POWER_DOWN_ALLOW; I915_WRITE(LCPLL_CTL, val); POSTING_READ(LCPLL_CTL); } val = hsw_read_dcomp(dev_priv); val |= D_COMP_COMP_FORCE; val &= ~D_COMP_COMP_DISABLE; hsw_write_dcomp(dev_priv, val); val = I915_READ(LCPLL_CTL); val &= ~LCPLL_PLL_DISABLE; I915_WRITE(LCPLL_CTL, val); if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5)) DRM_ERROR("LCPLL not locked yet\n"); if (val & LCPLL_CD_SOURCE_FCLK) { val = I915_READ(LCPLL_CTL); val &= ~LCPLL_CD_SOURCE_FCLK; I915_WRITE(LCPLL_CTL, val); if (wait_for_atomic_us((I915_READ(LCPLL_CTL) & LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1)) DRM_ERROR("Switching back to LCPLL failed\n"); } /* See the big comment above. */ spin_lock_irqsave(&dev_priv->uncore.lock, irqflags); if (--dev_priv->uncore.forcewake_count == 0) dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL); spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags); } /* * Package states C8 and deeper are really deep PC states that can only be * reached when all the devices on the system allow it, so even if the graphics * device allows PC8+, it doesn't mean the system will actually get to these * states. Our driver only allows PC8+ when going into runtime PM. * * The requirements for PC8+ are that all the outputs are disabled, the power * well is disabled and most interrupts are disabled, and these are also * requirements for runtime PM. When these conditions are met, we manually do * the other conditions: disable the interrupts, clocks and switch LCPLL refclk * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard * hang the machine. * * When we really reach PC8 or deeper states (not just when we allow it) we lose * the state of some registers, so when we come back from PC8+ we need to * restore this state. We don't get into PC8+ if we're not in RC6, so we don't * need to take care of the registers kept by RC6. Notice that this happens even * if we don't put the device in PCI D3 state (which is what currently happens * because of the runtime PM support). * * For more, read "Display Sequences for Package C8" on the hardware * documentation. */ void hsw_enable_pc8(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; uint32_t val; DRM_DEBUG_KMS("Enabling package C8+\n"); if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) { val = I915_READ(SOUTH_DSPCLK_GATE_D); val &= ~PCH_LP_PARTITION_LEVEL_DISABLE; I915_WRITE(SOUTH_DSPCLK_GATE_D, val); } lpt_disable_clkout_dp(dev); hsw_disable_lcpll(dev_priv, true, true); } void hsw_disable_pc8(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; uint32_t val; DRM_DEBUG_KMS("Disabling package C8+\n"); hsw_restore_lcpll(dev_priv); lpt_init_pch_refclk(dev); if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) { val = I915_READ(SOUTH_DSPCLK_GATE_D); val |= PCH_LP_PARTITION_LEVEL_DISABLE; I915_WRITE(SOUTH_DSPCLK_GATE_D, val); } intel_prepare_ddi(dev); } static void snb_modeset_global_resources(struct drm_device *dev) { modeset_update_crtc_power_domains(dev); } static void haswell_modeset_global_resources(struct drm_device *dev) { modeset_update_crtc_power_domains(dev); } static int haswell_crtc_mode_set(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *fb) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); if (!intel_ddi_pll_select(intel_crtc)) return -EINVAL; intel_crtc->lowfreq_avail = false; return 0; } static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port, struct intel_crtc_config *pipe_config) { pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port)); switch (pipe_config->ddi_pll_sel) { case PORT_CLK_SEL_WRPLL1: pipe_config->shared_dpll = DPLL_ID_WRPLL1; break; case PORT_CLK_SEL_WRPLL2: pipe_config->shared_dpll = DPLL_ID_WRPLL2; break; } } static void haswell_get_ddi_port_state(struct intel_crtc *crtc, struct intel_crtc_config *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_shared_dpll *pll; enum port port; uint32_t tmp; tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder)); port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT; haswell_get_ddi_pll(dev_priv, port, pipe_config); if (pipe_config->shared_dpll >= 0) { pll = &dev_priv->shared_dplls[pipe_config->shared_dpll]; WARN_ON(!pll->get_hw_state(dev_priv, pll, &pipe_config->dpll_hw_state)); } /* * Haswell has only FDI/PCH transcoder A. It is which is connected to * DDI E. So just check whether this pipe is wired to DDI E and whether * the PCH transcoder is on. */ if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) { pipe_config->has_pch_encoder = true; tmp = I915_READ(FDI_RX_CTL(PIPE_A)); pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >> FDI_DP_PORT_WIDTH_SHIFT) + 1; ironlake_get_fdi_m_n_config(crtc, pipe_config); } } static bool haswell_get_pipe_config(struct intel_crtc *crtc, struct intel_crtc_config *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; enum intel_display_power_domain pfit_domain; uint32_t tmp; if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PIPE(crtc->pipe))) return false; pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; pipe_config->shared_dpll = DPLL_ID_PRIVATE; tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP)); if (tmp & TRANS_DDI_FUNC_ENABLE) { enum pipe trans_edp_pipe; switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { default: WARN(1, "unknown pipe linked to edp transcoder\n"); case TRANS_DDI_EDP_INPUT_A_ONOFF: case TRANS_DDI_EDP_INPUT_A_ON: trans_edp_pipe = PIPE_A; break; case TRANS_DDI_EDP_INPUT_B_ONOFF: trans_edp_pipe = PIPE_B; break; case TRANS_DDI_EDP_INPUT_C_ONOFF: trans_edp_pipe = PIPE_C; break; } if (trans_edp_pipe == crtc->pipe) pipe_config->cpu_transcoder = TRANSCODER_EDP; } if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder))) return false; tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder)); if (!(tmp & PIPECONF_ENABLE)) return false; haswell_get_ddi_port_state(crtc, pipe_config); intel_get_pipe_timings(crtc, pipe_config); pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe); if (intel_display_power_enabled(dev_priv, pfit_domain)) ironlake_get_pfit_config(crtc, pipe_config); if (IS_HASWELL(dev)) pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) && (I915_READ(IPS_CTL) & IPS_ENABLE); pipe_config->pixel_multiplier = 1; return true; } static struct { int clock; u32 config; } hdmi_audio_clock[] = { { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 }, { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */ { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 }, { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 }, { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 }, { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 }, { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 }, { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 }, { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 }, { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 }, }; /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */ static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode) { int i; for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) { if (mode->clock == hdmi_audio_clock[i].clock) break; } if (i == ARRAY_SIZE(hdmi_audio_clock)) { DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock); i = 1; } DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n", hdmi_audio_clock[i].clock, hdmi_audio_clock[i].config); return hdmi_audio_clock[i].config; } static bool intel_eld_uptodate(struct drm_connector *connector, int reg_eldv, uint32_t bits_eldv, int reg_elda, uint32_t bits_elda, int reg_edid) { struct drm_i915_private *dev_priv = connector->dev->dev_private; uint8_t *eld = connector->eld; uint32_t i; i = I915_READ(reg_eldv); i &= bits_eldv; if (!eld[0]) return !i; if (!i) return false; i = I915_READ(reg_elda); i &= ~bits_elda; I915_WRITE(reg_elda, i); for (i = 0; i < eld[2]; i++) if (I915_READ(reg_edid) != *((uint32_t *)eld + i)) return false; return true; } static void g4x_write_eld(struct drm_connector *connector, struct drm_crtc *crtc, struct drm_display_mode *mode) { struct drm_i915_private *dev_priv = connector->dev->dev_private; uint8_t *eld = connector->eld; uint32_t eldv; uint32_t len; uint32_t i; i = I915_READ(G4X_AUD_VID_DID); if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL) eldv = G4X_ELDV_DEVCL_DEVBLC; else eldv = G4X_ELDV_DEVCTG; if (intel_eld_uptodate(connector, G4X_AUD_CNTL_ST, eldv, G4X_AUD_CNTL_ST, G4X_ELD_ADDR, G4X_HDMIW_HDMIEDID)) return; i = I915_READ(G4X_AUD_CNTL_ST); i &= ~(eldv | G4X_ELD_ADDR); len = (i >> 9) & 0x1f; /* ELD buffer size */ I915_WRITE(G4X_AUD_CNTL_ST, i); if (!eld[0]) return; len = min_t(uint8_t, eld[2], len); DRM_DEBUG_DRIVER("ELD size %d\n", len); for (i = 0; i < len; i++) I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i)); i = I915_READ(G4X_AUD_CNTL_ST); i |= eldv; I915_WRITE(G4X_AUD_CNTL_ST, i); } static void haswell_write_eld(struct drm_connector *connector, struct drm_crtc *crtc, struct drm_display_mode *mode) { struct drm_i915_private *dev_priv = connector->dev->dev_private; uint8_t *eld = connector->eld; uint32_t eldv; uint32_t i; int len; int pipe = to_intel_crtc(crtc)->pipe; int tmp; int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe); int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe); int aud_config = HSW_AUD_CFG(pipe); int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD; /* Audio output enable */ DRM_DEBUG_DRIVER("HDMI audio: enable codec\n"); tmp = I915_READ(aud_cntrl_st2); tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4)); I915_WRITE(aud_cntrl_st2, tmp); POSTING_READ(aud_cntrl_st2); assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe); /* Set ELD valid state */ tmp = I915_READ(aud_cntrl_st2); DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp); tmp |= (AUDIO_ELD_VALID_A << (pipe * 4)); I915_WRITE(aud_cntrl_st2, tmp); tmp = I915_READ(aud_cntrl_st2); DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp); /* Enable HDMI mode */ tmp = I915_READ(aud_config); DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp); /* clear N_programing_enable and N_value_index */ tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE); I915_WRITE(aud_config, tmp); DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe)); eldv = AUDIO_ELD_VALID_A << (pipe * 4); if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) { DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n"); eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */ I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */ } else { I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode)); } if (intel_eld_uptodate(connector, aud_cntrl_st2, eldv, aud_cntl_st, IBX_ELD_ADDRESS, hdmiw_hdmiedid)) return; i = I915_READ(aud_cntrl_st2); i &= ~eldv; I915_WRITE(aud_cntrl_st2, i); if (!eld[0]) return; i = I915_READ(aud_cntl_st); i &= ~IBX_ELD_ADDRESS; I915_WRITE(aud_cntl_st, i); i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */ DRM_DEBUG_DRIVER("port num:%d\n", i); len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */ DRM_DEBUG_DRIVER("ELD size %d\n", len); for (i = 0; i < len; i++) I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i)); i = I915_READ(aud_cntrl_st2); i |= eldv; I915_WRITE(aud_cntrl_st2, i); } static void ironlake_write_eld(struct drm_connector *connector, struct drm_crtc *crtc, struct drm_display_mode *mode) { struct drm_i915_private *dev_priv = connector->dev->dev_private; uint8_t *eld = connector->eld; uint32_t eldv; uint32_t i; int len; int hdmiw_hdmiedid; int aud_config; int aud_cntl_st; int aud_cntrl_st2; int pipe = to_intel_crtc(crtc)->pipe; if (HAS_PCH_IBX(connector->dev)) { hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe); aud_config = IBX_AUD_CFG(pipe); aud_cntl_st = IBX_AUD_CNTL_ST(pipe); aud_cntrl_st2 = IBX_AUD_CNTL_ST2; } else if (IS_VALLEYVIEW(connector->dev)) { hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe); aud_config = VLV_AUD_CFG(pipe); aud_cntl_st = VLV_AUD_CNTL_ST(pipe); aud_cntrl_st2 = VLV_AUD_CNTL_ST2; } else { hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe); aud_config = CPT_AUD_CFG(pipe); aud_cntl_st = CPT_AUD_CNTL_ST(pipe); aud_cntrl_st2 = CPT_AUD_CNTRL_ST2; } DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe)); if (IS_VALLEYVIEW(connector->dev)) { struct intel_encoder *intel_encoder; struct intel_digital_port *intel_dig_port; intel_encoder = intel_attached_encoder(connector); intel_dig_port = enc_to_dig_port(&intel_encoder->base); i = intel_dig_port->port; } else { i = I915_READ(aud_cntl_st); i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */ } if (!i) { DRM_DEBUG_DRIVER("Audio directed to unknown port\n"); /* operate blindly on all ports */ eldv = IBX_ELD_VALIDB; eldv |= IBX_ELD_VALIDB << 4; eldv |= IBX_ELD_VALIDB << 8; } else { DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i)); eldv = IBX_ELD_VALIDB << ((i - 1) * 4); } if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) { DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n"); eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */ I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */ } else { I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode)); } if (intel_eld_uptodate(connector, aud_cntrl_st2, eldv, aud_cntl_st, IBX_ELD_ADDRESS, hdmiw_hdmiedid)) return; i = I915_READ(aud_cntrl_st2); i &= ~eldv; I915_WRITE(aud_cntrl_st2, i); if (!eld[0]) return; i = I915_READ(aud_cntl_st); i &= ~IBX_ELD_ADDRESS; I915_WRITE(aud_cntl_st, i); len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */ DRM_DEBUG_DRIVER("ELD size %d\n", len); for (i = 0; i < len; i++) I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i)); i = I915_READ(aud_cntrl_st2); i |= eldv; I915_WRITE(aud_cntrl_st2, i); } void intel_write_eld(struct drm_encoder *encoder, struct drm_display_mode *mode) { struct drm_crtc *crtc = encoder->crtc; struct drm_connector *connector; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; connector = drm_select_eld(encoder, mode); if (!connector) return; DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", connector->base.id, connector->name, connector->encoder->base.id, connector->encoder->name); connector->eld[6] = drm_av_sync_delay(connector, mode) / 2; if (dev_priv->display.write_eld) dev_priv->display.write_eld(connector, crtc, mode); } static void i845_update_cursor(struct drm_crtc *crtc, u32 base) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); uint32_t cntl = 0, size = 0; if (base) { unsigned int width = intel_crtc->cursor_width; unsigned int height = intel_crtc->cursor_height; unsigned int stride = roundup_pow_of_two(width) * 4; switch (stride) { default: WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n", width, stride); stride = 256; /* fallthrough */ case 256: case 512: case 1024: case 2048: break; } cntl |= CURSOR_ENABLE | CURSOR_GAMMA_ENABLE | CURSOR_FORMAT_ARGB | CURSOR_STRIDE(stride); size = (height << 12) | width; } if (intel_crtc->cursor_cntl != 0 && (intel_crtc->cursor_base != base || intel_crtc->cursor_size != size || intel_crtc->cursor_cntl != cntl)) { /* On these chipsets we can only modify the base/size/stride * whilst the cursor is disabled. */ I915_WRITE(_CURACNTR, 0); POSTING_READ(_CURACNTR); intel_crtc->cursor_cntl = 0; } if (intel_crtc->cursor_base != base) I915_WRITE(_CURABASE, base); if (intel_crtc->cursor_size != size) { I915_WRITE(CURSIZE, size); intel_crtc->cursor_size = size; } if (intel_crtc->cursor_cntl != cntl) { I915_WRITE(_CURACNTR, cntl); POSTING_READ(_CURACNTR); intel_crtc->cursor_cntl = cntl; } } static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; uint32_t cntl; cntl = 0; if (base) { cntl = MCURSOR_GAMMA_ENABLE; switch (intel_crtc->cursor_width) { case 64: cntl |= CURSOR_MODE_64_ARGB_AX; break; case 128: cntl |= CURSOR_MODE_128_ARGB_AX; break; case 256: cntl |= CURSOR_MODE_256_ARGB_AX; break; default: WARN_ON(1); return; } cntl |= pipe << 28; /* Connect to correct pipe */ } if (IS_HASWELL(dev) || IS_BROADWELL(dev)) cntl |= CURSOR_PIPE_CSC_ENABLE; if (intel_crtc->cursor_cntl != cntl) { I915_WRITE(CURCNTR(pipe), cntl); POSTING_READ(CURCNTR(pipe)); intel_crtc->cursor_cntl = cntl; } /* and commit changes on next vblank */ I915_WRITE(CURBASE(pipe), base); POSTING_READ(CURBASE(pipe)); } /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */ static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); int pipe = intel_crtc->pipe; int x = crtc->cursor_x; int y = crtc->cursor_y; u32 base = 0, pos = 0; if (on) base = intel_crtc->cursor_addr; if (x >= intel_crtc->config.pipe_src_w) base = 0; if (y >= intel_crtc->config.pipe_src_h) base = 0; if (x < 0) { if (x + intel_crtc->cursor_width <= 0) base = 0; pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT; x = -x; } pos |= x << CURSOR_X_SHIFT; if (y < 0) { if (y + intel_crtc->cursor_height <= 0) base = 0; pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT; y = -y; } pos |= y << CURSOR_Y_SHIFT; if (base == 0 && intel_crtc->cursor_base == 0) return; I915_WRITE(CURPOS(pipe), pos); if (IS_845G(dev) || IS_I865G(dev)) i845_update_cursor(crtc, base); else i9xx_update_cursor(crtc, base); intel_crtc->cursor_base = base; } static bool cursor_size_ok(struct drm_device *dev, uint32_t width, uint32_t height) { if (width == 0 || height == 0) return false; /* * 845g/865g are special in that they are only limited by * the width of their cursors, the height is arbitrary up to * the precision of the register. Everything else requires * square cursors, limited to a few power-of-two sizes. */ if (IS_845G(dev) || IS_I865G(dev)) { if ((width & 63) != 0) return false; if (width > (IS_845G(dev) ? 64 : 512)) return false; if (height > 1023) return false; } else { switch (width | height) { case 256: case 128: if (IS_GEN2(dev)) return false; case 64: break; default: return false; } } return true; } /* * intel_crtc_cursor_set_obj - Set cursor to specified GEM object * * Note that the object's reference will be consumed if the update fails. If * the update succeeds, the reference of the old object (if any) will be * consumed. */ static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc, struct drm_i915_gem_object *obj, uint32_t width, uint32_t height) { struct drm_device *dev = crtc->dev; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum pipe pipe = intel_crtc->pipe; unsigned old_width, stride; uint32_t addr; int ret; /* if we want to turn off the cursor ignore width and height */ if (!obj) { DRM_DEBUG_KMS("cursor off\n"); addr = 0; obj = NULL; mutex_lock(&dev->struct_mutex); goto finish; } /* Check for which cursor types we support */ if (!cursor_size_ok(dev, width, height)) { DRM_DEBUG("Cursor dimension not supported\n"); return -EINVAL; } stride = roundup_pow_of_two(width) * 4; if (obj->base.size < stride * height) { DRM_DEBUG_KMS("buffer is too small\n"); ret = -ENOMEM; goto fail; } /* we only need to pin inside GTT if cursor is non-phy */ mutex_lock(&dev->struct_mutex); if (!INTEL_INFO(dev)->cursor_needs_physical) { unsigned alignment; if (obj->tiling_mode) { DRM_DEBUG_KMS("cursor cannot be tiled\n"); ret = -EINVAL; goto fail_locked; } /* Note that the w/a also requires 2 PTE of padding following * the bo. We currently fill all unused PTE with the shadow * page and so we should always have valid PTE following the * cursor preventing the VT-d warning. */ alignment = 0; if (need_vtd_wa(dev)) alignment = 64*1024; ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL); if (ret) { DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n"); goto fail_locked; } ret = i915_gem_object_put_fence(obj); if (ret) { DRM_DEBUG_KMS("failed to release fence for cursor"); goto fail_unpin; } addr = i915_gem_obj_ggtt_offset(obj); } else { int align = IS_I830(dev) ? 