/* * Copyright © 2010 Daniel Vetter * Copyright © 2011-2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include #include #include #include "i915_drv.h" #include "i915_vgpu.h" #include "i915_trace.h" #include "intel_drv.h" #include "intel_frontbuffer.h" #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM) /** * DOC: Global GTT views * * Background and previous state * * Historically objects could exists (be bound) in global GTT space only as * singular instances with a view representing all of the object's backing pages * in a linear fashion. This view will be called a normal view. * * To support multiple views of the same object, where the number of mapped * pages is not equal to the backing store, or where the layout of the pages * is not linear, concept of a GGTT view was added. * * One example of an alternative view is a stereo display driven by a single * image. In this case we would have a framebuffer looking like this * (2x2 pages): * * 12 * 34 * * Above would represent a normal GGTT view as normally mapped for GPU or CPU * rendering. In contrast, fed to the display engine would be an alternative * view which could look something like this: * * 1212 * 3434 * * In this example both the size and layout of pages in the alternative view is * different from the normal view. * * Implementation and usage * * GGTT views are implemented using VMAs and are distinguished via enum * i915_ggtt_view_type and struct i915_ggtt_view. * * A new flavour of core GEM functions which work with GGTT bound objects were * added with the _ggtt_ infix, and sometimes with _view postfix to avoid * renaming in large amounts of code. They take the struct i915_ggtt_view * parameter encapsulating all metadata required to implement a view. * * As a helper for callers which are only interested in the normal view, * globally const i915_ggtt_view_normal singleton instance exists. All old core * GEM API functions, the ones not taking the view parameter, are operating on, * or with the normal GGTT view. * * Code wanting to add or use a new GGTT view needs to: * * 1. Add a new enum with a suitable name. * 2. Extend the metadata in the i915_ggtt_view structure if required. * 3. Add support to i915_get_vma_pages(). * * New views are required to build a scatter-gather table from within the * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and * exists for the lifetime of an VMA. * * Core API is designed to have copy semantics which means that passed in * struct i915_ggtt_view does not need to be persistent (left around after * calling the core API functions). * */ static int i915_get_ggtt_vma_pages(struct i915_vma *vma); const struct i915_ggtt_view i915_ggtt_view_normal = { .type = I915_GGTT_VIEW_NORMAL, }; const struct i915_ggtt_view i915_ggtt_view_rotated = { .type = I915_GGTT_VIEW_ROTATED, }; int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, int enable_ppgtt) { bool has_aliasing_ppgtt; bool has_full_ppgtt; bool has_full_48bit_ppgtt; has_aliasing_ppgtt = dev_priv->info.has_aliasing_ppgtt; has_full_ppgtt = dev_priv->info.has_full_ppgtt; has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt; if (intel_vgpu_active(dev_priv)) { /* emulation is too hard */ has_full_ppgtt = false; has_full_48bit_ppgtt = false; } if (!has_aliasing_ppgtt) return 0; /* * We don't allow disabling PPGTT for gen9+ as it's a requirement for * execlists, the sole mechanism available to submit work. */ if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9) return 0; if (enable_ppgtt == 1) return 1; if (enable_ppgtt == 2 && has_full_ppgtt) return 2; if (enable_ppgtt == 3 && has_full_48bit_ppgtt) return 3; #ifdef CONFIG_INTEL_IOMMU /* Disable ppgtt on SNB if VT-d is on. */ if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) { DRM_INFO("Disabling PPGTT because VT-d is on\n"); return 0; } #endif /* Early VLV doesn't have this */ if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) { DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n"); return 0; } if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt) return has_full_48bit_ppgtt ? 3 : 2; else return has_aliasing_ppgtt ? 1 : 0; } static int ppgtt_bind_vma(struct i915_vma *vma, enum i915_cache_level cache_level, u32 unused) { u32 pte_flags = 0; vma->pages = vma->obj->mm.pages; /* Currently applicable only to VLV */ if (vma->obj->gt_ro) pte_flags |= PTE_READ_ONLY; vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start, cache_level, pte_flags); return 0; } static void ppgtt_unbind_vma(struct i915_vma *vma) { vma->vm->clear_range(vma->vm, vma->node.start, vma->size); } static gen8_pte_t gen8_pte_encode(dma_addr_t addr, enum i915_cache_level level) { gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW; pte |= addr; switch (level) { case I915_CACHE_NONE: pte |= PPAT_UNCACHED_INDEX; break; case I915_CACHE_WT: pte |= PPAT_DISPLAY_ELLC_INDEX; break; default: pte |= PPAT_CACHED_INDEX; break; } return pte; } static gen8_pde_t gen8_pde_encode(const dma_addr_t addr, const enum i915_cache_level level) { gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW; pde |= addr; if (level != I915_CACHE_NONE) pde |= PPAT_CACHED_PDE_INDEX; else pde |= PPAT_UNCACHED_INDEX; return pde; } #define gen8_pdpe_encode gen8_pde_encode #define gen8_pml4e_encode gen8_pde_encode static gen6_pte_t snb_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 unused) { gen6_pte_t pte = GEN6_PTE_VALID; pte |= GEN6_PTE_ADDR_ENCODE(addr); switch (level) { case I915_CACHE_L3_LLC: case I915_CACHE_LLC: pte |= GEN6_PTE_CACHE_LLC; break; case I915_CACHE_NONE: pte |= GEN6_PTE_UNCACHED; break; default: MISSING_CASE(level); } return pte; } static gen6_pte_t ivb_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 unused) { gen6_pte_t pte = GEN6_PTE_VALID; pte |= GEN6_PTE_ADDR_ENCODE(addr); switch (level) { case I915_CACHE_L3_LLC: pte |= GEN7_PTE_CACHE_L3_LLC; break; case I915_CACHE_LLC: pte |= GEN6_PTE_CACHE_LLC; break; case I915_CACHE_NONE: pte |= GEN6_PTE_UNCACHED; break; default: MISSING_CASE(level); } return pte; } static gen6_pte_t byt_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 flags) { gen6_pte_t pte = GEN6_PTE_VALID; pte |= GEN6_PTE_ADDR_ENCODE(addr); if (!(flags & PTE_READ_ONLY)) pte |= BYT_PTE_WRITEABLE; if (level != I915_CACHE_NONE) pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; return pte; } static gen6_pte_t hsw_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 unused) { gen6_pte_t pte = GEN6_PTE_VALID; pte |= HSW_PTE_ADDR_ENCODE(addr); if (level != I915_CACHE_NONE) pte |= HSW_WB_LLC_AGE3; return pte; } static gen6_pte_t iris_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 unused) { gen6_pte_t pte = GEN6_PTE_VALID; pte |= HSW_PTE_ADDR_ENCODE(addr); switch (level) { case I915_CACHE_NONE: break; case I915_CACHE_WT: pte |= HSW_WT_ELLC_LLC_AGE3; break; default: pte |= HSW_WB_ELLC_LLC_AGE3; break; } return pte; } static int __setup_page_dma(struct drm_i915_private *dev_priv, struct i915_page_dma *p, gfp_t flags) { struct device *kdev = &dev_priv->drm.pdev->dev; p->page = alloc_page(flags); if (!p->page) return -ENOMEM; p->daddr = dma_map_page(kdev, p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL); if (dma_mapping_error(kdev, p->daddr)) { __free_page(p->page); return -EINVAL; } return 0; } static int setup_page_dma(struct drm_i915_private *dev_priv, struct i915_page_dma *p) { return __setup_page_dma(dev_priv, p, I915_GFP_DMA); } static void cleanup_page_dma(struct drm_i915_private *dev_priv, struct i915_page_dma *p) { struct pci_dev *pdev = dev_priv->drm.pdev; if (WARN_ON(!p->page)) return; dma_unmap_page(&pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL); __free_page(p->page); memset(p, 0, sizeof(*p)); } static void *kmap_page_dma(struct i915_page_dma *p) { return kmap_atomic(p->page); } /* We use the flushing unmap only with ppgtt structures: * page directories, page tables and scratch pages. */ static void kunmap_page_dma(struct drm_i915_private *dev_priv, void *vaddr) { /* There are only few exceptions for gen >=6. chv and bxt. * And we are not sure about the latter so play safe for now. */ if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv)) drm_clflush_virt_range(vaddr, PAGE_SIZE); kunmap_atomic(vaddr); } #define kmap_px(px) kmap_page_dma(px_base(px)) #define kunmap_px(ppgtt, vaddr) \ kunmap_page_dma((ppgtt)->base.i915, (vaddr)) #define setup_px(dev_priv, px) setup_page_dma((dev_priv), px_base(px)) #define cleanup_px(dev_priv, px) cleanup_page_dma((dev_priv), px_base(px)) #define fill_px(dev_priv, px, v) fill_page_dma((dev_priv), px_base(px), (v)) #define fill32_px(dev_priv, px, v) \ fill_page_dma_32((dev_priv), px_base(px), (v)) static void fill_page_dma(struct drm_i915_private *dev_priv, struct i915_page_dma *p, const uint64_t val) { int i; uint64_t * const vaddr = kmap_page_dma(p); for (i = 0; i < 512; i++) vaddr[i] = val; kunmap_page_dma(dev_priv, vaddr); } static void fill_page_dma_32(struct drm_i915_private *dev_priv, struct i915_page_dma *p, const uint32_t val32) { uint64_t v = val32; v = v << 32 | val32; fill_page_dma(dev_priv, p, v); } static int setup_scratch_page(struct drm_i915_private *dev_priv, struct i915_page_dma *scratch, gfp_t gfp) { return __setup_page_dma(dev_priv, scratch, gfp | __GFP_ZERO); } static void cleanup_scratch_page(struct drm_i915_private *dev_priv, struct i915_page_dma *scratch) { cleanup_page_dma(dev_priv, scratch); } static struct i915_page_table *alloc_pt(struct drm_i915_private *dev_priv) { struct i915_page_table *pt; const size_t count = INTEL_GEN(dev_priv) >= 8 ? GEN8_PTES : GEN6_PTES; int ret = -ENOMEM; pt = kzalloc(sizeof(*pt), GFP_KERNEL); if (!pt) return ERR_PTR(-ENOMEM); pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes), GFP_KERNEL); if (!pt->used_ptes) goto fail_bitmap; ret = setup_px(dev_priv, pt); if (ret) goto fail_page_m; return pt; fail_page_m: kfree(pt->used_ptes); fail_bitmap: kfree(pt); return