16 * 1024 : 256; ret = i915_gem_object_attach_phys(obj, align); if (ret) { DRM_DEBUG_KMS("failed to attach phys object\n"); goto fail_locked; } addr = obj->phys_handle->busaddr; } finish: if (intel_crtc->cursor_bo) { if (!INTEL_INFO(dev)->cursor_needs_physical) i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo); } i915_gem_track_fb(intel_crtc->cursor_bo, obj, INTEL_FRONTBUFFER_CURSOR(pipe)); mutex_unlock(&dev->struct_mutex); old_width = intel_crtc->cursor_width; intel_crtc->cursor_addr = addr; intel_crtc->cursor_bo = obj; intel_crtc->cursor_width = width; intel_crtc->cursor_height = height; if (intel_crtc->active) { if (old_width != width) intel_update_watermarks(crtc); intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL); } intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe)); return 0; fail_unpin: i915_gem_object_unpin_from_display_plane(obj); fail_locked: mutex_unlock(&dev->struct_mutex); fail: drm_gem_object_unreference_unlocked(&obj->base); return ret; } static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, u16 *blue, uint32_t start, uint32_t size) { int end = (start + size > 256) ? 256 : start + size, i; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); for (i = start; i < end; i++) { intel_crtc->lut_r[i] = red[i] >> 8; intel_crtc->lut_g[i] = green[i] >> 8; intel_crtc->lut_b[i] = blue[i] >> 8; } intel_crtc_load_lut(crtc); } /* VESA 640x480x72Hz mode to set on the pipe */ static struct drm_display_mode load_detect_mode = { DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), }; struct drm_framebuffer * __intel_framebuffer_create(struct drm_device *dev, struct drm_mode_fb_cmd2 *mode_cmd, struct drm_i915_gem_object *obj) { struct intel_framebuffer *intel_fb; int ret; intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL); if (!intel_fb) { drm_gem_object_unreference_unlocked(&obj->base); return ERR_PTR(-ENOMEM); } ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj); if (ret) goto err; return &intel_fb->base; err: drm_gem_object_unreference_unlocked(&obj->base); kfree(intel_fb); return ERR_PTR(ret); } static struct drm_framebuffer * intel_framebuffer_create(struct drm_device *dev, struct drm_mode_fb_cmd2 *mode_cmd, struct drm_i915_gem_object *obj) { struct drm_framebuffer *fb; int ret; ret = i915_mutex_lock_interruptible(dev); if (ret) return ERR_PTR(ret); fb = __intel_framebuffer_create(dev, mode_cmd, obj); mutex_unlock(&dev->struct_mutex); return fb; } static u32 intel_framebuffer_pitch_for_width(int width, int bpp) { u32 pitch = DIV_ROUND_UP(width * bpp, 8); return ALIGN(pitch, 64); } static u32 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp) { u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp); return PAGE_ALIGN(pitch * mode->vdisplay); } static struct drm_framebuffer * intel_framebuffer_create_for_mode(struct drm_device *dev, struct drm_display_mode *mode, int depth, int bpp) { struct drm_i915_gem_object *obj; struct drm_mode_fb_cmd2 mode_cmd = { 0 }; obj = i915_gem_alloc_object(dev, intel_framebuffer_size_for_mode(mode, bpp)); if (obj == NULL) return ERR_PTR(-ENOMEM); mode_cmd.width = mode->hdisplay; mode_cmd.height = mode->vdisplay; mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp); mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth); return intel_framebuffer_create(dev, &mode_cmd, obj); } static struct drm_framebuffer * mode_fits_in_fbdev(struct drm_device *dev, struct drm_display_mode *mode) { #ifdef CONFIG_DRM_I915_FBDEV struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; struct drm_framebuffer *fb; if (!dev_priv->fbdev) return NULL; if (!dev_priv->fbdev->fb) return NULL; obj = dev_priv->fbdev->fb->obj; BUG_ON(!obj); fb = &dev_priv->fbdev->fb->base; if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay, fb->bits_per_pixel)) return NULL; if (obj->base.size < mode->vdisplay * fb->pitches[0]) return NULL; return fb; #else return NULL; #endif } bool intel_get_load_detect_pipe(struct drm_connector *connector, struct drm_display_mode *mode, struct intel_load_detect_pipe *old, struct drm_modeset_acquire_ctx *ctx) { struct intel_crtc *intel_crtc; struct intel_encoder *intel_encoder = intel_attached_encoder(connector); struct drm_crtc *possible_crtc; struct drm_encoder *encoder = &intel_encoder->base; struct drm_crtc *crtc = NULL; struct drm_device *dev = encoder->dev; struct drm_framebuffer *fb; struct drm_mode_config *config = &dev->mode_config; int ret, i = -1; DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", connector->base.id, connector->name, encoder->base.id, encoder->name); drm_modeset_acquire_init(ctx, 0); retry: ret = drm_modeset_lock(&config->connection_mutex, ctx); if (ret) goto fail_unlock; /* * Algorithm gets a little messy: * * - if the connector already has an assigned crtc, use it (but make * sure it's on first) * * - try to find the first unused crtc that can drive this connector, * and use that if we find one */ /* See if we already have a CRTC for this connector */ if (encoder->crtc) { crtc = encoder->crtc; ret = drm_modeset_lock(&crtc->mutex, ctx); if (ret) goto fail_unlock; old->dpms_mode = connector->dpms; old->load_detect_temp = false; /* Make sure the crtc and connector are running */ if (connector->dpms != DRM_MODE_DPMS_ON) connector->funcs->dpms(connector, DRM_MODE_DPMS_ON); return true; } /* Find an unused one (if possible) */ for_each_crtc(dev, possible_crtc) { i++; if (!(encoder->possible_crtcs & (1 << i))) continue; if (!possible_crtc->enabled) { crtc = possible_crtc; break; } } /* * If we didn't find an unused CRTC, don't use any. */ if (!crtc) { DRM_DEBUG_KMS("no pipe available for load-detect\n"); goto fail_unlock; } ret = drm_modeset_lock(&crtc->mutex, ctx); if (ret) goto fail_unlock; intel_encoder->new_crtc = to_intel_crtc(crtc); to_intel_connector(connector)->new_encoder = intel_encoder; intel_crtc = to_intel_crtc(crtc); intel_crtc->new_enabled = true; intel_crtc->new_config = &intel_crtc->config; old->dpms_mode = connector->dpms; old->load_detect_temp = true; old->release_fb = NULL; if (!mode) mode = &load_detect_mode; /* We need a framebuffer large enough to accommodate all accesses * that the plane may generate whilst we perform load detection. * We can not rely on the fbcon either being present (we get called * during its initialisation to detect all boot displays, or it may * not even exist) or that it is large enough to satisfy the * requested mode. */ fb = mode_fits_in_fbdev(dev, mode); if (fb == NULL) { DRM_DEBUG_KMS("creating tmp fb for load-detection\n"); fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32); old->release_fb = fb; } else DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n"); if (IS_ERR(fb)) { DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n"); goto fail; } if (intel_set_mode(crtc, mode, 0, 0, fb)) { DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n"); if (old->release_fb) old->release_fb->funcs->destroy(old->release_fb); goto fail; } /* let the connector get through one full cycle before testing */ intel_wait_for_vblank(dev, intel_crtc->pipe); return true; fail: intel_crtc->new_enabled = crtc->enabled; if (intel_crtc->new_enabled) intel_crtc->new_config = &intel_crtc->config; else intel_crtc->new_config = NULL; fail_unlock: if (ret == -EDEADLK) { drm_modeset_backoff(ctx); goto retry; } drm_modeset_drop_locks(ctx); drm_modeset_acquire_fini(ctx); return false; } void intel_release_load_detect_pipe(struct drm_connector *connector, struct intel_load_detect_pipe *old, struct drm_modeset_acquire_ctx *ctx) { struct intel_encoder *intel_encoder = intel_attached_encoder(connector); struct drm_encoder *encoder = &intel_encoder->base; struct drm_crtc *crtc = encoder->crtc; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", connector->base.id, connector->name, encoder->base.id, encoder->name); if (old->load_detect_temp) { to_intel_connector(connector)->new_encoder = NULL; intel_encoder->new_crtc = NULL; intel_crtc->new_enabled = false; intel_crtc->new_config = NULL; intel_set_mode(crtc, NULL, 0, 0, NULL); if (old->release_fb) { drm_framebuffer_unregister_private(old->release_fb); drm_framebuffer_unreference(old->release_fb); } goto unlock; return; } /* Switch crtc and encoder back off if necessary */ if (old->dpms_mode != DRM_MODE_DPMS_ON) connector->funcs->dpms(connector, old->dpms_mode); unlock: drm_modeset_drop_locks(ctx); drm_modeset_acquire_fini(ctx); } static int i9xx_pll_refclk(struct drm_device *dev, const struct intel_crtc_config *pipe_config) { struct drm_i915_private *dev_priv = dev->dev_private; u32 dpll = pipe_config->dpll_hw_state.dpll; if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) return dev_priv->vbt.lvds_ssc_freq; else if (HAS_PCH_SPLIT(dev)) return 120000; else if (!IS_GEN2(dev)) return 96000; else return 48000; } /* Returns the clock of the currently programmed mode of the given pipe. */ static void i9xx_crtc_clock_get(struct intel_crtc *crtc, struct intel_crtc_config *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int pipe = pipe_config->cpu_transcoder; u32 dpll = pipe_config->dpll_hw_state.dpll; u32 fp; intel_clock_t clock; int refclk = i9xx_pll_refclk(dev, pipe_config); if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) fp = pipe_config->dpll_hw_state.fp0; else fp = pipe_config->dpll_hw_state.fp1; clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; if (IS_PINEVIEW(dev)) { clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; } else { clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; } if (!IS_GEN2(dev)) { if (IS_PINEVIEW(dev)) clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); else clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> DPLL_FPA01_P1_POST_DIV_SHIFT); switch (dpll & DPLL_MODE_MASK) { case DPLLB_MODE_DAC_SERIAL: clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 5 : 10; break; case DPLLB_MODE_LVDS: clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 7 : 14; break; default: DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed " "mode\n", (int)(dpll & DPLL_MODE_MASK)); return; } if (IS_PINEVIEW(dev)) pineview_clock(refclk, &clock); else i9xx_clock(refclk, &clock); } else { u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS); bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN); if (is_lvds) { clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> DPLL_FPA01_P1_POST_DIV_SHIFT); if (lvds & LVDS_CLKB_POWER_UP) clock.p2 = 7; else clock.p2 = 14; } else { if (dpll & PLL_P1_DIVIDE_BY_TWO) clock.p1 = 2; else { clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; } if (dpll & PLL_P2_DIVIDE_BY_4) clock.p2 = 4; else clock.p2 = 2; } i9xx_clock(refclk, &clock); } /* * This value includes pixel_multiplier. We will use * port_clock to compute adjusted_mode.crtc_clock in the * encoder's get_config() function. */ pipe_config->port_clock = clock.dot; } int intel_dotclock_calculate(int link_freq, const struct intel_link_m_n *m_n) { /* * The calculation for the data clock is: * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp * But we want to avoid losing precison if possible, so: * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) * * and the link clock is simpler: * link_clock = (m * link_clock) / n */ if (!m_n->link_n) return 0; return div_u64((u64)m_n->link_m * link_freq, m_n->link_n); } static void ironlake_pch_clock_get(struct intel_crtc *crtc, struct intel_crtc_config *pipe_config) { struct drm_device *dev = crtc->base.dev; /* read out port_clock from the DPLL */ i9xx_crtc_clock_get(crtc, pipe_config); /* * This value does not include pixel_multiplier. * We will check that port_clock and adjusted_mode.crtc_clock * agree once we know their relationship in the encoder's * get_config() function. */ pipe_config->adjusted_mode.crtc_clock = intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000, &pipe_config->fdi_m_n); } /** Returns the currently programmed mode of the given pipe. */ struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev, struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder; struct drm_display_mode *mode; struct intel_crtc_config pipe_config; int htot = I915_READ(HTOTAL(cpu_transcoder)); int hsync = I915_READ(HSYNC(cpu_transcoder)); int vtot = I915_READ(VTOTAL(cpu_transcoder)); int vsync = I915_READ(VSYNC(cpu_transcoder)); enum pipe pipe = intel_crtc->pipe; mode = kzalloc(sizeof(*mode), GFP_KERNEL); if (!mode) return NULL; /* * Construct a pipe_config sufficient for getting the clock info * back out of crtc_clock_get. * * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need * to use a real value here instead. */ pipe_config.cpu_transcoder = (enum transcoder) pipe; pipe_config.pixel_multiplier = 1; pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe)); pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe)); pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe)); i9xx_crtc_clock_get(intel_crtc, &pipe_config); mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier; mode->hdisplay = (htot & 0xffff) + 1; mode->htotal = ((htot & 0xffff0000) >> 16) + 1; mode->hsync_start = (hsync & 0xffff) + 1; mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1; mode->vdisplay = (vtot & 0xffff) + 1; mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1; mode->vsync_start = (vsync & 0xffff) + 1; mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1; drm_mode_set_name(mode); return mode; } static void intel_increase_pllclock(struct drm_device *dev, enum pipe pipe) { struct drm_i915_private *dev_priv = dev->dev_private; int dpll_reg = DPLL(pipe); int dpll; if (!HAS_GMCH_DISPLAY(dev)) return; if (!dev_priv->lvds_downclock_avail) return; dpll = I915_READ(dpll_reg); if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) { DRM_DEBUG_DRIVER("upclocking LVDS\n"); assert_panel_unlocked(dev_priv, pipe); dpll &= ~DISPLAY_RATE_SELECT_FPA1; I915_WRITE(dpll_reg, dpll); intel_wait_for_vblank(dev, pipe); dpll = I915_READ(dpll_reg); if (dpll & DISPLAY_RATE_SELECT_FPA1) DRM_DEBUG_DRIVER("failed to upclock LVDS!\n"); } } static void intel_decrease_pllclock(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); if (!HAS_GMCH_DISPLAY(dev)) return; if (!dev_priv->lvds_downclock_avail) return; /* * Since this is called by a timer, we should never get here in * the manual case. */ if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) { int pipe = intel_crtc->pipe; int dpll_reg = DPLL(pipe); int dpll; DRM_DEBUG_DRIVER("downclocking LVDS\n"); assert_panel_unlocked(dev_priv, pipe); dpll = I915_READ(dpll_reg); dpll |= DISPLAY_RATE_SELECT_FPA1; I915_WRITE(dpll_reg, dpll); intel_wait_for_vblank(dev, pipe); dpll = I915_READ(dpll_reg); if (!(dpll & DISPLAY_RATE_SELECT_FPA1)) DRM_DEBUG_DRIVER("failed to downclock LVDS!\n"); } } void intel_mark_busy(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (dev_priv->mm.busy) return; intel_runtime_pm_get(dev_priv); i915_update_gfx_val(dev_priv); dev_priv->mm.busy = true; } void intel_mark_idle(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc; if (!dev_priv->mm.busy) return; dev_priv->mm.busy = false; if (!i915.powersave) goto out; for_each_crtc(dev, crtc) { if (!crtc->primary->fb) continue; intel_decrease_pllclock(crtc); } if (INTEL_INFO(dev)->gen >= 6) gen6_rps_idle(dev->dev_private); out: intel_runtime_pm_put(dev_priv); } /** * intel_mark_fb_busy - mark given planes as busy * @dev: DRM device * @frontbuffer_bits: bits for the affected planes * @ring: optional ring for asynchronous commands * * This function gets called every time the screen contents change. It can be * used to keep e.g. the update rate at the nominal refresh rate with DRRS. */ static void intel_mark_fb_busy(struct drm_device *dev, unsigned frontbuffer_bits, struct intel_engine_cs *ring) { enum pipe pipe; if (!i915.powersave) return; for_each_pipe(pipe) { if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe))) continue; intel_increase_pllclock(dev, pipe); if (ring && intel_fbc_enabled(dev)) ring->fbc_dirty = true; } } /** * intel_fb_obj_invalidate - invalidate frontbuffer object * @obj: GEM object to invalidate * @ring: set for asynchronous rendering * * This function gets called every time rendering on the given object starts and * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed * until the rendering completes or a flip on this frontbuffer plane is * scheduled. */ void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj, struct intel_engine_cs *ring) { struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; WARN_ON(!mutex_is_locked(&dev->struct_mutex)); if (!obj->frontbuffer_bits) return; if (ring) { mutex_lock(&dev_priv->fb_tracking.lock); dev_priv->fb_tracking.busy_bits |= obj->frontbuffer_bits; dev_priv->fb_tracking.flip_bits &= ~obj->frontbuffer_bits; mutex_unlock(&dev_priv->fb_tracking.lock); } intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring); intel_edp_psr_invalidate(dev, obj->frontbuffer_bits); } /** * intel_frontbuffer_flush - flush frontbuffer * @dev: DRM device * @frontbuffer_bits: frontbuffer plane tracking bits * * This function gets called every time rendering on the given planes has * completed and frontbuffer caching can be started again. Flushes will get * delayed if they're blocked by some oustanding asynchronous rendering. * * Can be called without any locks held. */ void intel_frontbuffer_flush(struct drm_device *dev, unsigned frontbuffer_bits) { struct drm_i915_private *dev_priv = dev->dev_private; /* Delay flushing when rings are still busy.*/ mutex_lock(&dev_priv->fb_tracking.lock); frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits; mutex_unlock(&dev_priv->fb_tracking.lock); intel_mark_fb_busy(dev, frontbuffer_bits, NULL); intel_edp_psr_flush(dev, frontbuffer_bits); } /** * intel_fb_obj_flush - flush frontbuffer object * @obj: GEM object to flush * @retire: set when retiring asynchronous rendering * * This function gets called every time rendering on the given object has * completed and frontbuffer caching can be started again. If @retire is true * then any delayed flushes will be unblocked. */ void intel_fb_obj_flush(struct drm_i915_gem_object *obj, bool retire) { struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; unsigned frontbuffer_bits; WARN_ON(!mutex_is_locked(&dev->struct_mutex)); if (!obj->frontbuffer_bits) return; frontbuffer_bits = obj->frontbuffer_bits; if (retire) { mutex_lock(&dev_priv->fb_tracking.lock); /* Filter out new bits since rendering started. */ frontbuffer_bits &= dev_priv->fb_tracking.busy_bits; dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits; mutex_unlock(&dev_priv->fb_tracking.lock); } intel_frontbuffer_flush(dev, frontbuffer_bits); } /** * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip * @dev: DRM device * @frontbuffer_bits: frontbuffer plane tracking bits * * This function gets called after scheduling a flip on @obj. The actual * frontbuffer flushing will be delayed until completion is signalled with * intel_frontbuffer_flip_complete. If an invalidate happens in between this * flush will be cancelled. * * Can be called without any locks held. */ void intel_frontbuffer_flip_prepare(struct drm_device *dev, unsigned frontbuffer_bits) { struct drm_i915_private *dev_priv = dev->dev_private; mutex_lock(&dev_priv->fb_tracking.lock); dev_priv->fb_tracking.flip_bits |= frontbuffer_bits; mutex_unlock(&dev_priv->fb_tracking.lock); } /** * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush * @dev: DRM device * @frontbuffer_bits: frontbuffer plane tracking bits * * This function gets called after the flip has been latched and will complete * on the next vblank. It will execute the fush if it hasn't been cancalled yet. * * Can be called without any locks held. */ void intel_frontbuffer_flip_complete(struct drm_device *dev, unsigned frontbuffer_bits) { struct drm_i915_private *dev_priv = dev->dev_private; mutex_lock(&dev_priv->fb_tracking.lock); /* Mask any cancelled flips. */ frontbuffer_bits &= dev_priv->fb_tracking.flip_bits; dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits; mutex_unlock(&dev_priv->fb_tracking.lock); intel_frontbuffer_flush(dev, frontbuffer_bits); } static void intel_crtc_destroy(struct drm_crtc *crtc) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_device *dev = crtc->dev; struct intel_unpin_work *work; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); work = intel_crtc->unpin_work; intel_crtc->unpin_work = NULL; spin_unlock_irqrestore(&dev->event_lock, flags); if (work) { cancel_work_sync(&work->work); kfree(work); } drm_crtc_cleanup(crtc); kfree(intel_crtc); } static void intel_unpin_work_fn(struct work_struct *__work) { struct intel_unpin_work *work = container_of(__work, struct intel_unpin_work, work); struct drm_device *dev = work->crtc->dev; enum pipe pipe = to_intel_crtc(work->crtc)->pipe; mutex_lock(&dev->struct_mutex); intel_unpin_fb_obj(work->old_fb_obj); drm_gem_object_unreference(&work->pending_flip_obj->base); drm_gem_object_unreference(&work->old_fb_obj->base); intel_update_fbc(dev); mutex_unlock(&dev->struct_mutex); intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe)); BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0); atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count); kfree(work); } static void do_intel_finish_page_flip(struct drm_device *dev, struct drm_crtc *crtc) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_unpin_work *work; unsigned long flags; /* Ignore early vblank irqs */ if (intel_crtc == NULL) return; spin_lock_irqsave(&dev->event_lock, flags); work = intel_crtc->unpin_work; /* Ensure we don't miss a work->pending update ... */ smp_rmb(); if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) { spin_unlock_irqrestore(&dev->event_lock, flags); return; } /* and that the unpin work is consistent wrt ->pending. */ smp_rmb(); intel_crtc->unpin_work = NULL; if (work->event) drm_send_vblank_event(dev, intel_crtc->pipe, work->event); drm_crtc_vblank_put(crtc); spin_unlock_irqrestore(&dev->event_lock, flags); wake_up_all(&dev_priv->pending_flip_queue); queue_work(dev_priv->wq, &work->work); trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj); } void intel_finish_page_flip(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; do_intel_finish_page_flip(dev, crtc); } void intel_finish_page_flip_plane(struct drm_device *dev, int plane) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane]; do_intel_finish_page_flip(dev, crtc); } /* Is 'a' after or equal to 'b'? */ static bool g4x_flip_count_after_eq(u32 a, u32 b) { return !((a - b) & 0x80000000); } static bool page_flip_finished(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; /* * The relevant registers doen't exist on pre-ctg. * As the flip done interrupt doesn't trigger for mmio * flips on gmch platforms, a flip count check isn't * really needed there. But since ctg has the registers, * include it in the check anyway. */ if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev)) return true; /* * A DSPSURFLIVE check isn't enough in case the mmio and CS flips * used the same base address. In that case the mmio flip might * have completed, but the CS hasn't even executed the flip yet. * * A flip count check isn't enough as the CS might have updated * the base address just after start of vblank, but before we * managed to process the interrupt. This means we'd complete the * CS flip too soon. * * Combining both checks should get us a good enough result. It may * still happen that the CS flip has been executed, but has not * yet actually completed. But in case the base address is the same * anyway, we don't really care. */ return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) == crtc->unpin_work->gtt_offset && g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)), crtc->unpin_work->flip_count); } void intel_prepare_page_flip(struct drm_device *dev, int plane) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]); unsigned long flags; /* NB: An MMIO update of the plane base pointer will also * generate a page-flip completion irq, i.e. every modeset * is also accompanied by a spurious intel_prepare_page_flip(). */ spin_lock_irqsave(&dev->event_lock, flags); if (intel_crtc->unpin_work && page_flip_finished(intel_crtc)) atomic_inc_not_zero(&intel_crtc->unpin_work->pending); spin_unlock_irqrestore(&dev->event_lock, flags); } static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc) { /* Ensure that the work item is consistent when activating it ... */ smp_wmb(); atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING); /* and that it is marked active as soon as the irq could fire. */ smp_wmb(); } static int intel_gen2_queue_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj, struct intel_engine_cs *ring, uint32_t flags) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); u32 flip_mask; int ret; ret = intel_ring_begin(ring, 6); if (ret) return ret; /* Can't queue multiple flips, so wait for the previous * one to finish before executing the next. */ if (intel_crtc->plane) flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; else flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask); intel_ring_emit(ring, MI_NOOP); intel_ring_emit(ring, MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); intel_ring_emit(ring, fb->pitches[0]); intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset); intel_ring_emit(ring, 0); /* aux display base address, unused */ intel_mark_page_flip_active(intel_crtc); __intel_ring_advance(ring); return 0; } static int intel_gen3_queue_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj, struct intel_engine_cs *ring, uint32_t flags) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); u32 flip_mask; int ret; ret = intel_ring_begin(ring, 6); if (ret) return ret; if (intel_crtc->plane) flip_mask = MI_WAIT_FOR_PLANE_B_FLIP; else flip_mask = MI_WAIT_FOR_PLANE_A_FLIP; intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask); intel_ring_emit(ring, MI_NOOP); intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); intel_ring_emit(ring, fb->pitches[0]); intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset); intel_ring_emit(ring, MI_NOOP); intel_mark_page_flip_active(intel_crtc); __intel_ring_advance(ring); return 0; } static int intel_gen4_queue_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj, struct intel_engine_cs *ring, uint32_t flags) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); uint32_t pf, pipesrc; int ret; ret = intel_ring_begin(ring, 4); if (ret) return ret; /* i965+ uses the linear or tiled offsets from the * Display Registers (which do not change across a page-flip) * so we need only reprogram the base address. */ intel_ring_emit(ring, MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); intel_ring_emit(ring, fb->pitches[0]); intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset | obj->tiling_mode); /* XXX Enabling the panel-fitter across page-flip is so far * untested on non-native modes, so ignore it for now. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE; */ pf = 0; pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; intel_ring_emit(ring, pf | pipesrc); intel_mark_page_flip_active(intel_crtc); __intel_ring_advance(ring); return 0; } static int intel_gen6_queue_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj, struct intel_engine_cs *ring, uint32_t flags) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); uint32_t pf, pipesrc; int ret; ret = intel_ring_begin(ring, 4); if (ret) return ret; intel_ring_emit(ring, MI_DISPLAY_FLIP | MI_DISPLAY_FLIP_PLANE(intel_crtc->plane)); intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode); intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset); /* Contrary to the suggestions in the documentation, * "Enable Panel Fitter" does not seem to be required when page * flipping with a non-native mode, and worse causes a normal * modeset to fail. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE; */ pf = 0; pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff; intel_ring_emit(ring, pf | pipesrc); intel_mark_page_flip_active(intel_crtc); __intel_ring_advance(ring); return 0; } static int intel_gen7_queue_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj, struct intel_engine_cs *ring, uint32_t flags) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); uint32_t plane_bit = 0; int len, ret; switch (intel_crtc->plane) { case PLANE_A: plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A; break; case PLANE_B: plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B; break; case PLANE_C: plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C; break; default: WARN_ONCE(1, "unknown plane in flip command\n"); return -ENODEV; } len = 4; if (ring->id == RCS) { len += 6; /* * On Gen 8, SRM is now taking an extra dword to accommodate * 48bits addresses, and we need a NOOP for the batch size to * stay even. */ if (IS_GEN8(dev)) len += 2; } /* * BSpec MI_DISPLAY_FLIP for IVB: * "The full packet must be contained within the same cache line." * * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same * cacheline, if we ever start emitting more commands before * the MI_DISPLAY_FLIP we may need to first emit everything else, * then do the cacheline alignment, and finally emit the * MI_DISPLAY_FLIP. */ ret = intel_ring_cacheline_align(ring); if (ret) return ret; ret = intel_ring_begin(ring, len); if (ret) return ret; /* Unmask the flip-done completion message. Note that the bspec says that * we should do this for both the BCS and RCS, and that we must not unmask * more than one flip event at any time (or ensure that one flip message * can be sent by waiting for flip-done prior to queueing new flips). * Experimentation says that BCS works despite DERRMR masking all * flip-done completion events and that unmasking all planes at once * for the RCS also doesn't appear to drop events. Setting the DERRMR * to zero does lead to lockups within MI_DISPLAY_FLIP. */ if (ring->id == RCS) { intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); intel_ring_emit(ring, DERRMR); intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE | DERRMR_PIPEB_PRI_FLIP_DONE | DERRMR_PIPEC_PRI_FLIP_DONE)); if (IS_GEN8(dev)) intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) | MI_SRM_LRM_GLOBAL_GTT); else intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT); intel_ring_emit(ring, DERRMR); intel_ring_emit(ring, ring->scratch.gtt_offset + 256); if (IS_GEN8(dev)) { intel_ring_emit(ring, 0); intel_ring_emit(ring, MI_NOOP); } } intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit); intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode)); intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset); intel_ring_emit(ring, (MI_NOOP)); intel_mark_page_flip_active(intel_crtc); __intel_ring_advance(ring); return 0; } static bool use_mmio_flip(struct intel_engine_cs *ring, struct drm_i915_gem_object *obj) { /* * This is not being used for older platforms, because * non-availability of flip done interrupt forces us to use * CS flips. Older platforms derive flip done using some clever * tricks involving the flip_pending status bits and vblank irqs. * So using MMIO flips there would disrupt this mechanism. */ if (ring == NULL) return true; if (INTEL_INFO(ring->dev)->gen < 5) return false; if (i915.use_mmio_flip < 0) return false; else if (i915.use_mmio_flip > 0) return true; else if (i915.enable_execlists) return true; else return ring != obj->ring; } static void intel_do_mmio_flip(struct intel_crtc *intel_crtc) { struct drm_device *dev = intel_crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_framebuffer *intel_fb = to_intel_framebuffer(intel_crtc->base.primary->fb); struct drm_i915_gem_object *obj = intel_fb->obj; u32 dspcntr; u32 reg; intel_mark_page_flip_active(intel_crtc); reg = DSPCNTR(intel_crtc->plane); dspcntr = I915_READ(reg); if (INTEL_INFO(dev)->gen >= 4) { if (obj->tiling_mode != I915_TILING_NONE) dspcntr |= DISPPLANE_TILED; else dspcntr &= ~DISPPLANE_TILED; } I915_WRITE(reg, dspcntr); I915_WRITE(DSPSURF(intel_crtc->plane), intel_crtc->unpin_work->gtt_offset); POSTING_READ(DSPSURF(intel_crtc->plane)); } static int intel_postpone_flip(struct drm_i915_gem_object *obj) { struct intel_engine_cs *ring; int ret; lockdep_assert_held(&obj->base.dev->struct_mutex); if (!obj->last_write_seqno) return 0; ring = obj->ring; if (i915_seqno_passed(ring->get_seqno(ring, true), obj->last_write_seqno)) return 0; ret = i915_gem_check_olr(ring, obj->last_write_seqno); if (ret) return ret; if (WARN_ON(!ring->irq_get(ring))) return 0; return 1; } void intel_notify_mmio_flip(struct intel_engine_cs *ring) { struct drm_i915_private *dev_priv = to_i915(ring->dev); struct intel_crtc *intel_crtc; unsigned long irq_flags; u32 seqno; seqno = ring->get_seqno(ring, false); spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags); for_each_intel_crtc(ring->dev, intel_crtc) { struct intel_mmio_flip *mmio_flip; mmio_flip = &intel_crtc->mmio_flip; if (mmio_flip->seqno == 0) continue; if (ring->id != mmio_flip->ring_id) continue; if (i915_seqno_passed(seqno, mmio_flip->seqno)) { intel_do_mmio_flip(intel_crtc); mmio_flip->seqno = 0; ring->irq_put(ring); } } spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags); } static int intel_queue_mmio_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj, struct intel_engine_cs *ring, uint32_t flags) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); unsigned long irq_flags; int ret; if (WARN_ON(intel_crtc->mmio_flip.seqno)) return -EBUSY; ret = intel_postpone_flip(obj); if (ret < 0) return ret; if (ret == 0) { intel_do_mmio_flip(intel_crtc); return 0; } spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags); intel_crtc->mmio_flip.seqno = obj->last_write_seqno; intel_crtc->mmio_flip.ring_id = obj->ring->id; spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags); /* * Double check to catch cases where irq fired before * mmio flip data was ready */ intel_notify_mmio_flip(obj->ring); return 0; } static int intel_default_queue_flip(struct drm_device *dev, struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_i915_gem_object *obj, struct intel_engine_cs *ring, uint32_t flags) { return -ENODEV; } static int intel_crtc_page_flip(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_pending_vblank_event *event, uint32_t page_flip_flags) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_framebuffer *old_fb = crtc->primary->fb; struct drm_i915_gem_object *obj = intel_fb_obj(fb); struct intel_crtc *intel_crtc = to_intel_crtc(crtc); enum pipe pipe = intel_crtc->pipe; struct intel_unpin_work *work; struct intel_engine_cs *ring; unsigned long flags; int ret; /* * drm_mode_page_flip_ioctl() should already catch this, but double * check to be safe. In the future we may enable pageflipping from * a disabled primary plane. */ if (WARN_ON(intel_fb_obj(old_fb) == NULL)) return -EBUSY; /* Can't change pixel format via MI display flips. */ if (fb->pixel_format != crtc->primary->fb->pixel_format) return -EINVAL; /* * TILEOFF/LINOFF registers can't be changed via MI display flips. * Note that pitch changes could also affect these register. */ if (INTEL_INFO(dev)->gen > 3 && (fb->offsets[0] != crtc->primary->fb->offsets[0] || fb->pitches[0] != crtc->primary->fb->pitches[0])) return -EINVAL; if (i915_terminally_wedged(&dev_priv->gpu_error)) goto out_hang; work = kzalloc(sizeof(*work), GFP_KERNEL); if (work == NULL) return -ENOMEM; work->event = event; work->crtc = crtc; work->old_fb_obj = intel_fb_obj(old_fb); INIT_WORK(&work->work, intel_unpin_work_fn); ret = drm_crtc_vblank_get(crtc); if (ret) goto free_work; /* We borrow the event spin lock for protecting unpin_work */ spin_lock_irqsave(&dev->event_lock, flags); if (intel_crtc->unpin_work) { spin_unlock_irqrestore(&dev->event_lock, flags); kfree(work); drm_crtc_vblank_put(crtc); DRM_DEBUG_DRIVER("flip queue: crtc already busy\n"); return -EBUSY; } intel_crtc->unpin_work = work; spin_unlock_irqrestore(&dev->event_lock, flags); if (atomic_read(&intel_crtc->unpin_work_count) >= 2) flush_workqueue(dev_priv->wq); ret = i915_mutex_lock_interruptible(dev); if (ret) goto cleanup; /* Reference the objects for the scheduled work. */ drm_gem_object_reference(&work->old_fb_obj->base); drm_gem_object_reference(&obj->base); crtc->primary->fb = fb; work->pending_flip_obj = obj; work->enable_stall_check = true; atomic_inc(&intel_crtc->unpin_work_count); intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter); if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1; if (IS_VALLEYVIEW(dev)) { ring = &dev_priv->ring[BCS]; if (obj->tiling_mode != work->old_fb_obj->tiling_mode) /* vlv: DISPLAY_FLIP fails to change tiling */ ring = NULL; } else if (IS_IVYBRIDGE(dev)) { ring = &dev_priv->ring[BCS]; } else if (INTEL_INFO(dev)->gen >= 7) { ring = obj->ring; if (ring == NULL || ring->id != RCS) ring = &dev_priv->ring[BCS]; } else { ring = &dev_priv->ring[RCS]; } ret = intel_pin_and_fence_fb_obj(dev, obj, ring); if (ret) goto cleanup_pending; work->gtt_offset = i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset; if (use_mmio_flip(ring, obj)) ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring, page_flip_flags); else ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring, page_flip_flags); if (ret) goto cleanup_unpin; i915_gem_track_fb(work->old_fb_obj, obj, INTEL_FRONTBUFFER_PRIMARY(pipe)); intel_disable_fbc(dev); intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe)); mutex_unlock(&dev->struct_mutex); trace_i915_flip_request(intel_crtc->plane, obj); return 0; cleanup_unpin: intel_unpin_fb_obj(obj); cleanup_pending: atomic_dec(&intel_crtc->unpin_work_count); crtc->primary->fb = old_fb; drm_gem_object_unreference(&work->old_fb_obj->base); drm_gem_object_unreference(&obj->base); mutex_unlock(&dev->struct_mutex); cleanup: spin_lock_irqsave(&dev->event_lock, flags); intel_crtc->unpin_work = NULL; spin_unlock_irqrestore(&dev->event_lock, flags); drm_crtc_vblank_put(crtc); free_work: kfree(work); if (ret == -EIO) { out_hang: intel_crtc_wait_for_pending_flips(crtc); ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb); if (ret == 0 && event) drm_send_vblank_event(dev, pipe, event); } return ret; } static struct drm_crtc_helper_funcs intel_helper_funcs = { .mode_set_base_atomic = intel_pipe_set_base_atomic, .load_lut = intel_crtc_load_lut, }; /** * intel_modeset_update_staged_output_state * * Updates the staged output configuration state, e.g. after we've read out the * current hw state. */ static void intel_modeset_update_staged_output_state(struct drm_device *dev) { struct intel_crtc *crtc; struct intel_encoder *encoder; struct intel_connector *connector; list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { connector->new_encoder = to_intel_encoder(connector->base.encoder); } for_each_intel_encoder(dev, encoder) { encoder->new_crtc = to_intel_crtc(encoder->base.crtc); } for_each_intel_crtc(dev, crtc) { crtc->new_enabled = crtc->base.enabled; if (crtc->new_enabled) crtc->new_config = &crtc->config; else crtc->new_config = NULL; } } /** * intel_modeset_commit_output_state * * This function copies the stage display pipe configuration to the real one. */ static void intel_modeset_commit_output_state(struct drm_device *dev) { struct intel_crtc *crtc; struct intel_encoder *encoder; struct intel_connector *connector; list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { connector->base.encoder = &connector->new_encoder->base; } for_each_intel_encoder(dev, encoder) { encoder->base.crtc = &encoder->new_crtc->base; } for_each_intel_crtc(dev, crtc) { crtc->base.enabled = crtc->new_enabled; } } static void connected_sink_compute_bpp(struct intel_connector *connector, struct intel_crtc_config *pipe_config) { int bpp = pipe_config->pipe_bpp; DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n", connector->base.base.id, connector->base.name); /* Don't use an invalid EDID bpc value */ if (connector->base.display_info.bpc && connector->base.display_info.bpc * 3 < bpp) { DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n", bpp, connector->base.display_info.bpc*3); pipe_config->pipe_bpp = connector->base.display_info.bpc*3; } /* Clamp bpp to 8 on screens without EDID 1.4 */ if (connector->base.display_info.bpc == 0 && bpp > 24) { DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n", bpp); pipe_config->pipe_bpp = 24; } } static int compute_baseline_pipe_bpp(struct intel_crtc *crtc, struct drm_framebuffer *fb, struct intel_crtc_config *pipe_config) { struct drm_device *dev = crtc->base.dev; struct intel_connector *connector; int bpp; switch (fb->pixel_format) { case DRM_FORMAT_C8: bpp = 8*3; /* since we go through a colormap */ break; case DRM_FORMAT_XRGB1555: case DRM_FORMAT_ARGB1555: /* checked in intel_framebuffer_init already */ if (WARN_ON(INTEL_INFO(dev)->gen > 3)) return -EINVAL; case DRM_FORMAT_RGB565: bpp = 6*3; /* min is 18bpp */ break; case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: /* checked in intel_framebuffer_init already */ if (WARN_ON(INTEL_INFO(dev)->gen < 4)) return -EINVAL; case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: bpp = 8*3; break; case DRM_FORMAT_XRGB2101010: case DRM_FORMAT_ARGB2101010: case DRM_FORMAT_XBGR2101010: case DRM_FORMAT_ABGR2101010: /* checked in intel_framebuffer_init already */ if (WARN_ON(INTEL_INFO(dev)->gen < 4)) return -EINVAL; bpp = 10*3; break; /* TODO: gen4+ supports 16 bpc floating point, too. */ default: DRM_DEBUG_KMS("unsupported depth\n"); return -EINVAL; } pipe_config->pipe_bpp = bpp; /* Clamp display bpp to EDID value */ list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { if (!connector->new_encoder || connector->new_encoder->new_crtc != crtc) continue; connected_sink_compute_bpp(connector, pipe_config); } return bpp; } static void intel_dump_crtc_timings(const struct drm_display_mode *mode) { DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, " "type: 0x%x flags: 0x%x\n", mode->crtc_clock, mode->crtc_hdisplay, mode->crtc_hsync_start, mode->crtc_hsync_end, mode->crtc_htotal, mode->crtc_vdisplay, mode->crtc_vsync_start, mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags); } static void intel_dump_pipe_config(struct intel_crtc *crtc, struct intel_crtc_config *pipe_config, const char *context) { DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id, context, pipe_name(crtc->pipe)); DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder)); DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n", pipe_config->pipe_bpp, pipe_config->dither); DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", pipe_config->has_pch_encoder, pipe_config->fdi_lanes, pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n, pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n, pipe_config->fdi_m_n.tu); DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n", pipe_config->has_dp_encoder, pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n, pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n, pipe_config->dp_m_n.tu); DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n", pipe_config->has_dp_encoder, pipe_config->dp_m2_n2.gmch_m, pipe_config->dp_m2_n2.gmch_n, pipe_config->dp_m2_n2.link_m, pipe_config->dp_m2_n2.link_n, pipe_config->dp_m2_n2.tu); DRM_DEBUG_KMS("requested mode:\n"); drm_mode_debug_printmodeline(&pipe_config->requested_mode); DRM_DEBUG_KMS("adjusted mode:\n"); drm_mode_debug_printmodeline(&pipe_config->adjusted_mode); intel_dump_crtc_timings(&pipe_config->adjusted_mode); DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock); DRM_DEBUG_KMS("pipe src size: %dx%d\n", pipe_config->pipe_src_w, pipe_config->pipe_src_h); DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n", pipe_config->gmch_pfit.control, pipe_config->gmch_pfit.pgm_ratios, pipe_config->gmch_pfit.lvds_border_bits); DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n", pipe_config->pch_pfit.pos, pipe_config->pch_pfit.size, pipe_config->pch_pfit.enabled ? "enabled" : "disabled"); DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled); DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide); } static bool encoders_cloneable(const struct intel_encoder *a, const struct intel_encoder *b) { /* masks could be asymmetric, so check both ways */ return a == b || (a->cloneable & (1 << b->type) && b->cloneable & (1 << a->type)); } static bool check_single_encoder_cloning(struct intel_crtc *crtc, struct intel_encoder *encoder) { struct drm_device *dev = crtc->base.dev; struct intel_encoder *source_encoder; for_each_intel_encoder(dev, source_encoder) { if (source_encoder->new_crtc != crtc) continue; if (!encoders_cloneable(encoder, source_encoder)) return false; } return true; } static bool check_encoder_cloning(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct intel_encoder *encoder; for_each_intel_encoder(dev, encoder) { if (encoder->new_crtc != crtc) continue; if (!check_single_encoder_cloning(crtc, encoder)) return false; } return true; } static struct intel_crtc_config * intel_modeset_pipe_config(struct drm_crtc *crtc, struct drm_framebuffer *fb, struct drm_display_mode *mode) { struct drm_device *dev = crtc->dev; struct intel_encoder *encoder; struct intel_crtc_config *pipe_config; int plane_bpp, ret = -EINVAL; bool retry = true; if (!check_encoder_cloning(to_intel_crtc(crtc))) { DRM_DEBUG_KMS("rejecting invalid cloning configuration\n"); return ERR_PTR(-EINVAL); } pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL); if (!pipe_config) return ERR_PTR(-ENOMEM); drm_mode_copy(&pipe_config->adjusted_mode, mode); drm_mode_copy(&pipe_config->requested_mode, mode); pipe_config->cpu_transcoder = (enum transcoder) to_intel_crtc(crtc)->pipe; pipe_config->shared_dpll = DPLL_ID_PRIVATE; /* * Sanitize sync polarity flags based on requested ones. If neither * positive or negative polarity is requested, treat this as meaning * negative polarity. */ if (!(pipe_config->adjusted_mode.flags & (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; if (!(pipe_config->adjusted_mode.flags & (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; /* Compute a starting value for pipe_config->pipe_bpp taking the source * plane pixel format and any sink constraints into account. Returns the * source plane bpp so that dithering can be selected on mismatches * after encoders and crtc also have had their say. */ plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc), fb, pipe_config); if (plane_bpp < 0) goto fail; /* * Determine the real pipe dimensions. Note that stereo modes can * increase the actual pipe size due to the frame doubling and * insertion of additional space for blanks between the frame. This * is stored in the crtc timings. We use the requested mode to do this * computation to clearly distinguish it from the adjusted mode, which * can be changed by the connectors in the below retry loop. */ drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE); pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay; pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay; encoder_retry: /* Ensure the port clock defaults are reset when retrying. */ pipe_config->port_clock = 0; pipe_config->pixel_multiplier = 1; /* Fill in default crtc timings, allow encoders to overwrite them. */ drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE); /* Pass our mode to the connectors and the CRTC to give them a chance to * adjust it according to limitations or connector properties, and also * a chance to reject the mode entirely. */ for_each_intel_encoder(dev, encoder) { if (&encoder->new_crtc->base != crtc) continue; if (!(encoder->compute_config(encoder, pipe_config))) { DRM_DEBUG_KMS("Encoder config failure\n"); goto fail; } } /* Set default port clock if not overwritten by the encoder. Needs to be * done afterwards in case the encoder adjusts the mode. */ if (!pipe_config->port_clock) pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock * pipe_config->pixel_multiplier; ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config); if (ret < 0) { DRM_DEBUG_KMS("CRTC fixup failed\n"); goto fail; } if (ret == RETRY) { if (WARN(!retry, "loop in pipe configuration computation\n")) { ret = -EINVAL; goto fail; } DRM_DEBUG_KMS("CRTC bw constrained, retrying\n"); retry = false; goto encoder_retry; } pipe_config->dither = pipe_config->pipe_bpp != plane_bpp; DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n", plane_bpp, pipe_config->pipe_bpp, pipe_config->dither); return pipe_config; fail: kfree(pipe_config); return ERR_PTR(ret); } /* Computes which crtcs are affected and sets the relevant bits in the mask. For * simplicity we use the crtc's pipe number (because it's easier to obtain). */ static void intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes, unsigned *prepare_pipes, unsigned *disable_pipes) { struct intel_crtc *intel_crtc; struct drm_device *dev = crtc->dev; struct intel_encoder *encoder; struct intel_connector *connector; struct drm_crtc *tmp_crtc; *disable_pipes = *modeset_pipes = *prepare_pipes = 0; /* Check which crtcs have changed outputs connected to them, these need * to be part of the prepare_pipes mask. We don't (yet) support global * modeset across multiple crtcs, so modeset_pipes will only have one * bit set at most. */ list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { if (connector->base.encoder == &connector->new_encoder->base) continue; if (connector->base.encoder) { tmp_crtc = connector->base.encoder->crtc; *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe; } if (connector->new_encoder) *prepare_pipes |= 1 << connector->new_encoder->new_crtc->pipe; } for_each_intel_encoder(dev, encoder) { if (encoder->base.crtc == &encoder->new_crtc->base) continue; if (encoder->base.crtc) { tmp_crtc = encoder->base.crtc; *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe; } if (encoder->new_crtc) *prepare_pipes |= 1 << encoder->new_crtc->pipe; } /* Check for pipes that will be enabled/disabled ... */ for_each_intel_crtc(dev, intel_crtc) { if (intel_crtc->base.enabled == intel_crtc->new_enabled) continue; if (!intel_crtc->new_enabled) *disable_pipes |= 1 << intel_crtc->pipe; else *prepare_pipes |= 1 << intel_crtc->pipe; } /* set_mode is also used to update properties on life display pipes. */ intel_crtc = to_intel_crtc(crtc); if (intel_crtc->new_enabled) *prepare_pipes |= 1 << intel_crtc->pipe; /* * For simplicity do a full modeset on any pipe where the output routing * changed. We could be more clever, but that would require us to be * more careful with calling the relevant encoder->mode_set functions. */ if (*prepare_pipes) *modeset_pipes = *prepare_pipes; /* ... and mask these out. */ *modeset_pipes &= ~(*disable_pipes); *prepare_pipes &= ~(*disable_pipes); /* * HACK: We don't (yet) fully support global modesets. intel_set_config * obies this rule, but the modeset restore mode of * intel_modeset_setup_hw_state does not. */ *modeset_pipes &= 1 << intel_crtc->pipe; *prepare_pipes &= 1 << intel_crtc->pipe; DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n", *modeset_pipes, *prepare_pipes, *disable_pipes); } static bool intel_crtc_in_use(struct drm_crtc *crtc) { struct drm_encoder *encoder; struct drm_device *dev = crtc->dev; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) if (encoder->crtc == crtc) return true; return false; } static void intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes) { struct intel_encoder *intel_encoder; struct intel_crtc *intel_crtc; struct drm_connector *connector; for_each_intel_encoder(dev, intel_encoder) { if (!intel_encoder->base.crtc) continue; intel_crtc = to_intel_crtc(intel_encoder->base.crtc); if (prepare_pipes & (1 << intel_crtc->pipe)) intel_encoder->connectors_active = false; } intel_modeset_commit_output_state(dev); /* Double check state. */ for_each_intel_crtc(dev, intel_crtc) { WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base)); WARN_ON(intel_crtc->new_config && intel_crtc->new_config != &intel_crtc->config); WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config); } list_for_each_entry(connector, &dev->mode_config.connector_list, head) { if (!connector->encoder || !connector->encoder->crtc) continue; intel_crtc = to_intel_crtc(connector->encoder->crtc); if (prepare_pipes & (1 << intel_crtc->pipe)) { struct drm_property *dpms_property = dev->mode_config.dpms_property; connector->dpms = DRM_MODE_DPMS_ON; drm_object_property_set_value(&connector->base, dpms_property, DRM_MODE_DPMS_ON); intel_encoder = to_intel_encoder(connector->encoder); intel_encoder->connectors_active = true; } } } static bool intel_fuzzy_clock_check(int clock1, int clock2) { int diff; if (clock1 == clock2) return true; if (!clock1 || !clock2) return false; diff = abs(clock1 - clock2); if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) return true; return false; } #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \ list_for_each_entry((intel_crtc), \ &(dev)->mode_config.crtc_list, \ base.head) \ if (mask & (1 <<(intel_crtc)->pipe)) static bool intel_pipe_config_compare(struct drm_device *dev, struct intel_crtc_config *current_config, struct intel_crtc_config *pipe_config) { #define PIPE_CONF_CHECK_X(name) \ if (current_config->name != pipe_config->name) { \ DRM_ERROR("mismatch in " #name " " \ "(expected 0x%08x, found 0x%08x)\n", \ current_config->name, \ pipe_config->name); \ return false; \ } #define PIPE_CONF_CHECK_I(name) \ if (current_config->name != pipe_config->name) { \ DRM_ERROR("mismatch in " #name " " \ "(expected %i, found %i)\n", \ current_config->name, \ pipe_config->name); \ return false; \ } /* This is required for BDW+ where there is only one set of registers for * switching between high and low RR. * This macro can be used whenever a comparison has to be made between one * hw state and multiple sw state variables. */ #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \ if ((current_config->name != pipe_config->name) && \ (current_config->alt_name != pipe_config->name)) { \ DRM_ERROR("mismatch in " #name " " \ "(expected %i or %i, found %i)\n", \ current_config->name, \ current_config->alt_name, \ pipe_config->name); \ return false; \ } #define PIPE_CONF_CHECK_FLAGS(name, mask) \ if ((current_config->name ^ pipe_config->name) & (mask)) { \ DRM_ERROR("mismatch in " #name "(" #mask ") " \ "(expected %i, found %i)\n", \ current_config->name & (mask), \ pipe_config->name & (mask)); \ return false; \ } #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \ if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \ DRM_ERROR("mismatch in " #name " " \ "(expected %i, found %i)\n", \ current_config->name, \ pipe_config->name); \ return false; \ } #define PIPE_CONF_QUIRK(quirk) \ ((current_config->quirks | pipe_config->quirks) & (quirk)) PIPE_CONF_CHECK_I(cpu_transcoder); PIPE_CONF_CHECK_I(has_pch_encoder); PIPE_CONF_CHECK_I(fdi_lanes); PIPE_CONF_CHECK_I(fdi_m_n.gmch_m); PIPE_CONF_CHECK_I(fdi_m_n.gmch_n); PIPE_CONF_CHECK_I(fdi_m_n.link_m); PIPE_CONF_CHECK_I(fdi_m_n.link_n); PIPE_CONF_CHECK_I(fdi_m_n.tu); PIPE_CONF_CHECK_I(has_dp_encoder); if (INTEL_INFO(dev)->gen < 8) { PIPE_CONF_CHECK_I(dp_m_n.gmch_m); PIPE_CONF_CHECK_I(dp_m_n.gmch_n); PIPE_CONF_CHECK_I(dp_m_n.link_m); PIPE_CONF_CHECK_I(dp_m_n.link_n); PIPE_CONF_CHECK_I(dp_m_n.tu); if (current_config->has_drrs) { PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m); PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n); PIPE_CONF_CHECK_I(dp_m2_n2.link_m); PIPE_CONF_CHECK_I(dp_m2_n2.link_n); PIPE_CONF_CHECK_I(dp_m2_n2.tu); } } else { PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m); PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n); PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m); PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n); PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu); } PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay); PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal); PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start); PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end); PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start); PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end); PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay); PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal); PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start); PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end); PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start); PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end); PIPE_CONF_CHECK_I(pixel_multiplier); PIPE_CONF_CHECK_I(has_hdmi_sink); if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) || IS_VALLEYVIEW(dev)) PIPE_CONF_CHECK_I(limited_color_range); PIPE_CONF_CHECK_I(has_audio); PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags, DRM_MODE_FLAG_INTERLACE); if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags, DRM_MODE_FLAG_PHSYNC); PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags, DRM_MODE_FLAG_NHSYNC); PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags, DRM_MODE_FLAG_PVSYNC); PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags, DRM_MODE_FLAG_NVSYNC); } PIPE_CONF_CHECK_I(pipe_src_w); PIPE_CONF_CHECK_I(pipe_src_h); /* * FIXME: BIOS likes to set up a cloned config with lvds+external * screen. Since we don't yet re-compute the pipe config when moving * just the lvds port away to another pipe the sw tracking won't match. * * Proper atomic modesets with recomputed global state will fix this. * Until then just don't check gmch state for inherited modes. */ if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) { PIPE_CONF_CHECK_I(gmch_pfit.control); /* pfit ratios are autocomputed by the hw on gen4+ */ if (INTEL_INFO(dev)->gen < 4) PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios); PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits); } PIPE_CONF_CHECK_I(pch_pfit.enabled); if (current_config->pch_pfit.enabled) { PIPE_CONF_CHECK_I(pch_pfit.pos); PIPE_CONF_CHECK_I(pch_pfit.size); } /* BDW+ don't expose a synchronous way to read the state */ if (IS_HASWELL(dev)) PIPE_CONF_CHECK_I(ips_enabled); PIPE_CONF_CHECK_I(double_wide); PIPE_CONF_CHECK_X(ddi_pll_sel); PIPE_CONF_CHECK_I(shared_dpll); PIPE_CONF_CHECK_X(dpll_hw_state.dpll); PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); PIPE_CONF_CHECK_X(dpll_hw_state.fp0); PIPE_CONF_CHECK_X(dpll_hw_state.fp1); PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) PIPE_CONF_CHECK_I(pipe_bpp); PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock); PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock); #undef PIPE_CONF_CHECK_X #undef PIPE_CONF_CHECK_I #undef PIPE_CONF_CHECK_I_ALT #undef PIPE_CONF_CHECK_FLAGS #undef PIPE_CONF_CHECK_CLOCK_FUZZY #undef PIPE_CONF_QUIRK return true; } static void check_connector_state(struct drm_device *dev) { struct intel_connector *connector; list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { /* This also checks the encoder/connector hw state with the * ->get_hw_state callbacks. */ intel_connector_check_state(connector); WARN(&connector->new_encoder->base != connector->base.encoder, "connector's staged encoder doesn't match current encoder\n"); } } static void check_encoder_state(struct drm_device *dev) { struct intel_encoder *encoder; struct intel_connector *connector; for_each_intel_encoder(dev, encoder) { bool enabled = false; bool active = false; enum pipe pipe, tracked_pipe; DRM_DEBUG_KMS("[ENCODER:%d:%s]\n", encoder->base.base.id, encoder->base.name); WARN(&encoder->new_crtc->base != encoder->base.crtc, "encoder's stage crtc doesn't match current crtc\n"); WARN(encoder->connectors_active && !encoder->base.crtc, "encoder's active_connectors set, but no crtc\n"); list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { if (connector->base.encoder != &encoder->base) continue; enabled = true; if (connector->base.dpms != DRM_MODE_DPMS_OFF) active = true; } /* * for MST connectors if we unplug the connector is gone * away but the encoder is still connected to a crtc * until a modeset happens in response to the hotplug. */ if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST) continue; WARN(!!encoder->base.crtc != enabled, "encoder's enabled state mismatch " "(expected %i, found %i)\n", !!encoder->base.crtc, enabled); WARN(active && !encoder->base.crtc, "active encoder with no crtc\n"); WARN(encoder->connectors_active != active, "encoder's computed active state doesn't match tracked active state " "(expected %i, found %i)\n", active, encoder->connectors_active); active = encoder->get_hw_state(encoder, &pipe); WARN(active != encoder->connectors_active, "encoder's hw state doesn't match sw tracking " "(expected %i, found %i)\n", encoder->connectors_active, active); if (!encoder->base.crtc) continue; tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe; WARN(active && pipe != tracked_pipe, "active encoder's pipe doesn't match" "(expected %i, found %i)\n", tracked_pipe, pipe); } } static void check_crtc_state(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *crtc; struct intel_encoder *encoder; struct intel_crtc_config pipe_config; for_each_intel_crtc(dev, crtc) { bool enabled = false; bool active = false; memset(&pipe_config, 0, sizeof(pipe_config)); DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.base.id); WARN(crtc->active && !crtc->base.enabled, "active crtc, but not enabled in sw tracking\n"); for_each_intel_encoder(dev, encoder) { if (encoder->base.crtc != &crtc->base) continue; enabled = true; if (encoder->connectors_active) active = true; } WARN(active != crtc->active, "crtc's computed active state doesn't match tracked active state " "(expected %i, found %i)\n", active, crtc->active); WARN(enabled != crtc->base.enabled, "crtc's computed enabled state doesn't match tracked enabled state " "(expected %i, found %i)\n", enabled, crtc->base.enabled); active = dev_priv->display.get_pipe_config(crtc, &pipe_config); /* hw state is inconsistent with the pipe A quirk */ if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) active = crtc->active; for_each_intel_encoder(dev, encoder) { enum pipe pipe; if (encoder->base.crtc != &crtc->base) continue; if (encoder->get_hw_state(encoder, &pipe)) encoder->get_config(encoder, &pipe_config); } WARN(crtc->active != active, "crtc active state doesn't match with hw state " "(expected %i, found %i)\n", crtc->active, active); if (active && !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) { WARN(1, "pipe state doesn't match!\n"); intel_dump_pipe_config(crtc, &pipe_config, "[hw state]"); intel_dump_pipe_config(crtc, &crtc->config, "[sw state]"); } } } static void check_shared_dpll_state(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *crtc; struct intel_dpll_hw_state dpll_hw_state; int i; for (i = 0; i < dev_priv->num_shared_dpll; i++) { struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; int enabled_crtcs = 0, active_crtcs = 0; bool active; memset(&dpll_hw_state, 0, sizeof(dpll_hw_state)); DRM_DEBUG_KMS("%s\n", pll->name); active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state); WARN(pll->active > pll->refcount, "more active pll users than references: %i vs %i\n", pll->active, pll->refcount); WARN(pll->active && !pll->on, "pll in active use but not on in sw tracking\n"); WARN(pll->on && !pll->active, "pll in on but not on in use in sw tracking\n"); WARN(pll->on != active, "pll on state mismatch (expected %i, found %i)\n", pll->on, active); for_each_intel_crtc(dev, crtc) { if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll) enabled_crtcs++; if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) active_crtcs++; } WARN(pll->active != active_crtcs, "pll active crtcs mismatch (expected %i, found %i)\n", pll->active, active_crtcs); WARN(pll->refcount != enabled_crtcs, "pll enabled crtcs mismatch (expected %i, found %i)\n", pll->refcount, enabled_crtcs); WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state, sizeof(dpll_hw_state)), "pll hw state mismatch\n"); } } void intel_modeset_check_state(struct drm_device *dev) { check_connector_state(dev); check_encoder_state(dev); check_crtc_state(dev); check_shared_dpll_state(dev); } void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config, int dotclock) { /* * FDI already provided one idea for the dotclock. * Yell if the encoder disagrees. */ WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock), "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n", pipe_config->adjusted_mode.crtc_clock, dotclock); } static void update_scanline_offset(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; /* * The scanline counter increments at the leading edge of hsync. * * On most platforms it starts counting from vtotal-1 on the * first active line. That means the scanline counter value is * always one less than what we would expect. Ie. just after * start of vblank, which also occurs at start of hsync (on the * last active line), the scanline counter will read vblank_start-1. * * On gen2 the scanline counter starts counting from 1 instead * of vtotal-1, so we have to subtract one (or rather add vtotal-1 * to keep the value positive), instead of adding one. * * On HSW+ the behaviour of the scanline counter depends on the output * type. For DP ports it behaves like most other platforms, but on HDMI * there's an extra 1 line difference. So we need to add two instead of * one to the value. */ if (IS_GEN2(dev)) { const struct drm_display_mode *mode = &crtc->config.adjusted_mode; int vtotal; vtotal = mode->crtc_vtotal; if (mode->flags & DRM_MODE_FLAG_INTERLACE) vtotal /= 2; crtc->scanline_offset = vtotal - 1; } else if (HAS_DDI(dev) && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) { crtc->scanline_offset = 2; } else crtc->scanline_offset = 1; } static int __intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode, int x, int y, struct drm_framebuffer *fb) { struct drm_device *dev = crtc->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_display_mode *saved_mode; struct intel_crtc_config *pipe_config = NULL; struct intel_crtc *intel_crtc; unsigned disable_pipes, prepare_pipes, modeset_pipes; int ret = 0; saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL); if (!saved_mode) return -ENOMEM; intel_modeset_affected_pipes(crtc, &modeset_pipes, &prepare_pipes, &disable_pipes); *saved_mode = crtc->mode; /* Hack: Because we don't (yet) support global modeset on multiple * crtcs, we don't keep track of the new mode for more than one crtc. * Hence simply check whether any bit is set in modeset_pipes in all the * pieces of code that are not yet converted to deal with mutliple crtcs * changing their mode at the same time. */ if (modeset_pipes) { pipe_config = intel_modeset_pipe_config(crtc, fb, mode); if (IS_ERR(pipe_config)) { ret = PTR_ERR(pipe_config); pipe_config = NULL; goto out; } intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config, "[modeset]"); to_intel_crtc(crtc)->new_config = pipe_config; } /* * See if the config requires any additional preparation, e.g. * to adjust global state with pipes off. We need to do this * here so we can get the modeset_pipe updated config for the new * mode set on this crtc. For other crtcs we need to use the * adjusted_mode bits in the crtc directly. */ if (IS_VALLEYVIEW(dev)) { valleyview_modeset_global_pipes(dev, &prepare_pipes); /* may have added more to prepare_pipes than we should */ prepare_pipes &= ~disable_pipes; } for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc) intel_crtc_disable(&intel_crtc->base); for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) { if (intel_crtc->base.enabled) dev_priv->display.crtc_disable(&intel_crtc->base); } /* crtc->mode is already used by the ->mode_set callbacks, hence we need * to set it here already despite that we pass it down the callchain. */ if (modeset_pipes) { crtc->mode = *mode; /* mode_set/enable/disable functions rely on a correct pipe * config. */ to_intel_crtc(crtc)->config = *pipe_config; to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config; /* * Calculate and store various constants which * are later needed by vblank and swap-completion * timestamping. They are derived from true hwmode. */ drm_calc_timestamping_constants(crtc, &pipe_config->adjusted_mode); } /* Only after disabling all output pipelines that will be changed can we * update the the output configuration. */ intel_modeset_update_state(dev, prepare_pipes); if (dev_priv->display.modeset_global_resources) dev_priv->display.modeset_global_resources(dev); /* Set up the DPLL and any encoders state that needs to adjust or depend * on the DPLL. */ for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) { struct drm_framebuffer *old_fb = crtc->primary->fb; struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb); struct drm_i915_gem_object *obj = intel_fb_obj(fb); mutex_lock(&dev->struct_mutex); ret = intel_pin_and_fence_fb_obj(dev, obj, NULL); if (ret != 0) { DRM_ERROR("pin & fence failed\n"); mutex_unlock(&dev->struct_mutex); goto done; } if (old_fb) intel_unpin_fb_obj(old_obj); i915_gem_track_fb(old_obj, obj, INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe)); mutex_unlock(&dev->struct_mutex); crtc->primary->fb = fb; crtc->x = x; crtc->y = y; ret = dev_priv->display.crtc_mode_set(&intel_crtc->base, x, y, fb); if (ret) goto done; } /* Now enable the clocks, plane, pipe, and connectors that we set up. */ for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) { update_scanline_offset(intel_crtc); dev_priv->display.crtc_enable(&intel_crtc->base); } /* FIXME: add subpixel order */ done: if (ret && crtc->enabled) crtc->mode = *saved_mode; out: kfree(pipe_config); kfree(saved_mode); return ret; } static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode, int x, int y, struct drm_framebuffer *fb) { int ret; ret = __intel_set_mode(crtc, mode, x, y, fb); if (ret == 0) intel_modeset_check_state(crtc->dev); return ret; } void intel_crtc_restore_mode(struct drm_crtc *crtc) { intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb); } #undef for_each_intel_crtc_masked static void intel_set_config_free(struct intel_set_config *config) { if (!config) return; kfree(config->save_connector_encoders); kfree(config->save_encoder_crtcs); kfree(config->save_crtc_enabled); kfree(config); } static int intel_set_config_save_state(struct drm_device *dev, struct intel_set_config *config) { struct drm_crtc *crtc; struct drm_encoder *encoder; struct drm_connector *connector; int count; config->save_crtc_enabled = kcalloc(dev->mode_config.num_crtc, sizeof(bool), GFP_KERNEL); if (!config->save_crtc_enabled) return -ENOMEM; config->save_encoder_crtcs = kcalloc(dev->mode_config.num_encoder, sizeof(struct drm_crtc *), GFP_KERNEL); if (!config->save_encoder_crtcs) return -ENOMEM; config->save_connector_encoders = kcalloc(dev->mode_config.num_connector, sizeof(struct drm_encoder *), GFP_KERNEL); if (!config->save_connector_encoders) return -ENOMEM; /* Copy data. Note that driver private data is not affected. * Should anything bad happen only the expected state is * restored, not the drivers personal bookkeeping. */ count = 0; for_each_crtc(dev, crtc) { config->save_crtc_enabled[count++] = crtc->enabled; } count = 0; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { config->save_encoder_crtcs[count++] = encoder->crtc; } count = 0; list_for_each_entry(connector, &dev->mode_config.connector_list, head) { config->save_connector_encoders[count++] = connector->encoder; } return 0; } static void intel_set_config_restore_state(struct drm_device *dev, struct intel_set_config *config) { struct intel_crtc *crtc; struct intel_encoder *encoder; struct intel_connector *connector; int count; count = 0; for_each_intel_crtc(dev, crtc) { crtc->new_enabled = config->save_crtc_enabled[count++]; if (crtc->new_enabled) crtc->new_config = &crtc->config; else crtc->new_config = NULL; } count = 0; for_each_intel_encoder(dev, encoder) { encoder->new_crtc = to_intel_crtc(config->save_encoder_crtcs[count++]); } count = 0; list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { connector->new_encoder = to_intel_encoder(config->save_connector_encoders[count++]); } } static bool is_crtc_connector_off(struct drm_mode_set *set) { int i; if (set->num_connectors == 0) return false; if (WARN_ON(set->connectors == NULL)) return false; for (i = 0; i < set->num_connectors; i++) if (set->connectors[i]->encoder && set->connectors[i]->encoder->crtc == set->crtc && set->connectors[i]->dpms != DRM_MODE_DPMS_ON) return true; return false; } static void intel_set_config_compute_mode_changes(struct drm_mode_set *set, struct intel_set_config *config) { /* We should be able to check here if the fb has the same properties * and then just flip_or_move it */ if (is_crtc_connector_off(set)) { config->mode_changed = true; } else if (set->crtc->primary->fb != set->fb) { /* * If we have no fb, we can only flip as long as the crtc is * active, otherwise we need a full mode set. The crtc may * be active if we've only disabled the primary plane, or * in fastboot situations. */ if (set->crtc->primary->fb == NULL) { struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc); if (intel_crtc->active) { DRM_DEBUG_KMS("crtc has no fb, will flip\n"); config->fb_changed = true; } else { DRM_DEBUG_KMS("inactive crtc, full mode set\n"); config->mode_changed = true; } } else if (set->fb == NULL) { config->mode_changed = true; } else if (set->fb->pixel_format != set->crtc->primary->fb->pixel_format) { config->mode_changed = true; } else { config->fb_changed = true; } } if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y)) config->fb_changed = true; if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) { DRM_DEBUG_KMS("modes are different, full mode set\n"); drm_mode_debug_printmodeline(&set->crtc->mode); drm_mode_debug_printmodeline(set->mode); config->mode_changed = true; } DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n", set->crtc->base.id, config->mode_changed, config->fb_changed); } static int intel_modeset_stage_output_state(struct drm_device *dev, struct drm_mode_set *set, struct intel_set_config *config) { struct intel_connector *connector; struct intel_encoder *encoder; struct intel_crtc *crtc; int ro; /* The upper layers ensure that we either disable a crtc or have a list * of connectors. For paranoia, double-check this. */ WARN_ON(!set->fb && (set->num_connectors != 0)); WARN_ON(set->fb && (set->num_connectors == 0)); list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { /* Otherwise traverse passed in connector list and get encoders * for them. */ for (ro = 0; ro < set->num_connectors; ro++) { if (set->connectors[ro] == &connector->base) { connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe); break; } } /* If we disable the crtc, disable all its connectors. Also, if * the connector is on the changing crtc but not on the new * connector list, disable it. */ if ((!set->fb || ro == set->num_connectors) && connector->base.encoder && connector->base.encoder->crtc == set->crtc) { connector->new_encoder = NULL; DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n", connector->base.base.id, connector->base.name); } if (&connector->new_encoder->base != connector->base.encoder) { DRM_DEBUG_KMS("encoder changed, full mode switch\n"); config->mode_changed = true; } } /* connector->new_encoder is now updated for all connectors. */ /* Update crtc of enabled connectors. */ list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { struct drm_crtc *new_crtc; if (!connector->new_encoder) continue; new_crtc = connector->new_encoder->base.crtc; for (ro = 0; ro < set->num_connectors; ro++) { if (set->connectors[ro] == &connector->base) new_crtc = set->crtc; } /* Make sure the new CRTC will work with the encoder */ if (!drm_encoder_crtc_ok(&connector->new_encoder->base, new_crtc)) { return -EINVAL; } connector->new_encoder->new_crtc = to_intel_crtc(new_crtc); DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n", connector->base.base.id, connector->base.name, new_crtc->base.id); } /* Check for any encoders that needs to be disabled. */ for_each_intel_encoder(dev, encoder) { int num_connectors = 0; list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { if (connector->new_encoder == encoder) { WARN_ON(!connector->new_encoder->new_crtc); num_connectors++; } } if (num_connectors == 0) encoder->new_crtc = NULL; else if (num_connectors > 1) return -EINVAL; /* Only now check for crtc changes so we don't miss encoders * that will be disabled. */ if (&encoder->new_crtc->base != encoder->base.crtc) { DRM_DEBUG_KMS("crtc changed, full mode switch\n"); config->mode_changed = true; } } /* Now we've also updated encoder->new_crtc for all encoders. */ list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { if (connector->new_encoder) if (connector->new_encoder != connector->encoder) connector->encoder = connector->new_encoder; } for_each_intel_crtc(dev, crtc) { crtc->new_enabled = false; for_each_intel_encoder(dev, encoder) { if (encoder->new_crtc == crtc) { crtc->new_enabled = true; break; } } if (crtc->new_enabled != crtc->base.enabled) { DRM_DEBUG_KMS("crtc %sabled, full mode switch\n", crtc->new_enabled ? "en" : "dis"); config->mode_changed = true; } if (crtc->new_enabled) crtc->new_config = &crtc->config; else crtc->new_config = NULL; } return 0; } static void disable_crtc_nofb(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct intel_encoder *encoder; struct intel_connector *connector; DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n", pipe_name(crtc->pipe)); list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { if (connector->new_encoder && connector->new_encoder->new_crtc == crtc) connector->new_encoder = NULL; } for_each_intel_encoder(dev, encoder) { if (encoder->new_crtc == crtc) encoder->new_crtc = NULL; } crtc->new_enabled = false; crtc->new_config = NULL; } static int intel_crtc_set_config(struct drm_mode_set *set) { struct drm_device *dev; struct drm_mode_set save_set; struct intel_set_config *config; int ret; BUG_ON(!set); BUG_ON(!set->crtc); BUG_ON(!set->crtc->helper_private); /* Enforce sane interface api - has been abused by the fb helper. */ BUG_ON(!set->mode && set->fb); BUG_ON(set->fb && set->num_connectors == 0); if (set->fb) { DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n", set->crtc->base.id, set->fb->base.id, (int)set->num_connectors, set->x, set->y); } else { DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id); } dev = set->crtc->dev; ret = -ENOMEM; config = kzalloc(sizeof(*config), GFP_KERNEL); if (!config) goto out_config; ret = intel_set_config_save_state(dev, config); if (ret) goto out_config; save_set.crtc = set->crtc; save_set.mode = &set->crtc->mode; save_set.x = set->crtc->x; save_set.y = set->crtc->y; save_set.fb = set->crtc->primary->fb; /* Compute whether we need a full modeset, only an fb base update or no * change at all. In the future we might also check whether only the * mode changed, e.g. for LVDS where we only change the panel fitter in * such cases. */ intel_set_config_compute_mode_changes(set, config); ret = intel_modeset_stage_output_state(dev, set, config); if (ret) goto fail; if (config->mode_changed) { ret = intel_set_mode(set->crtc, set->mode, set->x, set->y, set->fb); } else if (config->fb_changed) { struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc); intel_crtc_wait_for_pending_flips(set->crtc); ret = intel_pipe_set_base(set->crtc, set->x, set->y, set->fb); /* * We need to make sure the primary plane is re-enabled if it * has previously been turned off. */ if (!intel_crtc->primary_enabled && ret == 0) { WARN_ON(!intel_crtc->active); intel_enable_primary_hw_plane(set->crtc->primary, set->crtc); } /* * In the fastboot case this may be our only check of the * state after boot. It would be better to only do it on * the first update, but we don't have a nice way of doing that * (and really, set_config isn't used much for high freq page * flipping, so increasing its cost here shouldn't be a big * deal). */ if (i915.fastboot && ret == 0) intel_modeset_check_state(set->crtc->dev); } if (ret) { DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n", set->crtc->base.id, ret); fail: intel_set_config_restore_state(dev, config); /* * HACK: if the pipe was on, but we didn't have a framebuffer, * force the pipe off to avoid oopsing in the modeset code * due to fb==NULL. This should only happen during boot since * we don't yet reconstruct the FB from the hardware state. */ if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb) disable_crtc_nofb(to_intel_crtc(save_set.crtc)); /* Try to restore the config */ if (config->mode_changed && intel_set_mode(save_set.crtc, save_set.mode, save_set.x, save_set.y, save_set.fb)) DRM_ERROR("failed to restore config after modeset failure\n"); } out_config: intel_set_config_free(config); return ret; } static const struct drm_crtc_funcs intel_crtc_funcs = { .gamma_set = intel_crtc_gamma_set, .set_config = intel_crtc_set_config, .destroy = intel_crtc_destroy, .page_flip = intel_crtc_page_flip, }; static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll, struct intel_dpll_hw_state *hw_state) { uint32_t val; if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS)) return false; val = I915_READ(PCH_DPLL(pll->id)); hw_state->dpll = val; hw_state->fp0 = I915_READ(PCH_FP0(pll->id)); hw_state->fp1 = I915_READ(PCH_FP1(pll->id)); return val & DPLL_VCO_ENABLE; } static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0); I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1); } static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { /* PCH refclock must be enabled first */ ibx_assert_pch_refclk_enabled(dev_priv); I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll); /* Wait for the clocks to stabilize. */ POSTING_READ(PCH_DPLL(pll->id)); udelay(150); /* The pixel multiplier can only be updated once the * DPLL is enabled and the clocks are stable. * * So write it again. */ I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll); POSTING_READ(PCH_DPLL(pll->id)); udelay(200); } static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv, struct intel_shared_dpll *pll) { struct drm_device *dev = dev_priv->dev; struct intel_crtc *crtc; /* Make sure no transcoder isn't still depending on us. */ for_each_intel_crtc(dev, crtc) { if (intel_crtc_to_shared_dpll(crtc) == pll) assert_pch_transcoder_disabled(dev_priv, crtc->pipe); } I915_WRITE(PCH_DPLL(pll->id), 0); POSTING_READ(PCH_DPLL(pll->id)); udelay(200); } static char *ibx_pch_dpll_names[] = { "PCH DPLL A", "PCH DPLL B", }; static void ibx_pch_dpll_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int i; dev_priv->num_shared_dpll = 2; for (i = 0; i < dev_priv->num_shared_dpll; i++) { dev_priv->shared_dplls[i].id = i; dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i]; dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set; dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable; dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable; dev_priv->shared_dplls[i].get_hw_state = ibx_pch_dpll_get_hw_state; } } static void intel_shared_dpll_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (HAS_DDI(dev)) intel_ddi_pll_init(dev); else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) ibx_pch_dpll_init(dev); else dev_priv->num_shared_dpll = 0; BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS); } static int intel_primary_plane_disable(struct drm_plane *plane) { struct drm_device *dev = plane->dev; struct intel_crtc *intel_crtc; if (!plane->fb) return 0; BUG_ON(!plane->crtc); intel_crtc = to_intel_crtc(plane->crtc); /* * Even though we checked plane->fb above, it's still possible that * the primary plane has been implicitly disabled because the crtc * coordinates given weren't visible, or because we detected * that it was 100% covered by a sprite plane. Or, the CRTC may be * off and we've set a fb, but haven't actually turned on the CRTC yet. * In either case, we need to unpin the FB and let the fb pointer get * updated, but otherwise we don't need to touch the hardware. */ if (!intel_crtc->primary_enabled) goto disable_unpin; intel_crtc_wait_for_pending_flips(plane->crtc); intel_disable_primary_hw_plane(plane, plane->crtc); disable_unpin: mutex_lock(&dev->struct_mutex); i915_gem_track_fb(intel_fb_obj(plane->fb), NULL, INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe)); intel_unpin_fb_obj(intel_fb_obj(plane->fb)); mutex_unlock(&dev->struct_mutex); plane->fb = NULL; return 0; } static int intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc, struct drm_framebuffer *fb, int crtc_x, int crtc_y, unsigned int crtc_w, unsigned int crtc_h, uint32_t src_x, uint32_t src_y, uint32_t src_w, uint32_t src_h) { struct drm_device *dev = crtc->dev; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct drm_i915_gem_object *obj = intel_fb_obj(fb); struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb); struct drm_rect dest = { /* integer pixels */ .x1 = crtc_x, .y1 = crtc_y, .x2 = crtc_x + crtc_w, .y2 = crtc_y + crtc_h, }; struct drm_rect src = { /* 16.16 fixed point */ .x1 = src_x, .y1 = src_y, .x2 = src_x + src_w, .y2 = src_y + src_h, }; const struct drm_rect clip = { /* integer pixels */ .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0, .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0, }; bool visible; int ret; ret = drm_plane_helper_check_update(plane, crtc, fb, &src, &dest, &clip, DRM_PLANE_HELPER_NO_SCALING, DRM_PLANE_HELPER_NO_SCALING, false, true, &visible); if (ret) return ret; /* * If the CRTC isn't enabled, we're just pinning the framebuffer, * updating the fb pointer, and returning without touching the * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to * turn on the display with all planes setup as desired. */ if (!crtc->enabled) { mutex_lock(&dev->struct_mutex); /* * If we already called setplane while the crtc was disabled, * we may have an fb pinned; unpin it. */ if (plane->fb) intel_unpin_fb_obj(old_obj); i915_gem_track_fb(old_obj, obj, INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe)); /* Pin and return without programming hardware */ ret = intel_pin_and_fence_fb_obj(dev, obj, NULL); mutex_unlock(&dev->struct_mutex); return ret; } intel_crtc_wait_for_pending_flips(crtc); /* * If clipping results in a non-visible primary plane, we'll disable * the primary plane. Note that this is a bit different than what * happens if userspace explicitly disables the plane by passing fb=0 * because plane->fb still gets set and pinned. */ if (!visible) { mutex_lock(&dev->struct_mutex); /* * Try to pin the new fb first so that we can bail out if we * fail. */ if (plane->fb != fb) { ret = intel_pin_and_fence_fb_obj(dev, obj, NULL); if (ret) { mutex_unlock(&dev->struct_mutex); return ret; } } i915_gem_track_fb(old_obj, obj, INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe)); if (intel_crtc->primary_enabled) intel_disable_primary_hw_plane(plane, crtc); if (plane->fb != fb) if (plane->fb) intel_unpin_fb_obj(old_obj); mutex_unlock(&dev->struct_mutex); return 0; } ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb); if (ret) return ret; if (!intel_crtc->primary_enabled) intel_enable_primary_hw_plane(plane, crtc); return 0; } /* Common destruction function for both primary and cursor planes */ static void intel_plane_destroy(struct drm_plane *plane) { struct intel_plane *intel_plane = to_intel_plane(plane); drm_plane_cleanup(plane); kfree(intel_plane); } static const struct drm_plane_funcs intel_primary_plane_funcs = { .update_plane = intel_primary_plane_setplane, .disable_plane = intel_primary_plane_disable, .destroy = intel_plane_destroy, }; static struct drm_plane *intel_primary_plane_create(struct drm_device *dev, int pipe) { struct intel_plane *primary; const uint32_t *intel_primary_formats; int num_formats; primary = kzalloc(sizeof(*primary), GFP_KERNEL); if (primary == NULL) return NULL; primary->can_scale = false; primary->max_downscale = 1; primary->pipe = pipe; primary->plane = pipe; if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) primary->plane = !pipe; if (INTEL_INFO(dev)->gen <= 3) { intel_primary_formats = intel_primary_formats_gen2; num_formats = ARRAY_SIZE(intel_primary_formats_gen2); } else { intel_primary_formats = intel_primary_formats_gen4; num_formats = ARRAY_SIZE(intel_primary_formats_gen4); } drm_universal_plane_init(dev, &primary->base, 0, &intel_primary_plane_funcs, intel_primary_formats, num_formats, DRM_PLANE_TYPE_PRIMARY); return &primary->base; } static int intel_cursor_plane_disable(struct drm_plane *plane) { if (!plane->fb) return 0; BUG_ON(!plane->crtc); return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0); } static int intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc, struct drm_framebuffer *fb, int crtc_x, int crtc_y, unsigned int crtc_w, unsigned int crtc_h, uint32_t src_x, uint32_t src_y, uint32_t src_w, uint32_t src_h) { struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct drm_i915_gem_object *obj = intel_fb->obj; struct drm_rect dest = { /* integer pixels */ .x1 = crtc_x, .y1 = crtc_y, .x2 = crtc_x + crtc_w, .y2 = crtc_y + crtc_h, }; struct drm_rect src = { /* 16.16 fixed point */ .x1 = src_x, .y1 = src_y, .x2 = src_x + src_w, .y2 = src_y + src_h, }; const struct drm_rect clip = { /* integer pixels */ .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0, .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0, }; bool visible; int ret; ret = drm_plane_helper_check_update(plane, crtc, fb, &src, &dest, &clip, DRM_PLANE_HELPER_NO_SCALING, DRM_PLANE_HELPER_NO_SCALING, true, true, &visible); if (ret) return ret; crtc->cursor_x = crtc_x; crtc->cursor_y = crtc_y; if (fb != crtc->cursor->fb) { return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h); } else { intel_crtc_update_cursor(crtc, visible); return 0; } } static const struct drm_plane_funcs intel_cursor_plane_funcs = { .update_plane = intel_cursor_plane_update, .disable_plane = intel_cursor_plane_disable, .destroy = intel_plane_destroy, }; static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev, int pipe) { struct intel_plane *cursor; cursor = kzalloc(sizeof(*cursor), GFP_KERNEL); if (cursor == NULL) return NULL; cursor->can_scale = false; cursor->max_downscale = 1; cursor->pipe = pipe; cursor->plane = pipe; drm_universal_plane_init(dev, &cursor->base, 0, &intel_cursor_plane_funcs, intel_cursor_formats, ARRAY_SIZE(intel_cursor_formats), DRM_PLANE_TYPE_CURSOR); return &cursor->base; } static void intel_crtc_init(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc; struct drm_plane *primary = NULL; struct drm_plane *cursor = NULL; int i, ret; intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL); if (intel_crtc == NULL) return; primary = intel_primary_plane_create(dev, pipe); if (!primary) goto fail; cursor = intel_cursor_plane_create(dev, pipe); if (!cursor) goto fail; ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary, cursor, &intel_crtc_funcs); if (ret) goto fail; drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256); for (i = 0; i < 256; i++) { intel_crtc->lut_r[i] = i; intel_crtc->lut_g[i] = i; intel_crtc->lut_b[i] = i; } /* * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port * is hooked to pipe B. Hence we want plane A feeding pipe B. */ intel_crtc->pipe = pipe; intel_crtc->plane = pipe; if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) { DRM_DEBUG_KMS("swapping pipes & planes for FBC\n"); intel_crtc->plane = !pipe; } intel_crtc->cursor_base = ~0; intel_crtc->cursor_cntl = ~0; intel_crtc->cursor_size = ~0; BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) || dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL); dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base; dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base; drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs); WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe); return; fail: if (primary) drm_plane_cleanup(primary); if (cursor) drm_plane_cleanup(cursor); kfree(intel_crtc); } enum pipe intel_get_pipe_from_connector(struct intel_connector *connector) { struct drm_encoder *encoder = connector->base.encoder; struct drm_device *dev = connector->base.dev; WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex)); if (!encoder) return INVALID_PIPE; return to_intel_crtc(encoder->crtc)->pipe; } int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; struct drm_crtc *drmmode_crtc; struct intel_crtc *crtc; if (!drm_core_check_feature(dev, DRIVER_MODESET)) return -ENODEV; drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id); if (!drmmode_crtc) { DRM_ERROR("no such CRTC id\n"); return -ENOENT; } crtc = to_intel_crtc(drmmode_crtc); pipe_from_crtc_id->pipe = crtc->pipe; return 0; } static int intel_encoder_clones(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct intel_encoder *source_encoder; int index_mask = 0; int entry = 0; for_each_intel_encoder(dev, source_encoder) { if (encoders_cloneable(encoder, source_encoder)) index_mask |= (1 << entry); entry++; } return index_mask; } static bool has_edp_a(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (!IS_MOBILE(dev)) return false; if ((I915_READ(DP_A) & DP_DETECTED) == 0) return false; if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE)) return false; return true; } const char *intel_output_name(int output) { static const char *names[] = { [INTEL_OUTPUT_UNUSED] = "Unused", [INTEL_OUTPUT_ANALOG] = "Analog", [INTEL_OUTPUT_DVO] = "DVO", [INTEL_OUTPUT_SDVO] = "SDVO", [INTEL_OUTPUT_LVDS] = "LVDS", [INTEL_OUTPUT_TVOUT] = "TV", [INTEL_OUTPUT_HDMI] = "HDMI", [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort", [INTEL_OUTPUT_EDP] = "eDP", [INTEL_OUTPUT_DSI] = "DSI", [INTEL_OUTPUT_UNKNOWN] = "Unknown", }; if (output < 0 || output >= ARRAY_SIZE(names) || !names[output]) return "Invalid"; return names[output]; } static bool intel_crt_present(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (IS_ULT(dev)) return false; if (IS_CHERRYVIEW(dev)) return false; if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support) return false; return true; } static void intel_setup_outputs(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *encoder; bool dpd_is_edp = false; intel_lvds_init(dev); if (intel_crt_present(dev)) intel_crt_init(dev); if (HAS_DDI(dev)) { int found; /* Haswell uses DDI functions to detect digital outputs */ found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED; /* DDI A only supports eDP */ if (found) intel_ddi_init(dev, PORT_A); /* DDI B, C and D detection is indicated by the SFUSE_STRAP * register */ found = I915_READ(SFUSE_STRAP); if (found & SFUSE_STRAP_DDIB_DETECTED) intel_ddi_init(dev, PORT_B); if (found & SFUSE_STRAP_DDIC_DETECTED) intel_ddi_init(dev, PORT_C); if (found & SFUSE_STRAP_DDID_DETECTED) intel_ddi_init(dev, PORT_D); } else if (HAS_PCH_SPLIT(dev)) { int found; dpd_is_edp = intel_dp_is_edp(dev, PORT_D); if (has_edp_a(dev)) intel_dp_init(dev, DP_A, PORT_A); if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) { /* PCH SDVOB multiplex with HDMIB */ found = intel_sdvo_init(dev, PCH_SDVOB, true); if (!found) intel_hdmi_init(dev, PCH_HDMIB, PORT_B); if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED)) intel_dp_init(dev, PCH_DP_B, PORT_B); } if (I915_READ(PCH_HDMIC) & SDVO_DETECTED) intel_hdmi_init(dev, PCH_HDMIC, PORT_C); if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED) intel_hdmi_init(dev, PCH_HDMID, PORT_D); if (I915_READ(PCH_DP_C) & DP_DETECTED) intel_dp_init(dev, PCH_DP_C, PORT_C); if (I915_READ(PCH_DP_D) & DP_DETECTED) intel_dp_init(dev, PCH_DP_D, PORT_D); } else if (IS_VALLEYVIEW(dev)) { if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) { intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB, PORT_B); if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED) intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B); } if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) { intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC, PORT_C); if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED) intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C); } if (IS_CHERRYVIEW(dev)) { if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) { intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID, PORT_D); if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED) intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D); } } intel_dsi_init(dev); } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) { bool found = false; if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { DRM_DEBUG_KMS("probing SDVOB\n"); found = intel_sdvo_init(dev, GEN3_SDVOB, true); if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) { DRM_DEBUG_KMS("probing HDMI on SDVOB\n"); intel_hdmi_init(dev, GEN4_HDMIB, PORT_B); } if (!found && SUPPORTS_INTEGRATED_DP(dev)) intel_dp_init(dev, DP_B, PORT_B); } /* Before G4X SDVOC doesn't have its own detect register */ if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) { DRM_DEBUG_KMS("probing SDVOC\n"); found = intel_sdvo_init(dev, GEN3_SDVOC, false); } if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) { if (SUPPORTS_INTEGRATED_HDMI(dev)) { DRM_DEBUG_KMS("probing HDMI on SDVOC\n"); intel_hdmi_init(dev, GEN4_HDMIC, PORT_C); } if (SUPPORTS_INTEGRATED_DP(dev)) intel_dp_init(dev, DP_C, PORT_C); } if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED)) intel_dp_init(dev, DP_D, PORT_D); } else if (IS_GEN2(dev)) intel_dvo_init(dev); if (SUPPORTS_TV(dev)) intel_tv_init(dev); intel_edp_psr_init(dev); for_each_intel_encoder(dev, encoder) { encoder->base.possible_crtcs = encoder->crtc_mask; encoder->base.possible_clones = intel_encoder_clones(encoder); } intel_init_pch_refclk(dev); drm_helper_move_panel_connectors_to_head(dev); } static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb) { struct drm_device *dev = fb->dev; struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); drm_framebuffer_cleanup(fb); mutex_lock(&dev->struct_mutex); WARN_ON(!intel_fb->obj->framebuffer_references--); drm_gem_object_unreference(&intel_fb->obj->base); mutex_unlock(&dev->struct_mutex); kfree(intel_fb); } static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb, struct drm_file *file, unsigned int *handle) { struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb); struct drm_i915_gem_object *obj = intel_fb->obj; return drm_gem_handle_create(file, &obj->base, handle); } static const struct drm_framebuffer_funcs intel_fb_funcs = { .destroy = intel_user_framebuffer_destroy, .create_handle = intel_user_framebuffer_create_handle, }; static int intel_framebuffer_init(struct drm_device *dev, struct intel_framebuffer *intel_fb, struct drm_mode_fb_cmd2 *mode_cmd, struct drm_i915_gem_object *obj) { int aligned_height; int pitch_limit; int ret; WARN_ON(!mutex_is_locked(&dev->struct_mutex)); if (obj->tiling_mode == I915_TILING_Y) { DRM_DEBUG("hardware does not support tiling Y\n"); return -EINVAL; } if (mode_cmd->pitches[0] & 63) { DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n", mode_cmd->pitches[0]); return -EINVAL; } if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) { pitch_limit = 32*1024; } else if (INTEL_INFO(dev)->gen >= 4) { if (obj->tiling_mode) pitch_limit = 16*1024; else pitch_limit = 32*1024; } else if (INTEL_INFO(dev)->gen >= 3) { if (obj->tiling_mode) pitch_limit = 8*1024; else pitch_limit = 16*1024; } else /* XXX DSPC is limited to 4k tiled */ pitch_limit = 8*1024; if (mode_cmd->pitches[0] > pitch_limit) { DRM_DEBUG("%s pitch (%d) must be at less than %d\n", obj->tiling_mode ? "tiled" : "linear", mode_cmd->pitches[0], pitch_limit); return -EINVAL; } if (obj->tiling_mode != I915_TILING_NONE && mode_cmd->pitches[0] != obj->stride) { DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n", mode_cmd->pitches[0], obj->stride); return -EINVAL; } /* Reject formats not supported by any plane early. */ switch (mode_cmd->pixel_format) { case DRM_FORMAT_C8: case DRM_FORMAT_RGB565: case DRM_FORMAT_XRGB8888: case DRM_FORMAT_ARGB8888: break; case DRM_FORMAT_XRGB1555: case DRM_FORMAT_ARGB1555: if (INTEL_INFO(dev)->gen > 3) { DRM_DEBUG("unsupported pixel format: %s\n", drm_get_format_name(mode_cmd->pixel_format)); return -EINVAL; } break; case DRM_FORMAT_XBGR8888: case DRM_FORMAT_ABGR8888: case DRM_FORMAT_XRGB2101010: case DRM_FORMAT_ARGB2101010: case DRM_FORMAT_XBGR2101010: case DRM_FORMAT_ABGR2101010: if (INTEL_INFO(dev)->gen < 4) { DRM_DEBUG("unsupported pixel format: %s\n", drm_get_format_name(mode_cmd->pixel_format)); return -EINVAL; } break; case DRM_FORMAT_YUYV: case DRM_FORMAT_UYVY: case DRM_FORMAT_YVYU: case DRM_FORMAT_VYUY: if (INTEL_INFO(dev)->gen < 5) { DRM_DEBUG("unsupported pixel format: %s\n", drm_get_format_name(mode_cmd->pixel_format)); return -EINVAL; } break; default: DRM_DEBUG("unsupported pixel format: %s\n", drm_get_format_name(mode_cmd->pixel_format)); return -EINVAL; } /* FIXME need to adjust LINOFF/TILEOFF accordingly. */ if (mode_cmd->offsets[0] != 0) return -EINVAL; aligned_height = intel_align_height(dev, mode_cmd->height, obj->tiling_mode); /* FIXME drm helper for size checks (especially planar formats)? */ if (obj->base.size < aligned_height * mode_cmd->pitches[0]) return -EINVAL; drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd); intel_fb->obj = obj; intel_fb->obj->framebuffer_references++; ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs); if (ret) { DRM_ERROR("framebuffer init failed %d\n", ret); return ret; } return 0; } static struct drm_framebuffer * intel_user_framebuffer_create(struct drm_device *dev, struct drm_file *filp, struct drm_mode_fb_cmd2 *mode_cmd) { struct drm_i915_gem_object *obj; obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handles[0])); if (&obj->base == NULL) return ERR_PTR(-ENOENT); return intel_framebuffer_create(dev, mode_cmd, obj); } #ifndef CONFIG_DRM_I915_FBDEV static inline void intel_fbdev_output_poll_changed(struct drm_device *dev) { } #endif static const struct drm_mode_config_funcs intel_mode_funcs = { .fb_create = intel_user_framebuffer_create, .output_poll_changed = intel_fbdev_output_poll_changed, }; /* Set up chip specific display functions */ static void intel_init_display(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; if (HAS_PCH_SPLIT(dev) || IS_G4X(dev)) dev_priv->display.find_dpll = g4x_find_best_dpll; else if (IS_CHERRYVIEW(dev)) dev_priv->display.find_dpll = chv_find_best_dpll; else if (IS_VALLEYVIEW(dev)) dev_priv->display.find_dpll = vlv_find_best_dpll; else if (IS_PINEVIEW(dev)) dev_priv->display.find_dpll = pnv_find_best_dpll; else dev_priv->display.find_dpll = i9xx_find_best_dpll; if (HAS_DDI(dev)) { dev_priv->display.get_pipe_config = haswell_get_pipe_config; dev_priv->display.get_plane_config = ironlake_get_plane_config; dev_priv->display.crtc_mode_set = haswell_crtc_mode_set; dev_priv->display.crtc_enable = haswell_crtc_enable; dev_priv->display.crtc_disable = haswell_crtc_disable; dev_priv->display.off = ironlake_crtc_off; dev_priv->display.update_primary_plane = ironlake_update_primary_plane; } else if (HAS_PCH_SPLIT(dev)) { dev_priv->display.get_pipe_config = ironlake_get_pipe_config; dev_priv->display.get_plane_config = ironlake_get_plane_config; dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set; dev_priv->display.crtc_enable = ironlake_crtc_enable; dev_priv->display.crtc_disable = ironlake_crtc_disable; dev_priv->display.off = ironlake_crtc_off; dev_priv->display.update_primary_plane = ironlake_update_primary_plane; } else if (IS_VALLEYVIEW(dev)) { dev_priv->display.get_pipe_config = i9xx_get_pipe_config; dev_priv->display.get_plane_config = i9xx_get_plane_config; dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set; dev_priv->display.crtc_enable = valleyview_crtc_enable; dev_priv->display.crtc_disable = i9xx_crtc_disable; dev_priv->display.off = i9xx_crtc_off; dev_priv->display.update_primary_plane = i9xx_update_primary_plane; } else { dev_priv->display.get_pipe_config = i9xx_get_pipe_config; dev_priv->display.get_plane_config = i9xx_get_plane_config; dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set; dev_priv->display.crtc_enable = i9xx_crtc_enable; dev_priv->display.crtc_disable = i9xx_crtc_disable; dev_priv->display.off = i9xx_crtc_off; dev_priv->display.update_primary_plane = i9xx_update_primary_plane; } /* Returns the core display clock speed */ if (IS_VALLEYVIEW(dev)) dev_priv->display.get_display_clock_speed = valleyview_get_display_clock_speed; else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev))) dev_priv->display.get_display_clock_speed = i945_get_display_clock_speed; else if (IS_I915G(dev)) dev_priv->display.get_display_clock_speed = i915_get_display_clock_speed; else if (IS_I945GM(dev) || IS_845G(dev)) dev_priv->display.get_display_clock_speed = i9xx_misc_get_display_clock_speed; else if (IS_PINEVIEW(dev)) dev_priv->display.get_display_clock_speed = pnv_get_display_clock_speed; else if (IS_I915GM(dev)) dev_priv->display.get_display_clock_speed = i915gm_get_display_clock_speed; else if (IS_I865G(dev)) dev_priv->display.get_display_clock_speed = i865_get_display_clock_speed; else if (IS_I85X(dev)) dev_priv->display.get_display_clock_speed = i855_get_display_clock_speed; else /* 852, 830 */ dev_priv->display.get_display_clock_speed = i830_get_display_clock_speed; if (IS_G4X(dev)) { dev_priv->display.write_eld = g4x_write_eld; } else if (IS_GEN5(dev)) { dev_priv->display.fdi_link_train = ironlake_fdi_link_train; dev_priv->display.write_eld = ironlake_write_eld; } else if (IS_GEN6(dev)) { dev_priv->display.fdi_link_train = gen6_fdi_link_train; dev_priv->display.write_eld = ironlake_write_eld; dev_priv->display.modeset_global_resources = snb_modeset_global_resources; } else if (IS_IVYBRIDGE(dev)) { /* FIXME: detect B0+ stepping and use auto training */ dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train; dev_priv->display.write_eld = ironlake_write_eld; dev_priv->display.modeset_global_resources = ivb_modeset_global_resources; } else if (IS_HASWELL(dev) || IS_GEN8(dev)) { dev_priv->display.fdi_link_train = hsw_fdi_link_train; dev_priv->display.write_eld = haswell_write_eld; dev_priv->display.modeset_global_resources = haswell_modeset_global_resources; } else if (IS_VALLEYVIEW(dev)) { dev_priv->display.modeset_global_resources = valleyview_modeset_global_resources; dev_priv->display.write_eld = ironlake_write_eld; } /* Default just returns -ENODEV to indicate unsupported */ dev_priv->display.queue_flip = intel_default_queue_flip; switch (INTEL_INFO(dev)->gen) { case 2: dev_priv->display.queue_flip = intel_gen2_queue_flip; break; case 3: dev_priv->display.queue_flip = intel_gen3_queue_flip; break; case 4: case 5: dev_priv->display.queue_flip = intel_gen4_queue_flip; break; case 6: dev_priv->display.queue_flip = intel_gen6_queue_flip; break; case 7: case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */ dev_priv->display.queue_flip = intel_gen7_queue_flip; break; } intel_panel_init_backlight_funcs(dev); } /* * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend, * resume, or other times. This quirk makes sure that's the case for * affected systems. */ static void quirk_pipea_force(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; dev_priv->quirks |= QUIRK_PIPEA_FORCE; DRM_INFO("applying pipe a force quirk\n"); } /* * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason */ static void quirk_ssc_force_disable(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE; DRM_INFO("applying lvds SSC disable quirk\n"); } /* * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight * brightness value */ static void quirk_invert_brightness(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS; DRM_INFO("applying inverted panel brightness quirk\n"); } /* Some VBT's incorrectly indicate no backlight is present */ static void quirk_backlight_present(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT; DRM_INFO("applying backlight present quirk\n"); } struct intel_quirk { int device; int subsystem_vendor; int subsystem_device; void (*hook)(struct drm_device *dev); }; /* For systems that don't have a meaningful PCI subdevice/subvendor ID */ struct intel_dmi_quirk { void (*hook)(struct drm_device *dev); const struct dmi_system_id (*dmi_id_list)[]; }; static int intel_dmi_reverse_brightness(const struct dmi_system_id *id) { DRM_INFO("Backlight polarity reversed on %s\n", id->ident); return 1; } static const struct intel_dmi_quirk intel_dmi_quirks[] = { { .dmi_id_list = &(const struct dmi_system_id[]) { { .callback = intel_dmi_reverse_brightness, .ident = "NCR Corporation", .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, ""), }, }, { } /* terminating entry */ }, .hook = quirk_invert_brightness, }, }; static struct intel_quirk intel_quirks[] = { /* HP Mini needs pipe A force quirk (LP: #322104) */ { 0x27ae, 0x103c, 0x361a, quirk_pipea_force }, /* Toshiba Protege R-205, S-209 needs pipe A force quirk */ { 0x2592, 0x1179, 0x0001, quirk_pipea_force }, /* ThinkPad T60 needs pipe A force quirk (bug #16494) */ { 0x2782, 0x17aa, 0x201a, quirk_pipea_force }, /* Lenovo U160 cannot use SSC on LVDS */ { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable }, /* Sony Vaio Y cannot use SSC on LVDS */ { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable }, /* Acer Aspire 5734Z must invert backlight brightness */ { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness }, /* Acer/eMachines G725 */ { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness }, /* Acer/eMachines e725 */ { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness }, /* Acer/Packard Bell NCL20 */ { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness }, /* Acer Aspire 4736Z */ { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness }, /* Acer Aspire 5336 */ { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness }, /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */ { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present }, /* Toshiba CB35 Chromebook (Celeron 2955U) */ { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present }, /* HP Chromebook 14 (Celeron 2955U) */ { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present }, }; static void intel_init_quirks(struct drm_device *dev) { struct pci_dev *d = dev->pdev; int i; for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) { struct intel_quirk *q = &intel_quirks[i]; if (d->device == q->device && (d->subsystem_vendor == q->subsystem_vendor || q->subsystem_vendor == PCI_ANY_ID) && (d->subsystem_device == q->subsystem_device || q->subsystem_device == PCI_ANY_ID)) q->hook(dev); } for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) { if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0) intel_dmi_quirks[i].hook(dev); } } /* Disable the VGA plane that we never use */ static void i915_disable_vga(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u8 sr1; u32 vga_reg = i915_vgacntrl_reg(dev); /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */ vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO); outb(SR01, VGA_SR_INDEX); sr1 = inb(VGA_SR_DATA); outb(sr1 | 1<<5, VGA_SR_DATA); vga_put(dev->pdev, VGA_RSRC_LEGACY_IO); udelay(300); I915_WRITE(vga_reg, VGA_DISP_DISABLE); POSTING_READ(vga_reg); } void intel_modeset_init_hw(struct drm_device *dev) { intel_prepare_ddi(dev); if (IS_VALLEYVIEW(dev)) vlv_update_cdclk(dev); intel_init_clock_gating(dev); intel_enable_gt_powersave(dev); } void intel_modeset_suspend_hw(struct drm_device *dev) { intel_suspend_hw(dev); } void intel_modeset_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; int sprite, ret; enum pipe pipe; struct intel_crtc *crtc; drm_mode_config_init(dev); dev->mode_config.min_width = 0; dev->mode_config.min_height = 0; dev->mode_config.preferred_depth = 24; dev->mode_config.prefer_shadow = 1; dev->mode_config.funcs = &intel_mode_funcs; intel_init_quirks(dev); intel_init_pm(dev); if (INTEL_INFO(dev)->num_pipes == 0) return; intel_init_display(dev); if (IS_GEN2(dev)) { dev->mode_config.max_width = 2048; dev->mode_config.max_height = 2048; } else if (IS_GEN3(dev)) { dev->mode_config.max_width = 4096; dev->mode_config.max_height = 4096; } else { dev->mode_config.max_width = 8192; dev->mode_config.max_height = 8192; } if (IS_845G(dev) || IS_I865G(dev)) { dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512; dev->mode_config.cursor_height = 1023; } else if (IS_GEN2(dev)) { dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH; dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT; } else { dev->mode_config.cursor_width = MAX_CURSOR_WIDTH; dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT; } dev->mode_config.fb_base = dev_priv->gtt.mappable_base; DRM_DEBUG_KMS("%d display pipe%s available.