ERR_PTR(ret); } static void free_pt(struct drm_i915_private *dev_priv, struct i915_page_table *pt) { cleanup_px(dev_priv, pt); kfree(pt->used_ptes); kfree(pt); } static void gen8_initialize_pt(struct i915_address_space *vm, struct i915_page_table *pt) { gen8_pte_t scratch_pte; scratch_pte = gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC); fill_px(vm->i915, pt, scratch_pte); } static void gen6_initialize_pt(struct i915_address_space *vm, struct i915_page_table *pt) { gen6_pte_t scratch_pte; WARN_ON(vm->scratch_page.daddr == 0); scratch_pte = vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0); fill32_px(vm->i915, pt, scratch_pte); } static struct i915_page_directory *alloc_pd(struct drm_i915_private *dev_priv) { struct i915_page_directory *pd; int ret = -ENOMEM; pd = kzalloc(sizeof(*pd), GFP_KERNEL); if (!pd) return ERR_PTR(-ENOMEM); pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES), sizeof(*pd->used_pdes), GFP_KERNEL); if (!pd->used_pdes) goto fail_bitmap; ret = setup_px(dev_priv, pd); if (ret) goto fail_page_m; return pd; fail_page_m: kfree(pd->used_pdes); fail_bitmap: kfree(pd); return ERR_PTR(ret); } static void free_pd(struct drm_i915_private *dev_priv, struct i915_page_directory *pd) { if (px_page(pd)) { cleanup_px(dev_priv, pd); kfree(pd->used_pdes); kfree(pd); } } static void gen8_initialize_pd(struct i915_address_space *vm, struct i915_page_directory *pd) { gen8_pde_t scratch_pde; scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC); fill_px(vm->i915, pd, scratch_pde); } static int __pdp_init(struct drm_i915_private *dev_priv, struct i915_page_directory_pointer *pdp) { size_t pdpes = I915_PDPES_PER_PDP(dev_priv); pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_KERNEL); if (!pdp->used_pdpes) return -ENOMEM; pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory), GFP_KERNEL); if (!pdp->page_directory) { kfree(pdp->used_pdpes); /* the PDP might be the statically allocated top level. Keep it * as clean as possible */ pdp->used_pdpes = NULL; return -ENOMEM; } return 0; } static void __pdp_fini(struct i915_page_directory_pointer *pdp) { kfree(pdp->used_pdpes); kfree(pdp->page_directory); pdp->page_directory = NULL; } static struct i915_page_directory_pointer *alloc_pdp(struct drm_i915_private *dev_priv) { struct i915_page_directory_pointer *pdp; int ret = -ENOMEM; WARN_ON(!USES_FULL_48BIT_PPGTT(dev_priv)); pdp = kzalloc(sizeof(*pdp), GFP_KERNEL); if (!pdp) return ERR_PTR(-ENOMEM); ret = __pdp_init(dev_priv, pdp); if (ret) goto fail_bitmap; ret = setup_px(dev_priv, pdp); if (ret) goto fail_page_m; return pdp; fail_page_m: __pdp_fini(pdp); fail_bitmap: kfree(pdp); return ERR_PTR(ret); } static void free_pdp(struct drm_i915_private *dev_priv, struct i915_page_directory_pointer *pdp) { __pdp_fini(pdp); if (USES_FULL_48BIT_PPGTT(dev_priv)) { cleanup_px(dev_priv, pdp); kfree(pdp); } } static void gen8_initialize_pdp(struct i915_address_space *vm, struct i915_page_directory_pointer *pdp) { gen8_ppgtt_pdpe_t scratch_pdpe; scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC); fill_px(vm->i915, pdp, scratch_pdpe); } static void gen8_initialize_pml4(struct i915_address_space *vm, struct i915_pml4 *pml4) { gen8_ppgtt_pml4e_t scratch_pml4e; scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC); fill_px(vm->i915, pml4, scratch_pml4e); } static void gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt, struct i915_page_directory_pointer *pdp, struct i915_page_directory *pd, int index) { gen8_ppgtt_pdpe_t *page_directorypo; if (!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev))) return; page_directorypo = kmap_px(pdp); page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC); kunmap_px(ppgtt, page_directorypo); } static void gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt, struct i915_pml4 *pml4, struct i915_page_directory_pointer *pdp, int index) { gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4); WARN_ON(!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev))); pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC); kunmap_px(ppgtt, pagemap); } /* Broadwell Page Directory Pointer Descriptors */ static int gen8_write_pdp(struct drm_i915_gem_request *req, unsigned entry, dma_addr_t addr) { struct intel_ring *ring = req->ring; struct intel_engine_cs *engine = req->engine; int ret; BUG_ON(entry >= 4); ret = intel_ring_begin(req, 6); if (ret) return ret; intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry)); intel_ring_emit(ring, upper_32_bits(addr)); intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry)); intel_ring_emit(ring, lower_32_bits(addr)); intel_ring_advance(ring); return 0; } static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt, struct drm_i915_gem_request *req) { int i, ret; for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) { const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); ret = gen8_write_pdp(req, i, pd_daddr); if (ret) return ret; } return 0; } static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt, struct drm_i915_gem_request *req) { return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4)); } /* PDE TLBs are a pain to invalidate on GEN8+. When we modify * the page table structures, we mark them dirty so that * context switching/execlist queuing code takes extra steps * to ensure that tlbs are flushed. */ static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt) { ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask; } /* Removes entries from a single page table, releasing it if it's empty. * Caller can use the return value to update higher-level entries. */ static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm, struct i915_page_table *pt, uint64_t start, uint64_t length) { struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); unsigned int num_entries = gen8_pte_count(start, length); unsigned int pte = gen8_pte_index(start); unsigned int pte_end = pte + num_entries; gen8_pte_t *pt_vaddr; gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC); if (WARN_ON(!px_page(pt))) return false; GEM_BUG_ON(pte_end > GEN8_PTES); bitmap_clear(pt->used_ptes, pte, num_entries); if (bitmap_empty(pt->used_ptes, GEN8_PTES)) return true; pt_vaddr = kmap_px(pt); while (pte < pte_end) pt_vaddr[pte++] = scratch_pte; kunmap_px(ppgtt, pt_vaddr); return false; } /* Removes entries from a single page dir, releasing it if it's empty. * Caller can use the return value to update higher-level entries */ static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm, struct i915_page_directory *pd, uint64_t start, uint64_t length) { struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); struct i915_page_table *pt; uint64_t pde; gen8_pde_t *pde_vaddr; gen8_pde_t scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC); gen8_for_each_pde(pt, pd, start, length, pde) { if (WARN_ON(!pd->page_table[pde])) break; if (gen8_ppgtt_clear_pt(vm, pt, start, length)) { __clear_bit(pde, pd->used_pdes); pde_vaddr = kmap_px(pd); pde_vaddr[pde] = scratch_pde; kunmap_px(ppgtt, pde_vaddr); free_pt(vm->i915, pt); } } if (bitmap_empty(pd->used_pdes, I915_PDES)) return true; return false; } /* Removes entries from a single page dir pointer, releasing it if it's empty. * Caller can use the return value to update higher-level entries */ static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm, struct i915_page_directory_pointer *pdp, uint64_t start, uint64_t length) { struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); struct i915_page_directory *pd; uint64_t pdpe; gen8_ppgtt_pdpe_t *pdpe_vaddr; gen8_ppgtt_pdpe_t scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC); gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { if (WARN_ON(!pdp->page_directory[pdpe])) break; if (gen8_ppgtt_clear_pd(vm, pd, start, length)) { __clear_bit(pdpe, pdp->used_pdpes); if (USES_FULL_48BIT_PPGTT(dev_priv)) { pdpe_vaddr = kmap_px(pdp); pdpe_vaddr[pdpe] = scratch_pdpe; kunmap_px(ppgtt, pdpe_vaddr); } free_pd(vm->i915, pd); } } mark_tlbs_dirty(ppgtt); if (bitmap_empty(pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv))) return true; return false; } /* Removes entries from a single pml4. * This is the top-level structure in 4-level page tables used on gen8+. * Empty entries are always scratch pml4e. */ static void gen8_ppgtt_clear_pml4(struct i915_address_space *vm, struct i915_pml4 *pml4, uint64_t start, uint64_t length) { struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); struct i915_page_directory_pointer *pdp; uint64_t pml4e; gen8_ppgtt_pml4e_t *pml4e_vaddr; gen8_ppgtt_pml4e_t scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC); GEM_BUG_ON(!USES_FULL_48BIT_PPGTT(vm->i915)); gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { if (WARN_ON(!pml4->pdps[pml4e])) break; if (gen8_ppgtt_clear_pdp(vm, pdp, start, length)) { __clear_bit(pml4e, pml4->used_pml4es); pml4e_vaddr = kmap_px(pml4); pml4e_vaddr[pml4e] = scratch_pml4e; kunmap_px(ppgtt, pml4e_vaddr); free_pdp(vm->i915, pdp); } } } static void gen8_ppgtt_clear_range(struct i915_address_space *vm, uint64_t start, uint64_t length) { struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); if (USES_FULL_48BIT_PPGTT(vm->i915)) gen8_ppgtt_clear_pml4(vm, &ppgtt->pml4, start, length); else gen8_ppgtt_clear_pdp(vm, &ppgtt->pdp, start, length); } static void gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm, struct i915_page_directory_pointer *pdp, struct sg_page_iter *sg_iter, uint64_t start, enum i915_cache_level cache_level) { struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); gen8_pte_t *pt_vaddr; unsigned pdpe = gen8_pdpe_index(start); unsigned pde = gen8_pde_index(start); unsigned pte = gen8_pte_index(start); pt_vaddr = NULL; while (__sg_page_iter_next(sg_iter)) { if (pt_vaddr == NULL) { struct i915_page_directory *pd = pdp->page_directory[pdpe]; struct i915_page_table *pt = pd->page_table[pde]; pt_vaddr = kmap_px(pt); } pt_vaddr[pte] = gen8_pte_encode(sg_page_iter_dma_address(sg_iter), cache_level); if (++pte == GEN8_PTES) { kunmap_px(ppgtt, pt_vaddr); pt_vaddr = NULL; if (++pde == I915_PDES) { if (++pdpe == I915_PDPES_PER_PDP(vm->i915)) break; pde = 0; } pte = 0; } } if (pt_vaddr) kunmap_px(ppgtt, pt_vaddr); } static void gen8_ppgtt_insert_entries(struct i915_address_space *vm, struct sg_table *pages, uint64_t start, enum i915_cache_level cache_level, u32 unused) { struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); struct sg_page_iter sg_iter; __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0); if (!USES_FULL_48BIT_PPGTT(vm->i915)) { gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start, cache_level); } else { struct i915_page_directory_pointer *pdp; uint64_t pml4e; uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT; gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) { gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter, start, cache_level); } } } static void gen8_free_page_tables(struct drm_i915_private *dev_priv, struct i915_page_directory *pd) { int i; if (!px_page(pd)) return; for_each_set_bit(i, pd->used_pdes, I915_PDES) { if (WARN_ON(!pd->page_table[i])) continue; free_pt(dev_priv, pd->page_table[i]); pd->page_table[i] = NULL; } } static int gen8_init_scratch(struct i915_address_space *vm) { struct drm_i915_private *dev_priv = vm->i915; int ret; ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA); if (ret) return ret; vm->scratch_pt = alloc_pt(dev_priv); if (IS_ERR(vm->scratch_pt)) { ret = PTR_ERR(vm->scratch_pt); goto free_scratch_page; } vm->scratch_pd = alloc_pd(dev_priv); if (IS_ERR(vm->scratch_pd)) { ret = PTR_ERR(vm->scratch_pd); goto free_pt; } if (USES_FULL_48BIT_PPGTT(dev_priv)) { vm->scratch_pdp = alloc_pdp(dev_priv); if (IS_ERR(vm->scratch_pdp)) { ret = PTR_ERR(vm->scratch_pdp); goto free_pd; } } gen8_initialize_pt(vm, vm->scratch_pt); gen8_initialize_pd(vm, vm->scratch_pd); if (USES_FULL_48BIT_PPGTT(dev_priv)) gen8_initialize_pdp(vm, vm->scratch_pdp); return 0; free_pd: free_pd(dev_priv, vm->scratch_pd); free_pt: free_pt(dev_priv, vm->scratch_pt); free_scratch_page: cleanup_scratch_page(dev_priv, &vm->scratch_page); return ret; } static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create) { enum vgt_g2v_type msg; struct drm_i915_private *dev_priv = ppgtt->base.i915; int i; if (USES_FULL_48BIT_PPGTT(dev_priv)) { u64 daddr = px_dma(&ppgtt->pml4); I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr)); I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr)); msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE : VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY); } else { for (i = 0; i < GEN8_LEGACY_PDPES; i++) { u64 daddr = i915_page_dir_dma_addr(ppgtt, i); I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr)); I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr)); } msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE : VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY); } I915_WRITE(vgtif_reg(g2v_notify), msg); return 0; } static void gen8_free_scratch(struct i915_address_space *vm) { struct drm_i915_private *dev_priv = vm->i915; if (USES_FULL_48BIT_PPGTT(dev_priv)) free_pdp(dev_priv, vm->scratch_pdp); free_pd(dev_priv, vm->scratch_pd); free_pt(dev_priv, vm->scratch_pt); cleanup_scratch_page(dev_priv, &vm->scratch_page); } static void gen8_ppgtt_cleanup_3lvl(struct drm_i915_private *dev_priv, struct i915_page_directory_pointer *pdp) { int i; for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv)) { if (WARN_ON(!pdp->page_directory[i])) continue; gen8_free_page_tables(dev_priv, pdp->page_directory[i]); free_pd(dev_priv, pdp->page_directory[i]); } free_pdp(dev_priv, pdp); } static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt) { struct drm_i915_private *dev_priv = ppgtt->base.i915; int i; for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) { if (WARN_ON(!ppgtt->pml4.pdps[i])) continue; gen8_ppgtt_cleanup_3lvl(dev_priv, ppgtt->pml4.pdps[i]); } cleanup_px(dev_priv, &ppgtt->pml4); } static void gen8_ppgtt_cleanup(struct i915_address_space *vm) { struct drm_i915_private *dev_priv = vm->i915; struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); if (intel_vgpu_active(dev_priv)) gen8_ppgtt_notify_vgt(ppgtt, false); if (!USES_FULL_48BIT_PPGTT(dev_priv)) gen8_ppgtt_cleanup_3lvl(dev_priv, &ppgtt->pdp); else gen8_ppgtt_cleanup_4lvl(ppgtt); gen8_free_scratch(vm); } /** * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range. * @vm: Master vm structure. * @pd: Page directory for this address range. * @start: Starting virtual address to begin allocations. * @length: Size of the allocations. * @new_pts: Bitmap set by function with new allocations. Likely used by the * caller to free on error. * * Allocate the required number of page tables. Extremely similar to * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by * the page directory boundary (instead of the page directory pointer). That * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is * possible, and likely that the caller will need to use multiple calls of this * function to achieve the appropriate allocation. * * Return: 0 if success; negative error code otherwise. */ static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm, struct i915_page_directory *pd, uint64_t start, uint64_t length, unsigned long *new_pts) { struct drm_i915_private *dev_priv = vm->i915; struct i915_page_table *pt; uint32_t pde; gen8_for_each_pde(pt, pd, start, length, pde) { /* Don't reallocate page tables */ if (test_bit(pde, pd->used_pdes)) { /* Scratch is never allocated this way */ WARN_ON(pt == vm->scratch_pt); continue; } pt = alloc_pt(dev_priv); if (IS_ERR(pt)) goto unwind_out; gen8_initialize_pt(vm, pt); pd->page_table[pde] = pt; __set_bit(pde, new_pts); trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT); } return 0; unwind_out: for_each_set_bit(pde, new_pts, I915_PDES) free_pt(dev_priv, pd->page_table[pde]); return -ENOMEM; } /** * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range. * @vm: Master vm structure. * @pdp: Page directory pointer for this address range. * @start: Starting virtual address to begin allocations. * @length: Size of the allocations. * @new_pds: Bitmap set by function with new allocations. Likely used by the * caller to free on error. * * Allocate the required number of page directories starting at the pde index of * @start, and ending at the pde index @start + @length. This function will skip * over already allocated page directories within the range, and only allocate * new ones, setting the appropriate pointer within the pdp as well as the * correct position in the bitmap @new_pds. * * The function will only allocate the pages within the range for a give page * directory pointer. In other words, if @start + @length straddles a virtually * addressed PDP boundary (512GB for 4k pages), there will be more allocations * required by the caller, This is not currently possible, and the BUG in the * code will prevent it. * * Return: 0 if success; negative error code otherwise. */ static int gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm, struct i915_page_directory_pointer *pdp, uint64_t start, uint64_t length, unsigned long *new_pds) { struct drm_i915_private *dev_priv = vm->i915; struct i915_page_directory *pd; uint32_t pdpe; uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv); WARN_ON(!bitmap_empty(new_pds, pdpes)); gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { if (test_bit(pdpe, pdp->used_pdpes)) continue; pd = alloc_pd(dev_priv); if (IS_ERR(pd)) goto unwind_out; gen8_initialize_pd(vm, pd); pdp->page_directory[pdpe] = pd; __set_bit(pdpe, new_pds); trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT); } return 0; unwind_out: for_each_set_bit(pdpe, new_pds, pdpes) free_pd(dev_priv, pdp->page_directory[pdpe]); return -ENOMEM; } /** * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range. * @vm: Master vm structure. * @pml4: Page map level 4 for this address range. * @start: Starting virtual address to begin allocations. * @length: Size of the allocations. * @new_pdps: Bitmap set by function with new allocations. Likely used by the * caller to free on error. * * Allocate the required number of page directory pointers. Extremely similar to * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs(). * The main difference is here we are limited by the pml4 boundary (instead of * the page directory pointer). * * Return: 0 if success; negative error code otherwise. */ static int gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm, struct i915_pml4 *pml4, uint64_t start, uint64_t length, unsigned long *new_pdps) { struct drm_i915_private *dev_priv = vm->i915; struct i915_page_directory_pointer *pdp; uint32_t pml4e; WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4)); gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { if (!test_bit(pml4e, pml4->used_pml4es)) { pdp = alloc_pdp(dev_priv); if (IS_ERR(pdp)) goto unwind_out; gen8_initialize_pdp(vm, pdp); pml4->pdps[pml4e] = pdp; __set_bit(pml4e, new_pdps); trace_i915_page_directory_pointer_entry_alloc(vm, pml4e, start, GEN8_PML4E_SHIFT); } } return 0; unwind_out: for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4) free_pdp(dev_priv, pml4->pdps[pml4e]); return -ENOMEM; } static void free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts) { kfree(new_pts); kfree(new_pds); } /* Fills in the page directory bitmap, and the array of page tables bitmap. Both * of these are based on the number of PDPEs in the system. */ static int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds, unsigned long **new_pts, uint32_t pdpes) { unsigned long *pds; unsigned long *pts; pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY); if (!pds) return -ENOMEM; pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long), GFP_TEMPORARY); if (!pts) goto err_out; *new_pds = pds; *new_pts = pts; return 0; err_out: free_gen8_temp_bitmaps(pds, pts); return -ENOMEM; } static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm, struct i915_page_directory_pointer *pdp, uint64_t start, uint64_t length) { struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); unsigned long *new_page_dirs, *new_page_tables; struct drm_i915_private *dev_priv = vm->i915; struct i915_page_directory *pd; const uint64_t orig_start = start; const uint64_t orig_length = length; uint32_t pdpe; uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv); int ret; ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes); if (ret) return ret; /* Do the allocations first so we can easily bail out */ ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length, new_page_dirs); if (ret) { free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); return ret; } /* For every page directory referenced, allocate page tables */ gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length, new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES)); if (ret) goto err_out; } start = orig_start; length = orig_length; /* Allocations have completed successfully, so set the bitmaps, and do * the mappings. */ gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { gen8_pde_t *const page_directory = kmap_px(pd); struct i915_page_table *pt; uint64_t pd_len = length; uint64_t pd_start = start; uint32_t pde; /* Every pd should be allocated, we just did that above. */ WARN_ON(!pd); gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) { /* Same reasoning as pd */ WARN_ON(!pt); WARN_ON(!pd_len); WARN_ON(!gen8_pte_count(pd_start, pd_len)); /* Set our used ptes within the page table */ bitmap_set(pt->used_ptes, gen8_pte_index(pd_start), gen8_pte_count(pd_start, pd_len)); /* Our pde is now pointing to the pagetable, pt */ __set_bit(pde, pd->used_pdes); /* Map the PDE to the page table */ page_directory[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC); trace_i915_page_table_entry_map(&ppgtt->base, pde, pt, gen8_pte_index(start), gen8_pte_count(start, length), GEN8_PTES); /* NB: We haven't yet mapped ptes to pages. At this * point we're still relying on insert_entries() */ } kunmap_px(ppgtt, page_directory); __set_bit(pdpe, pdp->used_pdpes); gen8_setup_page_directory(ppgtt, pdp, pd, pdpe); } free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); mark_tlbs_dirty(ppgtt); return 0; err_out: while (pdpe--) { unsigned long temp; for_each_set_bit(temp, new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES), I915_PDES) free_pt(dev_priv, pdp->page_directory[pdpe]->page_table[temp]); } for_each_set_bit(pdpe, new_page_dirs, pdpes) free_pd(dev_priv, pdp->page_directory[pdpe]); free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); mark_tlbs_dirty(ppgtt); return ret; } static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm, struct i915_pml4 *pml4, uint64_t start, uint64_t length) { DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4); struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); struct i915_page_directory_pointer *pdp; uint64_t pml4e; int ret = 0; /* Do the pml4 allocations first, so we don't need to track the newly * allocated tables below the pdp */ bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4); /* The pagedirectory and pagetable allocations are done in the shared 3 * and 4 level code. Just allocate the pdps. */ ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length, new_pdps); if (ret) return ret; WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2, "The allocation has spanned more than 512GB. " "It is highly likely this is incorrect."); gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { WARN_ON(!pdp); ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length); if (ret) goto err_out; gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e); } bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es, GEN8_PML4ES_PER_PML4); return 0; err_out: for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4) gen8_ppgtt_cleanup_3lvl(vm->i915, pml4->pdps[pml4e]); return ret; } static int gen8_alloc_va_range(struct i915_address_space *vm, uint64_t start, uint64_t length) { struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); if (USES_FULL_48BIT_PPGTT(vm->i915)) return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length); else return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length); } static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp, uint64_t start, uint64_t length, gen8_pte_t scratch_pte, struct seq_file *m) { struct i915_page_directory *pd; uint32_t pdpe; gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { struct i915_page_table *pt; uint64_t pd_len = length; uint64_t pd_start = start; uint32_t pde; if (!test_bit(pdpe, pdp->used_pdpes)) continue; seq_printf(m, "\tPDPE #%d\n", pdpe); gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) { uint32_t pte; gen8_pte_t *pt_vaddr; if (!test_bit(pde, pd->used_pdes)) continue; pt_vaddr = kmap_px(pt); for (pte = 0; pte < GEN8_PTES; pte += 4) { uint64_t va = (pdpe << GEN8_PDPE_SHIFT) | (pde << GEN8_PDE_SHIFT) | (pte << GEN8_PTE_SHIFT); int i; bool found = false; for (i = 0; i < 4; i++) if (pt_vaddr[pte + i] != scratch_pte) found = true; if (!found) continue; seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte); for (i = 0; i < 4; i++) { if (pt_vaddr[pte + i] != scratch_pte) seq_printf(m, " %llx", pt_vaddr[pte + i]); else seq_puts(m, " SCRATCH "); } seq_puts(m, "\n"); } /* don't use kunmap_px, it could trigger * an unnecessary flush. */ kunmap_atomic(pt_vaddr); } } } static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) { struct i915_address_space *vm = &ppgtt->base; uint64_t start = ppgtt->base.start; uint64_t length = ppgtt->base.total; gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC); if (!USES_FULL_48BIT_PPGTT(vm->i915)) { gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m); } else { uint64_t pml4e; struct i915_pml4 *pml4 = &ppgtt->pml4; struct i915_page_directory_pointer *pdp; gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { if (!test_bit(pml4e, pml4->used_pml4es)) continue; seq_printf(m, " PML4E #%llu\n", pml4e); gen8_dump_pdp(pdp, start, length, scratch_pte, m); } } } static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt) { unsigned long *new_page_dirs, *new_page_tables; uint32_t pdpes = I915_PDPES_PER_PDP(to_i915(ppgtt->base.dev)); int ret; /* We allocate temp bitmap for page tables for no gain * but as this is for init only, lets keep the things simple */ ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes); if (ret) return ret; /* Allocate for all pdps regardless of how the ppgtt * was defined. */ ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp, 0, 1ULL << 32, new_page_dirs); if (!ret) *ppgtt->pdp.used_pdpes = *new_page_dirs; free_gen8_temp_bitmaps(new_page_dirs, new_page_tables); return ret; } /* * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers * with a net effect resembling a 2-level page table in normal x86 terms. Each * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address * space. * */ static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt) { struct drm_i915_private *dev_priv = ppgtt->base.i915; int ret; ret = gen8_init_scratch(&ppgtt->base); if (ret) return ret; ppgtt->base.start = 0; ppgtt->base.cleanup = gen8_ppgtt_cleanup; ppgtt->base.allocate_va_range = gen8_alloc_va_range; ppgtt->base.insert_entries = gen8_ppgtt_insert_entries; ppgtt->base.clear_range = gen8_ppgtt_clear_range; ppgtt->base.unbind_vma = ppgtt_unbind_vma; ppgtt->base.bind_vma = ppgtt_bind_vma; ppgtt->debug_dump = gen8_dump_ppgtt; if (USES_FULL_48BIT_PPGTT(dev_priv)) { ret = setup_px(dev_priv, &ppgtt->pml4); if (ret) goto free_scratch; gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4); ppgtt->base.total = 1ULL << 48; ppgtt->switch_mm = gen8_48b_mm_switch; } else { ret = __pdp_init(dev_priv, &ppgtt->pdp); if (ret) goto free_scratch; ppgtt->base.total = 1ULL << 32; ppgtt->switch_mm = gen8_legacy_mm_switch; trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base, 0, 0, GEN8_PML4E_SHIFT); if (intel_vgpu_active(dev_priv)) { ret = gen8_preallocate_top_level_pdps(ppgtt); if (ret) goto free_scratch; } } if (intel_vgpu_active(dev_priv)) gen8_ppgtt_notify_vgt(ppgtt, true); return 0; free_scratch: gen8_free_scratch(&ppgtt->base); return ret; } static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) { struct i915_address_space *vm = &ppgtt->base; struct i915_page_table *unused; gen6_pte_t scratch_pte; uint32_t pd_entry; uint32_t pte, pde; uint32_t start = ppgtt->base.start, length = ppgtt->base.total; scratch_pte = vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0); gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) { u32 expected; gen6_pte_t *pt_vaddr; const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]); pd_entry = readl(ppgtt->pd_addr + pde); expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID); if (pd_entry != expected) seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n", pde, pd_entry, expected); seq_printf(m, "\tPDE: %x\n", pd_entry); pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]); for (pte = 0; pte < GEN6_PTES; pte+=4) { unsigned long va = (pde * PAGE_SIZE * GEN6_PTES) + (pte * PAGE_SIZE); int i; bool found = false; for (i = 0; i < 4; i++) if (pt_vaddr[pte + i] != scratch_pte) found = true; if (!found) continue; seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte); for (i = 0; i < 4; i++) { if (pt_vaddr[pte + i] != scratch_pte) seq_printf(m, " %08x", pt_vaddr[pte + i]); else seq_puts(m, " SCRATCH "); } seq_puts(m, "\n"); } kunmap_px(ppgtt, pt_vaddr); } } /* Write pde (index) from the page directory @pd to the page table @pt */ static void gen6_write_pde(struct i915_page_directory *pd, const int pde, struct i915_page_table *pt) { /* Caller needs to make sure the write completes if necessary */ struct i915_hw_ppgtt *ppgtt = container_of(pd, struct i915_hw_ppgtt, pd); u32 pd_entry; pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt)); pd_entry |= GEN6_PDE_VALID; writel(pd_entry, ppgtt->pd_addr + pde); } /* Write all the page tables found in the ppgtt structure to incrementing page * directories. */ static void gen6_write_page_range(struct drm_i915_private *dev_priv, struct i915_page_directory *pd, uint32_t start, uint32_t length) { struct i915_ggtt *ggtt = &dev_priv->ggtt; struct i915_page_table *pt; uint32_t pde; gen6_for_each_pde(pt, pd, start, length, pde) gen6_write_pde(pd, pde, pt); /* Make sure write is complete before other code can use this page * table. Also require for WC mapped PTEs */ readl(ggtt->gsm); } static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt) { BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f); return (ppgtt->pd.base.ggtt_offset / 64) << 16; } static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt, struct drm_i915_gem_request *req) { struct intel_ring *ring = req->ring; struct intel_engine_cs *engine = req->engine; int ret; /* NB: TLBs must be flushed and invalidated before a switch */ ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH); if (ret) return ret; ret = intel_ring_begin(req, 6); if (ret) return ret; intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2)); intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine)); intel_ring_emit(ring, PP_DIR_DCLV_2G); intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine)); intel_ring_emit(ring, get_pd_offset(ppgtt)); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt, struct drm_i915_gem_request *req) { struct intel_ring *ring = req->ring; struct intel_engine_cs *engine = req->engine; int ret; /* NB: TLBs must be flushed and invalidated before a switch */ ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH); if (ret) return ret; ret = intel_ring_begin(req, 6); if (ret) return ret; intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2)); intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine)); intel_ring_emit(ring, PP_DIR_DCLV_2G); intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine)); intel_ring_emit(ring, get_pd_offset(ppgtt)); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); /* XXX: RCS is the only one to auto invalidate the TLBs? */ if (engine->id != RCS) { ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH); if (ret) return ret; } return 0; } static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt, struct drm_i915_gem_request *req) { struct intel_engine_cs *engine = req->engine; struct drm_i915_private *dev_priv = req->i915; I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G); I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt)); return 0; } static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, dev_priv, id) { u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ? GEN8_GFX_PPGTT_48B : 0; I915_WRITE(RING_MODE_GEN7(engine), _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level)); } } static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; uint32_t ecochk, ecobits; enum intel_engine_id id; ecobits = I915_READ(GAC_ECO_BITS); I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); ecochk = I915_READ(GAM_ECOCHK); if (IS_HASWELL(dev_priv)) { ecochk |= ECOCHK_PPGTT_WB_HSW; } else { ecochk |= ECOCHK_PPGTT_LLC_IVB; ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; } I915_WRITE(GAM_ECOCHK, ecochk); for_each_engine(engine, dev_priv, id) { /* GFX_MODE is per-ring on gen7+ */ I915_WRITE(RING_MODE_GEN7(engine), _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); } } static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv) { uint32_t ecochk, gab_ctl, ecobits; ecobits = I915_READ(GAC_ECO_BITS); I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | ECOBITS_PPGTT_CACHE64B); gab_ctl = I915_READ(GAB_CTL); I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); ecochk = I915_READ(GAM_ECOCHK); I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); } /* PPGTT support for Sandybdrige/Gen6 and later */ static void gen6_ppgtt_clear_range(struct i915_address_space *vm, uint64_t start, uint64_t length) { struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); gen6_pte_t *pt_vaddr, scratch_pte; unsigned first_entry = start >> PAGE_SHIFT; unsigned num_entries = length >> PAGE_SHIFT; unsigned act_pt = first_entry / GEN6_PTES; unsigned first_pte = first_entry % GEN6_PTES; unsigned last_pte, i; scratch_pte = vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0); while (num_entries) { last_pte = first_pte + num_entries; if (last_pte > GEN6_PTES) last_pte = GEN6_PTES; pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]); for (i = first_pte; i < last_pte; i++) pt_vaddr[i] = scratch_pte; kunmap_px(ppgtt, pt_vaddr); num_entries -= last_pte - first_pte; first_pte = 0; act_pt++; } } static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, struct sg_table *pages, uint64_t start, enum i915_cache_level cache_level, u32 flags) { struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); unsigned first_entry = start >> PAGE_SHIFT; unsigned act_pt = first_entry / GEN6_PTES; unsigned act_pte = first_entry % GEN6_PTES; gen6_pte_t *pt_vaddr = NULL; struct sgt_iter sgt_iter; dma_addr_t addr; for_each_sgt_dma(addr, sgt_iter, pages) { if (pt_vaddr == NULL) pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]); pt_vaddr[act_pte] = vm->pte_encode(addr, cache_level, flags); if (++act_pte == GEN6_PTES) { kunmap_px(ppgtt, pt_vaddr); pt_vaddr = NULL; act_pt++; act_pte = 0; } } if (pt_vaddr) kunmap_px(ppgtt, pt_vaddr); } static int gen6_alloc_va_range(struct i915_address_space *vm, uint64_t start_in, uint64_t length_in) { DECLARE_BITMAP(new_page_tables, I915_PDES); struct drm_i915_private *dev_priv = vm->i915; struct i915_ggtt *ggtt = &dev_priv->ggtt; struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); struct i915_page_table *pt; uint32_t start, length, start_save, length_save; uint32_t pde; int ret; start = start_save = start_in; length = length_save = length_in; bitmap_zero(new_page_tables, I915_PDES); /* The allocation is done in two stages so that we can bail out with * minimal amount of pain. The first stage finds new page tables that * need allocation. The second stage marks use ptes within the page * tables. */ gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) { if (pt != vm->scratch_pt) { WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES)); continue; } /* We've already allocated a page table */ WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES)); pt = alloc_pt(dev_priv); if (IS_ERR(pt)) { ret = PTR_ERR(pt); goto unwind_out; } gen6_initialize_pt(vm, pt); ppgtt->pd.page_table[pde] = pt; __set_bit(pde, new_page_tables); trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT); } start = start_save; length = length_save; gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) { DECLARE_BITMAP(tmp_bitmap, GEN6_PTES); bitmap_zero(tmp_bitmap, GEN6_PTES); bitmap_set(tmp_bitmap, gen6_pte_index(start), gen6_pte_count(start, length)); if (__test_and_clear_bit(pde, new_page_tables)) gen6_write_pde(&ppgtt->pd, pde, pt); trace_i915_page_table_entry_map(vm, pde, pt, gen6_pte_index(start), gen6_pte_count(start, length), GEN6_PTES); bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes, GEN6_PTES); } WARN_ON(!bitmap_empty(new_page_tables, I915_PDES)); /* Make sure write is complete before other code can use this page * table. Also require for WC mapped PTEs */ readl(ggtt->gsm); mark_tlbs_dirty(ppgtt); return 0; unwind_out: for_each_set_bit(pde, new_page_tables, I915_PDES) { struct i915_page_table *pt = ppgtt->pd.page_table[pde]; ppgtt->pd.page_table[pde] = vm->scratch_pt; free_pt(dev_priv, pt); } mark_tlbs_dirty(ppgtt); return ret; } static int gen6_init_scratch(struct i915_address_space *vm) { struct drm_i915_private *dev_priv = vm->i915; int ret; ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA); if (ret) return ret; vm->scratch_pt = alloc_pt(dev_priv); if (IS_ERR(vm->scratch_pt)) { cleanup_scratch_page(dev_priv, &vm->scratch_page); return PTR_ERR(vm->scratch_pt); } gen6_initialize_pt(vm, vm->scratch_pt); return 0; } static void gen6_free_scratch(struct i915_address_space *vm) { struct drm_i915_private *dev_priv = vm->i915; free_pt(dev_priv, vm->scratch_pt); cleanup_scratch_page(dev_priv, &vm->scratch_page); } static void gen6_ppgtt_cleanup(struct i915_address_space *vm) { struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); struct i915_page_directory *pd = &ppgtt->pd; struct drm_i915_private *dev_priv = vm->i915; struct i915_page_table *pt; uint32_t pde; drm_mm_remove_node(&ppgtt->node); gen6_for_all_pdes(pt, pd, pde) if (pt != vm->scratch_pt) free_pt(dev_priv, pt); gen6_free_scratch(vm); } static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt) { struct i915_address_space *vm = &ppgtt->base; struct drm_i915_private *dev_priv = ppgtt->base.i915; struct i915_ggtt *ggtt = &dev_priv->ggtt; bool retried = false; int ret; /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The * allocator works in address space sizes, so it's multiplied by page * size. We allocate at the top of the GTT to avoid fragmentation. */ BUG_ON(!drm_mm_initialized(&ggtt->base.mm)); ret = gen6_init_scratch(vm); if (ret) return ret; alloc: ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm, &ppgtt->node, GEN6_PD_SIZE, GEN6_PD_ALIGN, I915_COLOR_UNEVICTABLE, 0, ggtt->base.total, DRM_MM_TOPDOWN); if (ret == -ENOSPC && !retried) { ret = i915_gem_evict_something(&ggtt->base, GEN6_PD_SIZE, GEN6_PD_ALIGN, I915_COLOR_UNEVICTABLE, 0, ggtt->base.total, 0); if (ret) goto err_out; retried = true; goto alloc; } if (ret) goto err_out; if (ppgtt->node.start < ggtt->mappable_end) DRM_DEBUG("Forced to use aperture for PDEs\n"); return 0; err_out: gen6_free_scratch(vm); return ret; } static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt) { return gen6_ppgtt_allocate_page_directories(ppgtt); } static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt, uint64_t start, uint64_t length) { struct i915_page_table *unused; uint32_t pde; gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt; } static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt) { struct drm_i915_private *dev_priv = ppgtt->base.i915; struct i915_ggtt *ggtt = &dev_priv->ggtt; int ret; ppgtt->base.pte_encode = ggtt->base.pte_encode; if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv)) ppgtt->switch_mm = gen6_mm_switch; else if (IS_HASWELL(dev_priv)) ppgtt->switch_mm = hsw_mm_switch; else if (IS_GEN7(dev_priv)) ppgtt->switch_mm = gen7_mm_switch; else BUG(); ret = gen6_ppgtt_alloc(ppgtt); if (ret) return ret; ppgtt->base.allocate_va_range = gen6_alloc_va_range; ppgtt->base.clear_range = gen6_ppgtt_clear_range; ppgtt->base.insert_entries = gen6_ppgtt_insert_entries; ppgtt->base.unbind_vma = ppgtt_unbind_vma; ppgtt->base.bind_vma = ppgtt_bind_vma; ppgtt->base.cleanup = gen6_ppgtt_cleanup; ppgtt->base.start = 0; ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE; ppgtt->debug_dump = gen6_dump_ppgtt; ppgtt->pd.base.ggtt_offset = ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t); ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t); gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total); gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total); DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n", ppgtt->node.size >> 20, ppgtt->node.start / PAGE_SIZE); DRM_DEBUG("Adding PPGTT at offset %x\n", ppgtt->pd.base.ggtt_offset << 10); return 0; } static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt, struct drm_i915_private *dev_priv) { ppgtt->base.i915 = dev_priv; if (INTEL_INFO(dev_priv)->gen < 8) return gen6_ppgtt_init(ppgtt); else return gen8_ppgtt_init(ppgtt); } static void i915_address_space_init(struct i915_address_space *vm, struct drm_i915_private *dev_priv, const char *name) { i915_gem_timeline_init(dev_priv, &vm->timeline, name); drm_mm_init(&vm->mm, vm->start, vm->total); INIT_LIST_HEAD(&vm->active_list); INIT_LIST_HEAD(&vm->inactive_list); INIT_LIST_HEAD(&vm->unbound_list); list_add_tail(&vm->global_link, &dev_priv->vm_list); } static void i915_address_space_fini(struct i915_address_space *vm) { i915_gem_timeline_fini(&vm->timeline); drm_mm_takedown(&vm->mm); list_del(&vm->global_link); } static void gtt_write_workarounds(struct drm_i915_private *dev_priv) { /* This function is for gtt related workarounds. This function is * called on driver load and after a GPU reset, so you can place * workarounds here even if they get overwritten by GPU reset. */ /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */ if (IS_BROADWELL(dev_priv)) I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); else if (IS_CHERRYVIEW(dev_priv)) I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); else if (IS_SKYLAKE(dev_priv)) I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); else if (IS_BROXTON(dev_priv)) I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); } static int i915_ppgtt_init(struct i915_hw_ppgtt *ppgtt, struct drm_i915_private *dev_priv, struct drm_i915_file_private *file_priv, const char *name) { int ret; ret = __hw_ppgtt_init(ppgtt, dev_priv); if (ret == 0) { kref_init(&ppgtt->ref); i915_address_space_init(&ppgtt->base, dev_priv, name); ppgtt->base.file = file_priv; } return ret; } int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv) { gtt_write_workarounds(dev_priv); /* In the case of execlists, PPGTT is enabled by the context descriptor * and the PDPs are contained within the context itself. We don't * need to do anything here. */ if (i915.enable_execlists) return 0; if (!USES_PPGTT(dev_priv)) return 0; if (IS_GEN6(dev_priv)) gen6_ppgtt_enable(dev_priv); else if (IS_GEN7(dev_priv)) gen7_ppgtt_enable(dev_priv); else if (INTEL_GEN(dev_priv) >= 8) gen8_ppgtt_enable(dev_priv); else MISSING_CASE(INTEL_GEN(dev_priv)); return 0; } struct i915_hw_ppgtt * i915_ppgtt_create(struct drm_i915_private *dev_priv, struct drm_i915_file_private *fpriv, const char *name) { struct i915_hw_ppgtt *ppgtt; int ret; ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); if (!ppgtt) return ERR_PTR(-ENOMEM); ret = i915_ppgtt_init(ppgtt, dev_priv, fpriv, name); if (ret) { kfree(ppgtt); return ERR_PTR(ret); } trace_i915_ppgtt_create(&ppgtt->base); return ppgtt; } void i915_ppgtt_release(struct kref *kref) { struct i915_hw_ppgtt *ppgtt = container_of(kref, struct i915_hw_ppgtt, ref); trace_i915_ppgtt_release(&ppgtt->base); /* vmas should already be unbound and destroyed */ WARN_ON(!list_empty(&ppgtt->base.active_list)); WARN_ON(!list_empty(&ppgtt->base.inactive_list)); WARN_ON(!list_empty(&ppgtt->base.unbound_list)); i915_address_space_fini(&ppgtt->base); ppgtt->base.cleanup(&ppgtt->base); kfree(ppgtt); } /* Certain Gen5 chipsets require require idling the GPU before * unmapping anything from the GTT when VT-d is enabled. */ static bool needs_idle_maps(struct drm_i915_private *dev_priv) { #ifdef CONFIG_INTEL_IOMMU /* Query intel_iommu to see if we need the workaround. Presumably that * was loaded first. */ if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped) return true; #endif return false; } void i915_check_and_clear_faults(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; enum intel_engine_id id; if (INTEL_INFO(dev_priv)->gen < 6) return; for_each_engine(engine, dev_priv, id) { u32 fault_reg; fault_reg = I915_READ(RING_FAULT_REG(engine)); if (fault_reg & RING_FAULT_VALID) { DRM_DEBUG_DRIVER("Unexpected fault\n" "\tAddr: 0x%08lx\n" "\tAddress space: %s\n" "\tSource ID: %d\n" "\tType: %d\n", fault_reg & PAGE_MASK, fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", RING_FAULT_SRCID(fault_reg), RING_FAULT_FAULT_TYPE(fault_reg)); I915_WRITE(RING_FAULT_REG(engine), fault_reg & ~RING_FAULT_VALID); } } /* Engine specific init may not have been done till this point. */ if (dev_priv->engine[RCS]) POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS])); } static void i915_ggtt_flush(struct drm_i915_private *dev_priv) { if (INTEL_INFO(dev_priv)->gen < 6) { intel_gtt_chipset_flush(); } else { I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); POSTING_READ(GFX_FLSH_CNTL_GEN6); } } void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv) { struct i915_ggtt *ggtt = &dev_priv->ggtt; /* Don't bother messing with faults pre GEN6 as we have little * documentation supporting that it's a good idea. */ if (INTEL_GEN(dev_priv) < 6) return; i915_check_and_clear_faults(dev_priv); ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total); i915_ggtt_flush(dev_priv); } int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) { do { if (dma_map_sg(&obj->base.dev->pdev->dev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL)) return 0; /* If the DMA remap fails, one cause can be that we have * too many objects pinned in a small remapping table, * such as swiotlb. Incrementally purge all other objects and * try again - if there are no more pages to remove from * the DMA remapper, i915_gem_shrink will return 0. */ GEM_BUG_ON(obj->mm.pages == pages); } while (i915_gem_shrink(to_i915(obj->base.dev), obj->base.size >> PAGE_SHIFT, I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_ACTIVE)); return -ENOSPC; } static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) { writeq(pte, addr); } static void gen8_ggtt_insert_page(struct i915_address_space *vm, dma_addr_t addr, uint64_t offset, enum i915_cache_level level, u32 unused) { struct drm_i915_private *dev_priv = vm->i915; gen8_pte_t __iomem *pte = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + (offset >> PAGE_SHIFT); gen8_set_pte(pte, gen8_pte_encode(addr, level)); I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); POSTING_READ(GFX_FLSH_CNTL_GEN6); } static void gen8_ggtt_insert_entries(struct i915_address_space *vm, struct sg_table *st, uint64_t start, enum i915_cache_level level, u32 unused) { struct drm_i915_private *dev_priv = vm->i915; struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); struct sgt_iter sgt_iter; gen8_pte_t __iomem *gtt_entries; gen8_pte_t gtt_entry; dma_addr_t addr; int i = 0; gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT); for_each_sgt_dma(addr, sgt_iter, st) { gtt_entry = gen8_pte_encode(addr, level); gen8_set_pte(>t_entries[i++], gtt_entry); } /* * XXX: This serves as a posting read to make sure that the PTE has * actually been updated. There is some concern that even though * registers and PTEs are within the same BAR that they are potentially * of NUMA access patterns. Therefore, even with the way we assume * hardware should work, we must keep this posting read for paranoia. */ if (i != 0) WARN_ON(readq(>t_entries[i-1]) != gtt_entry); /* This next bit makes the above posting read even more important. We * want to flush the TLBs only after we're certain all the PTE updates * have finished. */ I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); POSTING_READ(GFX_FLSH_CNTL_GEN6); } struct insert_entries { struct i915_address_space *vm; struct sg_table *st; uint64_t start; enum i915_cache_level level; u32 flags; }; static int gen8_ggtt_insert_entries__cb(void *_arg) { struct insert_entries *arg = _arg; gen8_ggtt_insert_entries(arg->vm, arg->st, arg->start, arg->level, arg->flags); return 0; } static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm, struct sg_table *st, uint64_t start, enum i915_cache_level level, u32 flags) { struct insert_entries arg = { vm, st, start, level, flags }; stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL); } static void gen6_ggtt_insert_page(struct i915_address_space *vm, dma_addr_t addr, uint64_t offset, enum i915_cache_level level, u32 flags) { struct drm_i915_private *dev_priv = vm->i915; gen6_pte_t __iomem *pte = (gen6_pte_t __iomem *)dev_priv->ggtt.gsm + (offset >> PAGE_SHIFT); iowrite32(vm->pte_encode(addr, level, flags), pte); I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); POSTING_READ(GFX_FLSH_CNTL_GEN6); } /* * Binds an object into the global gtt with the specified cache level. The object * will be accessible to the GPU via commands whose operands reference offsets * within the global GTT as well as accessible by the GPU through the GMADR * mapped BAR (dev_priv->mm.gtt->gtt). */ static void gen6_ggtt_insert_entries(struct i915_address_space *vm, struct sg_table *st, uint64_t start, enum i915_cache_level level, u32 flags) { struct drm_i915_private *dev_priv = vm->i915; struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); struct sgt_iter sgt_iter; gen6_pte_t __iomem *gtt_entries; gen6_pte_t gtt_entry; dma_addr_t addr; int i = 0; gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT); for_each_sgt_dma(addr, sgt_iter, st) { gtt_entry = vm->pte_encode(addr, level, flags); iowrite32(gtt_entry, >t_entries[i++]); } /* XXX: This serves as a posting read to make sure that the PTE has * actually been updated. There is some concern that even though * registers and PTEs are within the same BAR that they are potentially * of NUMA access patterns. Therefore, even with the way we assume * hardware should work, we must keep this posting read for paranoia. */ if (i != 0) WARN_ON(readl(>t_entries[i-1]) != gtt_entry); /* This next bit makes the above posting read even more important. We * want to flush the TLBs only after we're certain all the PTE updates * have finished. */ I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); POSTING_READ(GFX_FLSH_CNTL_GEN6); } static void nop_clear_range(struct i915_address_space *vm, uint64_t start, uint64_t length) { } static void gen8_ggtt_clear_range(struct i915_address_space *vm, uint64_t start, uint64_t length) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); unsigned first_entry = start >> PAGE_SHIFT; unsigned num_entries = length >> PAGE_SHIFT; gen8_pte_t scratch_pte, __iomem *gtt_base = (gen8_pte_t __iomem *)ggtt->gsm + first_entry; const int max_entries = ggtt_total_entries(ggtt) - first_entry; int i; if (WARN(num_entries > max_entries, "First entry = %d; Num entries = %d (max=%d)\n", first_entry, num_entries, max_entries)) num_entries = max_entries; scratch_pte = gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC); for (i = 0; i < num_entries; i++) gen8_set_pte(>t_base[i], scratch_pte); readl(gtt_base); } static void gen6_ggtt_clear_range(struct i915_address_space *vm, uint64_t start, uint64_t length) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); unsigned first_entry = start >> PAGE_SHIFT; unsigned num_entries = length >> PAGE_SHIFT; gen6_pte_t scratch_pte, __iomem *gtt_base = (gen6_pte_t __iomem *)ggtt->gsm + first_entry; const int max_entries = ggtt_total_entries(ggtt) - first_entry; int i; if (WARN(num_entries > max_entries, "First entry = %d; Num entries = %d (max=%d)\n", first_entry, num_entries, max_entries)) num_entries = max_entries; scratch_pte = vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0); for (i = 0; i < num_entries; i++) iowrite32(scratch_pte, >t_base[i]); readl(gtt_base); } static void i915_ggtt_insert_page(struct i915_address_space *vm, dma_addr_t addr, uint64_t offset, enum i915_cache_level cache_level, u32 unused) { unsigned int flags = (cache_level == I915_CACHE_NONE) ? AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags); } static void i915_ggtt_insert_entries(struct i915_address_space *vm, struct sg_table *pages, uint64_t start, enum i915_cache_level cache_level, u32 unused) { unsigned int flags = (cache_level == I915_CACHE_NONE) ? AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags); } static void i915_ggtt_clear_range(struct i915_address_space *vm, uint64_t start, uint64_t length) { intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT); } static int ggtt_bind_vma(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { struct drm_i915_private *i915 = vma->vm->i915; struct drm_i915_gem_object *obj = vma->obj; u32 pte_flags = 0; int ret; ret = i915_get_ggtt_vma_pages(vma); if (ret) return ret; /* Currently applicable only to VLV */ if (obj->gt_ro) pte_flags |= PTE_READ_ONLY; intel_runtime_pm_get(i915); vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start, cache_level, pte_flags); intel_runtime_pm_put(i915); /* * Without aliasing PPGTT there's no difference between * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally * upgrade to both bound if we bind either to avoid double-binding. */ vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; return 0; } static int aliasing_gtt_bind_vma(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { struct drm_i915_private *i915 = vma->vm->i915; u32 pte_flags; int ret; ret = i915_get_ggtt_vma_pages(vma); if (ret) return ret; /* Currently applicable only to VLV */ pte_flags = 0; if (vma->obj->gt_ro) pte_flags |= PTE_READ_ONLY; if (flags & I915_VMA_GLOBAL_BIND) { intel_runtime_pm_get(i915); vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start, cache_level, pte_flags); intel_runtime_pm_put(i915); } if (flags & I915_VMA_LOCAL_BIND) { struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt; appgtt->base.insert_entries(&appgtt->base, vma->pages, vma->node.start, cache_level, pte_flags); } return 0; } static void ggtt_unbind_vma(struct i915_vma *vma) { struct drm_i915_private *i915 = vma->vm->i915; struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt; const u64 size = min(vma->size, vma->node.size); if (vma->flags & I915_VMA_GLOBAL_BIND) { intel_runtime_pm_get(i915); vma->vm->clear_range(vma->vm, vma->node.start, size); intel_runtime_pm_put(i915); } if (vma->flags & I915_VMA_LOCAL_BIND && appgtt) appgtt->base.clear_range(&appgtt->base, vma->node.start, size); } void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) { struct drm_i915_private *dev_priv = to_i915(obj->base.dev); struct device *kdev = &dev_priv->drm.pdev->dev; struct i915_ggtt *ggtt = &dev_priv->ggtt; if (unlikely(ggtt->do_idle_maps)) { if (i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED)) { DRM_ERROR("Failed to wait for idle; VT'd may hang.\n"); /* Wait a bit, in hopes it avoids the hang */ udelay(10); } } dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL); } static void i915_gtt_color_adjust(const struct drm_mm_node *node, unsigned long color, u64 *start, u64 *end) { if (node->color != color) *start += 4096; node = list_next_entry(node, node_list); if (node->allocated && node->color != color) *end -= 4096; } int i915_gem_init_ggtt(struct drm_i915_private *dev_priv) { /* Let GEM Manage all of the aperture. * * However, leave one page at the end still bound to the scratch page. * There are a number of places where the hardware apparently prefetches * past the end of the object, and we've seen multiple hangs with the * GPU head pointer stuck in a batchbuffer bound at the last page of the * aperture. One page should be enough to keep any prefetching inside * of the aperture. */ struct i915_ggtt *ggtt = &dev_priv->ggtt; unsigned long hole_start, hole_end; struct i915_hw_ppgtt *ppgtt; struct drm_mm_node *entry; int ret; ret = intel_vgt_balloon(dev_priv); if (ret) return ret; /* Reserve a mappable slot for our lockless error capture */ ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm, &ggtt->error_capture, 4096, 0, I915_COLOR_UNEVICTABLE, 0, ggtt->mappable_end, 0, 0); if (ret) return ret; /* Clear any non-preallocated blocks */ drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) { DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", hole_start, hole_end); ggtt->base.clear_range(&ggtt->base, hole_start, hole_end - hole_start); } /* And finally clear the reserved guard page */ ggtt->base.clear_range(&ggtt->base, ggtt->base.total - PAGE_SIZE, PAGE_SIZE); if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) { ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); if (!ppgtt) { ret = -ENOMEM; goto err; } ret = __hw_ppgtt_init(ppgtt, dev_priv); if (ret) goto err_ppgtt; if (ppgtt->base.allocate_va_range) { ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0, ppgtt->base.total); if (ret) goto err_ppgtt_cleanup; } ppgtt->base.clear_range(&ppgtt->base, ppgtt->base.start, ppgtt->base.total); dev_priv->mm.aliasing_ppgtt = ppgtt; WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma); ggtt->base.bind_vma = aliasing_gtt_bind_vma; } return 0; err_ppgtt_cleanup: ppgtt->base.cleanup(&ppgtt->base); err_ppgtt: kfree(ppgtt); err: drm_mm_remove_node(&ggtt->error_capture); return ret; } /** * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization * @dev_priv: i915 device */ void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv) { struct i915_ggtt *ggtt = &dev_priv->ggtt; if (dev_priv->mm.aliasing_ppgtt) { struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; ppgtt->base.cleanup(&ppgtt->base); kfree(ppgtt); } i915_gem_cleanup_stolen(&dev_priv->drm); if (drm_mm_node_allocated(&ggtt->error_capture)) drm_mm_remove_node(&ggtt->error_capture); if (drm_mm_initialized(&ggtt->base.mm)) { intel_vgt_deballoon(dev_priv); mutex_lock(&dev_priv->drm.struct_mutex); i915_address_space_fini(&ggtt->base); mutex_unlock(&dev_priv->drm.struct_mutex); } ggtt->base.cleanup(&ggtt->base); arch_phys_wc_del(ggtt->mtrr); io_mapping_fini(&ggtt->mappable); } static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) { snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; return snb_gmch_ctl << 20; } static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) { bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; if (bdw_gmch_ctl) bdw_gmch_ctl = 1 << bdw_gmch_ctl; #ifdef CONFIG_X86_32 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */ if (bdw_gmch_ctl > 4) bdw_gmch_ctl = 4; #endif return bdw_gmch_ctl << 