\n", INTEL_INFO(dev)->num_pipes, INTEL_INFO(dev)->num_pipes > 1 ? "s" : ""); for_each_pipe(pipe) { intel_crtc_init(dev, pipe); for_each_sprite(pipe, sprite) { ret = intel_plane_init(dev, pipe, sprite); if (ret) DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n", pipe_name(pipe), sprite_name(pipe, sprite), ret); } } intel_init_dpio(dev); intel_shared_dpll_init(dev); /* Just disable it once at startup */ i915_disable_vga(dev); intel_setup_outputs(dev); /* Just in case the BIOS is doing something questionable. */ intel_disable_fbc(dev); drm_modeset_lock_all(dev); intel_modeset_setup_hw_state(dev, false); drm_modeset_unlock_all(dev); for_each_intel_crtc(dev, crtc) { if (!crtc->active) continue; /* * Note that reserving the BIOS fb up front prevents us * from stuffing other stolen allocations like the ring * on top. This prevents some ugliness at boot time, and * can even allow for smooth boot transitions if the BIOS * fb is large enough for the active pipe configuration. */ if (dev_priv->display.get_plane_config) { dev_priv->display.get_plane_config(crtc, &crtc->plane_config); /* * If the fb is shared between multiple heads, we'll * just get the first one. */ intel_find_plane_obj(crtc, &crtc->plane_config); } } } static void intel_enable_pipe_a(struct drm_device *dev) { struct intel_connector *connector; struct drm_connector *crt = NULL; struct intel_load_detect_pipe load_detect_temp; struct drm_modeset_acquire_ctx ctx; /* We can't just switch on the pipe A, we need to set things up with a * proper mode and output configuration. As a gross hack, enable pipe A * by enabling the load detect pipe once. */ list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { if (connector->encoder->type == INTEL_OUTPUT_ANALOG) { crt = &connector->base; break; } } if (!crt) return; if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx)) intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx); } static bool intel_check_plane_mapping(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 reg, val; if (INTEL_INFO(dev)->num_pipes == 1) return true; reg = DSPCNTR(!crtc->plane); val = I915_READ(reg); if ((val & DISPLAY_PLANE_ENABLE) && (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe)) return false; return true; } static void intel_sanitize_crtc(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 reg; /* Clear any frame start delays used for debugging left by the BIOS */ reg = PIPECONF(crtc->config.cpu_transcoder); I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK); /* restore vblank interrupts to correct state */ if (crtc->active) drm_vblank_on(dev, crtc->pipe); else drm_vblank_off(dev, crtc->pipe); /* We need to sanitize the plane -> pipe mapping first because this will * disable the crtc (and hence change the state) if it is wrong. Note * that gen4+ has a fixed plane -> pipe mapping. */ if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) { struct intel_connector *connector; bool plane; DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n", crtc->base.base.id); /* Pipe has the wrong plane attached and the plane is active. * Temporarily change the plane mapping and disable everything * ... */ plane = crtc->plane; crtc->plane = !plane; crtc->primary_enabled = true; dev_priv->display.crtc_disable(&crtc->base); crtc->plane = plane; /* ... and break all links. */ list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { if (connector->encoder->base.crtc != &crtc->base) continue; connector->base.dpms = DRM_MODE_DPMS_OFF; connector->base.encoder = NULL; } /* multiple connectors may have the same encoder: * handle them and break crtc link separately */ list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) if (connector->encoder->base.crtc == &crtc->base) { connector->encoder->base.crtc = NULL; connector->encoder->connectors_active = false; } WARN_ON(crtc->active); crtc->base.enabled = false; } if (dev_priv->quirks & QUIRK_PIPEA_FORCE && crtc->pipe == PIPE_A && !crtc->active) { /* BIOS forgot to enable pipe A, this mostly happens after * resume. Force-enable the pipe to fix this, the update_dpms * call below we restore the pipe to the right state, but leave * the required bits on. */ intel_enable_pipe_a(dev); } /* Adjust the state of the output pipe according to whether we * have active connectors/encoders. */ intel_crtc_update_dpms(&crtc->base); if (crtc->active != crtc->base.enabled) { struct intel_encoder *encoder; /* This can happen either due to bugs in the get_hw_state * functions or because the pipe is force-enabled due to the * pipe A quirk. */ DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n", crtc->base.base.id, crtc->base.enabled ? "enabled" : "disabled", crtc->active ? "enabled" : "disabled"); crtc->base.enabled = crtc->active; /* Because we only establish the connector -> encoder -> * crtc links if something is active, this means the * crtc is now deactivated. Break the links. connector * -> encoder links are only establish when things are * actually up, hence no need to break them. */ WARN_ON(crtc->active); for_each_encoder_on_crtc(dev, &crtc->base, encoder) { WARN_ON(encoder->connectors_active); encoder->base.crtc = NULL; } } if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) { /* * We start out with underrun reporting disabled to avoid races. * For correct bookkeeping mark this on active crtcs. * * Also on gmch platforms we dont have any hardware bits to * disable the underrun reporting. Which means we need to start * out with underrun reporting disabled also on inactive pipes, * since otherwise we'll complain about the garbage we read when * e.g. coming up after runtime pm. * * No protection against concurrent access is required - at * worst a fifo underrun happens which also sets this to false. */ crtc->cpu_fifo_underrun_disabled = true; crtc->pch_fifo_underrun_disabled = true; update_scanline_offset(crtc); } } static void intel_sanitize_encoder(struct intel_encoder *encoder) { struct intel_connector *connector; struct drm_device *dev = encoder->base.dev; /* We need to check both for a crtc link (meaning that the * encoder is active and trying to read from a pipe) and the * pipe itself being active. */ bool has_active_crtc = encoder->base.crtc && to_intel_crtc(encoder->base.crtc)->active; if (encoder->connectors_active && !has_active_crtc) { DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n", encoder->base.base.id, encoder->base.name); /* Connector is active, but has no active pipe. This is * fallout from our resume register restoring. Disable * the encoder manually again. */ if (encoder->base.crtc) { DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n", encoder->base.base.id, encoder->base.name); encoder->disable(encoder); if (encoder->post_disable) encoder->post_disable(encoder); } encoder->base.crtc = NULL; encoder->connectors_active = false; /* Inconsistent output/port/pipe state happens presumably due to * a bug in one of the get_hw_state functions. Or someplace else * in our code, like the register restore mess on resume. Clamp * things to off as a safer default. */ list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { if (connector->encoder != encoder) continue; connector->base.dpms = DRM_MODE_DPMS_OFF; connector->base.encoder = NULL; } } /* Enabled encoders without active connectors will be fixed in * the crtc fixup. */ } void i915_redisable_vga_power_on(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; u32 vga_reg = i915_vgacntrl_reg(dev); if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) { DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n"); i915_disable_vga(dev); } } void i915_redisable_vga(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; /* This function can be called both from intel_modeset_setup_hw_state or * at a very early point in our resume sequence, where the power well * structures are not yet restored. Since this function is at a very * paranoid "someone might have enabled VGA while we were not looking" * level, just check if the power well is enabled instead of trying to * follow the "don't touch the power well if we don't need it" policy * the rest of the driver uses. */ if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA)) return; i915_redisable_vga_power_on(dev); } static bool primary_get_hw_state(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = crtc->base.dev->dev_private; if (!crtc->active) return false; return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE; } static void intel_modeset_readout_hw_state(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe; struct intel_crtc *crtc; struct intel_encoder *encoder; struct intel_connector *connector; int i; for_each_intel_crtc(dev, crtc) { memset(&crtc->config, 0, sizeof(crtc->config)); crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE; crtc->active = dev_priv->display.get_pipe_config(crtc, &crtc->config); crtc->base.enabled = crtc->active; crtc->primary_enabled = primary_get_hw_state(crtc); DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n", crtc->base.base.id, crtc->active ? "enabled" : "disabled"); } for (i = 0; i < dev_priv->num_shared_dpll; i++) { struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state); pll->active = 0; for_each_intel_crtc(dev, crtc) { if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) pll->active++; } pll->refcount = pll->active; DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n", pll->name, pll->refcount, pll->on); if (pll->refcount) intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS); } for_each_intel_encoder(dev, encoder) { pipe = 0; if (encoder->get_hw_state(encoder, &pipe)) { crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); encoder->base.crtc = &crtc->base; encoder->get_config(encoder, &crtc->config); } else { encoder->base.crtc = NULL; } encoder->connectors_active = false; DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n", encoder->base.base.id, encoder->base.name, encoder->base.crtc ? "enabled" : "disabled", pipe_name(pipe)); } list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) { if (connector->get_hw_state(connector)) { connector->base.dpms = DRM_MODE_DPMS_ON; connector->encoder->connectors_active = true; connector->base.encoder = &connector->encoder->base; } else { connector->base.dpms = DRM_MODE_DPMS_OFF; connector->base.encoder = NULL; } DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n", connector->base.base.id, connector->base.name, connector->base.encoder ? "enabled" : "disabled"); } } /* Scan out the current hw modeset state, sanitizes it and maps it into the drm * and i915 state tracking structures. */ void intel_modeset_setup_hw_state(struct drm_device *dev, bool force_restore) { struct drm_i915_private *dev_priv = dev->dev_private; enum pipe pipe; struct intel_crtc *crtc; struct intel_encoder *encoder; int i; intel_modeset_readout_hw_state(dev); /* * Now that we have the config, copy it to each CRTC struct * Note that this could go away if we move to using crtc_config * checking everywhere. */ for_each_intel_crtc(dev, crtc) { if (crtc->active && i915.fastboot) { intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config); DRM_DEBUG_KMS("[CRTC:%d] found active mode: ", crtc->base.base.id); drm_mode_debug_printmodeline(&crtc->base.mode); } } /* HW state is read out, now we need to sanitize this mess. */ for_each_intel_encoder(dev, encoder) { intel_sanitize_encoder(encoder); } for_each_pipe(pipe) { crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]); intel_sanitize_crtc(crtc); intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]"); } for (i = 0; i < dev_priv->num_shared_dpll; i++) { struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i]; if (!pll->on || pll->active) continue; DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name); pll->disable(dev_priv, pll); pll->on = false; } if (HAS_PCH_SPLIT(dev)) ilk_wm_get_hw_state(dev); if (force_restore) { i915_redisable_vga(dev); /* * We need to use raw interfaces for restoring state to avoid * checking (bogus) intermediate states. */ for_each_pipe(pipe) { struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe]; __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb); } } else { intel_modeset_update_staged_output_state(dev); } intel_modeset_check_state(dev); } void intel_modeset_gem_init(struct drm_device *dev) { struct drm_crtc *c; struct drm_i915_gem_object *obj; mutex_lock(&dev->struct_mutex); intel_init_gt_powersave(dev); mutex_unlock(&dev->struct_mutex); intel_modeset_init_hw(dev); intel_setup_overlay(dev); /* * Make sure any fbs we allocated at startup are properly * pinned & fenced. When we do the allocation it's too early * for this. */ mutex_lock(&dev->struct_mutex); for_each_crtc(dev, c) { obj = intel_fb_obj(c->primary->fb); if (obj == NULL) continue; if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) { DRM_ERROR("failed to pin boot fb on pipe %d\n", to_intel_crtc(c)->pipe); drm_framebuffer_unreference(c->primary->fb); c->primary->fb = NULL; } } mutex_unlock(&dev->struct_mutex); } void intel_connector_unregister(struct intel_connector *intel_connector) { struct drm_connector *connector = &intel_connector->base; intel_panel_destroy_backlight(connector); drm_connector_unregister(connector); } void intel_modeset_cleanup(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_connector *connector; /* * Interrupts and polling as the first thing to avoid creating havoc. * Too much stuff here (turning of rps, connectors, ...) would * experience fancy races otherwise. */ drm_irq_uninstall(dev); cancel_work_sync(&dev_priv->hotplug_work); dev_priv->pm._irqs_disabled = true; /* * Due to the hpd irq storm handling the hotplug work can re-arm the * poll handlers. Hence disable polling after hpd handling is shut down. */ drm_kms_helper_poll_fini(dev); mutex_lock(&dev->struct_mutex); intel_unregister_dsm_handler(); intel_disable_fbc(dev); intel_disable_gt_powersave(dev); ironlake_teardown_rc6(dev); mutex_unlock(&dev->struct_mutex); /* flush any delayed tasks or pending work */ flush_scheduled_work(); /* destroy the backlight and sysfs files before encoders/connectors */ list_for_each_entry(connector, &dev->mode_config.connector_list, head) { struct intel_connector *intel_connector; intel_connector = to_intel_connector(connector); intel_connector->unregister(intel_connector); } drm_mode_config_cleanup(dev); intel_cleanup_overlay(dev); mutex_lock(&dev->struct_mutex); intel_cleanup_gt_powersave(dev); mutex_unlock(&dev->struct_mutex); } /* * Return which encoder is currently attached for connector. */ struct drm_encoder *intel_best_encoder(struct drm_connector *connector) { return &intel_attached_encoder(connector)->base; } void intel_connector_attach_encoder(struct intel_connector *connector, struct intel_encoder *encoder) { connector->encoder = encoder; drm_mode_connector_attach_encoder(&connector->base, &encoder->base); } /* * set vga decode state - true == enable VGA decode */ int intel_modeset_vga_set_state(struct drm_device *dev, bool state) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL; u16 gmch_ctrl; if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) { DRM_ERROR("failed to read control word\n"); return -EIO; } if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state) return 0; if (state) gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE; else gmch_ctrl |= INTEL_GMCH_VGA_DISABLE; if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) { DRM_ERROR("failed to write control word\n"); return -EIO; } return 0; } struct intel_display_error_state { u32 power_well_driver; int num_transcoders; struct intel_cursor_error_state { u32 control; u32 position; u32 base; u32 size; } cursor[I915_MAX_PIPES]; struct intel_pipe_error_state { bool power_domain_on; u32 source; u32 stat; } pipe[I915_MAX_PIPES]; struct intel_plane_error_state { u32 control; u32 stride; u32 size; u32 pos; u32 addr; u32 surface; u32 tile_offset; } plane[I915_MAX_PIPES]; struct intel_transcoder_error_state { bool power_domain_on; enum transcoder cpu_transcoder; u32 conf; u32 htotal; u32 hblank; u32 hsync; u32 vtotal; u32 vblank; u32 vsync; } transcoder[4]; }; struct intel_display_error_state * intel_display_capture_error_state(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_display_error_state *error; int transcoders[] = { TRANSCODER_A, TRANSCODER_B, TRANSCODER_C, TRANSCODER_EDP, }; int i; if (INTEL_INFO(dev)->num_pipes == 0) return NULL; error = kzalloc(sizeof(*error), GFP_ATOMIC); if (error == NULL) return NULL; if (IS_HASWELL(dev) || IS_BROADWELL(dev)) error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER); for_each_pipe(i) { error->pipe[i].power_domain_on = intel_display_power_enabled_unlocked(dev_priv, POWER_DOMAIN_PIPE(i)); if (!error->pipe[i].power_domain_on) continue; error->cursor[i].control = I915_READ(CURCNTR(i)); error->cursor[i].position = I915_READ(CURPOS(i)); error->cursor[i].base = I915_READ(CURBASE(i)); error->plane[i].control = I915_READ(DSPCNTR(i)); error->plane[i].stride = I915_READ(DSPSTRIDE(i)); if (INTEL_INFO(dev)->gen <= 3) { error->plane[i].size = I915_READ(DSPSIZE(i)); error->plane[i].pos = I915_READ(DSPPOS(i)); } if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) error->plane[i].addr = I915_READ(DSPADDR(i)); if (INTEL_INFO(dev)->gen >= 4) { error->plane[i].surface = I915_READ(DSPSURF(i)); error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i)); } error->pipe[i].source = I915_READ(PIPESRC(i)); if (HAS_GMCH_DISPLAY(dev)) error->pipe[i].stat = I915_READ(PIPESTAT(i)); } error->num_transcoders = INTEL_INFO(dev)->num_pipes; if (HAS_DDI(dev_priv->dev)) error->num_transcoders++; /* Account for eDP. */ for (i = 0; i < error->num_transcoders; i++) { enum transcoder cpu_transcoder = transcoders[i]; error->transcoder[i].power_domain_on = intel_display_power_enabled_unlocked(dev_priv, POWER_DOMAIN_TRANSCODER(cpu_transcoder)); if (!error->transcoder[i].power_domain_on) continue; error->transcoder[i].cpu_transcoder = cpu_transcoder; error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder)); error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder)); error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder)); error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder)); error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder)); error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder)); error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder)); } return error; } #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) void intel_display_print_error_state(struct drm_i915_error_state_buf *m, struct drm_device *dev, struct intel_display_error_state *error) { int i; if (!error) return; err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes); if (IS_HASWELL(dev) || IS_BROADWELL(dev)) err_printf(m, "PWR_WELL_CTL2: %08x\n", error->power_well_driver); for_each_pipe(i) { err_printf(m, "Pipe [%d]:\n", i); err_printf(m, " Power: %s\n", error->pipe[i].power_domain_on ? "on" : "off"); err_printf(m, " SRC: %08x\n", error->pipe[i].source); err_printf(m, " STAT: %08x\n", error->pipe[i].stat); err_printf(m, "Plane [%d]:\n", i); err_printf(m, " CNTR: %08x\n", error->plane[i].control); err_printf(m, " STRIDE: %08x\n", error->plane[i].stride); if (INTEL_INFO(dev)->gen <= 3) { err_printf(m, " SIZE: %08x\n", error->plane[i].size); err_printf(m, " POS: %08x\n", error->plane[i].pos); } if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) err_printf(m, " ADDR: %08x\n", error->plane[i].addr); if (INTEL_INFO(dev)->gen >= 4) { err_printf(m, " SURF: %08x\n", error->plane[i].surface); err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset); } err_printf(m, "Cursor [%d]:\n", i); err_printf(m, " CNTR: %08x\n", error->cursor[i].control); err_printf(m, " POS: %08x\n", error->cursor[i].position); err_printf(m, " BASE: %08x\n", error->cursor[i].base); } for (i = 0; i < error->num_transcoders; i++) { err_printf(m, "CPU transcoder: %c\n", transcoder_name(error->transcoder[i].cpu_transcoder)); err_printf(m, " Power: %s\n", error->transcoder[i].power_domain_on ? "on" : "off"); err_printf(m, " CONF: %08x\n", error->transcoder[i].conf); err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal); err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank); err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync); err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal); err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank); err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync); } } void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file) { struct intel_crtc *crtc; for_each_intel_crtc(dev, crtc) { struct intel_unpin_work *work; unsigned long irqflags; spin_lock_irqsave(&dev->event_lock, irqflags); work = crtc->unpin_work; if (work && work->event && work->event->base.file_priv == file) { kfree(work->event); work->event = NULL; } spin_unlock_irqrestore(&dev->event_lock, irqflags); } }