20; } static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) { gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; gmch_ctrl &= SNB_GMCH_GGMS_MASK; if (gmch_ctrl) return 1 << (20 + gmch_ctrl); return 0; } static size_t gen6_get_stolen_size(u16 snb_gmch_ctl) { snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT; snb_gmch_ctl &= SNB_GMCH_GMS_MASK; return snb_gmch_ctl << 25; /* 32 MB units */ } static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl) { bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; bdw_gmch_ctl &= BDW_GMCH_GMS_MASK; return bdw_gmch_ctl << 25; /* 32 MB units */ } static size_t chv_get_stolen_size(u16 gmch_ctrl) { gmch_ctrl >>= SNB_GMCH_GMS_SHIFT; gmch_ctrl &= SNB_GMCH_GMS_MASK; /* * 0x0 to 0x10: 32MB increments starting at 0MB * 0x11 to 0x16: 4MB increments starting at 8MB * 0x17 to 0x1d: 4MB increments start at 36MB */ if (gmch_ctrl < 0x11) return gmch_ctrl << 25; else if (gmch_ctrl < 0x17) return (gmch_ctrl - 0x11 + 2) << 22; else return (gmch_ctrl - 0x17 + 9) << 22; } static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl) { gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; gen9_gmch_ctl &= BDW_GMCH_GMS_MASK; if (gen9_gmch_ctl < 0xf0) return gen9_gmch_ctl << 25; /* 32 MB units */ else /* 4MB increments starting at 0xf0 for 4MB */ return (gen9_gmch_ctl - 0xf0 + 1) << 22; } static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) { struct drm_i915_private *dev_priv = ggtt->base.i915; struct pci_dev *pdev = dev_priv->drm.pdev; phys_addr_t phys_addr; int ret; /* For Modern GENs the PTEs and register space are split in the BAR */ phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2; /* * On BXT writes larger than 64 bit to the GTT pagetable range will be * dropped. For WC mappings in general we have 64 byte burst writes * when the WC buffer is flushed, so we can't use it, but have to * resort to an uncached mapping. The WC issue is easily caught by the * readback check when writing GTT PTE entries. */ if (IS_GEN9_LP(dev_priv)) ggtt->gsm = ioremap_nocache(phys_addr, size); else ggtt->gsm = ioremap_wc(phys_addr, size); if (!ggtt->gsm) { DRM_ERROR("Failed to map the ggtt page table\n"); return -ENOMEM; } ret = setup_scratch_page(dev_priv, &ggtt->base.scratch_page, GFP_DMA32); if (ret) { DRM_ERROR("Scratch setup failed\n"); /* iounmap will also get called at remove, but meh */ iounmap(ggtt->gsm); return ret; } return 0; } /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability * bits. When using advanced contexts each context stores its own PAT, but * writing this data shouldn't be harmful even in those cases. */ static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv) { uint64_t pat; pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */ GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); if (!USES_PPGTT(dev_priv)) /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry, * so RTL will always use the value corresponding to * pat_sel = 000". * So let's disable cache for GGTT to avoid screen corruptions. * MOCS still can be used though. * - System agent ggtt writes (i.e. cpu gtt mmaps) already work * before this patch, i.e. the same uncached + snooping access * like on gen6/7 seems to be in effect. * - So this just fixes blitter/render access. Again it looks * like it's not just uncached access, but uncached + snooping. * So we can still hold onto all our assumptions wrt cpu * clflushing on LLC machines. */ pat = GEN8_PPAT(0, GEN8_PPAT_UC); /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b * write would work. */ I915_WRITE(GEN8_PRIVATE_PAT_LO, pat); I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32); } static void chv_setup_private_ppat(struct drm_i915_private *dev_priv) { uint64_t pat; /* * Map WB on BDW to snooped on CHV. * * Only the snoop bit has meaning for CHV, the rest is * ignored. * * The hardware will never snoop for certain types of accesses: * - CPU GTT (GMADR->GGTT->no snoop->memory) * - PPGTT page tables * - some other special cycles * * As with BDW, we also need to consider the following for GT accesses: * "For GGTT, there is NO pat_sel[2:0] from the entry, * so RTL will always use the value corresponding to * pat_sel = 000". * Which means we must set the snoop bit in PAT entry 0 * in order to keep the global status page working. */ pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | GEN8_PPAT(1, 0) | GEN8_PPAT(2, 0) | GEN8_PPAT(3, 0) | GEN8_PPAT(4, CHV_PPAT_SNOOP) | GEN8_PPAT(5, CHV_PPAT_SNOOP) | GEN8_PPAT(6, CHV_PPAT_SNOOP) | GEN8_PPAT(7, CHV_PPAT_SNOOP); I915_WRITE(GEN8_PRIVATE_PAT_LO, pat); I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32); } static void gen6_gmch_remove(struct i915_address_space *vm) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); iounmap(ggtt->gsm); cleanup_scratch_page(vm->i915, &vm->scratch_page); } static int gen8_gmch_probe(struct i915_ggtt *ggtt) { struct drm_i915_private *dev_priv = ggtt->base.i915; struct pci_dev *pdev = dev_priv->drm.pdev; unsigned int size; u16 snb_gmch_ctl; /* TODO: We're not aware of mappable constraints on gen8 yet */ ggtt->mappable_base = pci_resource_start(pdev, 2); ggtt->mappable_end = pci_resource_len(pdev, 2); if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39))) pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39)); pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); if (INTEL_GEN(dev_priv) >= 9) { ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl); size = gen8_get_total_gtt_size(snb_gmch_ctl); } else if (IS_CHERRYVIEW(dev_priv)) { ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl); size = chv_get_total_gtt_size(snb_gmch_ctl); } else { ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl); size = gen8_get_total_gtt_size(snb_gmch_ctl); } ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT; if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv)) chv_setup_private_ppat(dev_priv); else bdw_setup_private_ppat(dev_priv); ggtt->base.cleanup = gen6_gmch_remove; ggtt->base.bind_vma = ggtt_bind_vma; ggtt->base.unbind_vma = ggtt_unbind_vma; ggtt->base.insert_page = gen8_ggtt_insert_page; ggtt->base.clear_range = nop_clear_range; if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv)) ggtt->base.clear_range = gen8_ggtt_clear_range; ggtt->base.insert_entries = gen8_ggtt_insert_entries; if (IS_CHERRYVIEW(dev_priv)) ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL; return ggtt_probe_common(ggtt, size); } static int gen6_gmch_probe(struct i915_ggtt *ggtt) { struct drm_i915_private *dev_priv = ggtt->base.i915; struct pci_dev *pdev = dev_priv->drm.pdev; unsigned int size; u16 snb_gmch_ctl; ggtt->mappable_base = pci_resource_start(pdev, 2); ggtt->mappable_end = pci_resource_len(pdev, 2); /* 64/512MB is the current min/max we actually know of, but this is just * a coarse sanity check. */ if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) { DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end); return -ENXIO; } if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40))) pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40)); pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl); size = gen6_get_total_gtt_size(snb_gmch_ctl); ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT; ggtt->base.clear_range = gen6_ggtt_clear_range; ggtt->base.insert_page = gen6_ggtt_insert_page; ggtt->base.insert_entries = gen6_ggtt_insert_entries; ggtt->base.bind_vma = ggtt_bind_vma; ggtt->base.unbind_vma = ggtt_unbind_vma; ggtt->base.cleanup = gen6_gmch_remove; if (HAS_EDRAM(dev_priv)) ggtt->base.pte_encode = iris_pte_encode; else if (IS_HASWELL(dev_priv)) ggtt->base.pte_encode = hsw_pte_encode; else if (IS_VALLEYVIEW(dev_priv)) ggtt->base.pte_encode = byt_pte_encode; else if (INTEL_GEN(dev_priv) >= 7) ggtt->base.pte_encode = ivb_pte_encode; else ggtt->base.pte_encode = snb_pte_encode; return ggtt_probe_common(ggtt, size); } static void i915_gmch_remove(struct i915_address_space *vm) { intel_gmch_remove(); } static int i915_gmch_probe(struct i915_ggtt *ggtt) { struct drm_i915_private *dev_priv = ggtt->base.i915; int ret; ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL); if (!ret) { DRM_ERROR("failed to set up gmch\n"); return -EIO; } intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size, &ggtt->mappable_base, &ggtt->mappable_end); ggtt->do_idle_maps = needs_idle_maps(dev_priv); ggtt->base.insert_page = i915_ggtt_insert_page; ggtt->base.insert_entries = i915_ggtt_insert_entries; ggtt->base.clear_range = i915_ggtt_clear_range; ggtt->base.bind_vma = ggtt_bind_vma; ggtt->base.unbind_vma = ggtt_unbind_vma; ggtt->base.cleanup = i915_gmch_remove; if (unlikely(ggtt->do_idle_maps)) DRM_INFO("applying Ironlake quirks for intel_iommu\n"); return 0; } /** * i915_ggtt_probe_hw - Probe GGTT hardware location * @dev_priv: i915 device */ int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv) { struct i915_ggtt *ggtt = &dev_priv->ggtt; int ret; ggtt->base.i915 = dev_priv; if (INTEL_GEN(dev_priv) <= 5) ret = i915_gmch_probe(ggtt); else if (INTEL_GEN(dev_priv) < 8) ret = gen6_gmch_probe(ggtt); else ret = gen8_gmch_probe(ggtt); if (ret) return ret; /* Trim the GGTT to fit the GuC mappable upper range (when enabled). * This is easier than doing range restriction on the fly, as we * currently don't have any bits spare to pass in this upper * restriction! */ if (HAS_GUC(dev_priv) && i915.enable_guc_loading) { ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP); ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total); } if ((ggtt->base.total - 1) >> 32) { DRM_ERROR("We never expected a Global GTT with more than 32bits" " of address space! Found %lldM!\n", ggtt->base.total >> 20); ggtt->base.total = 1ULL << 32; ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total); } if (ggtt->mappable_end > ggtt->base.total) { DRM_ERROR("mappable aperture extends past end of GGTT," " aperture=%llx, total=%llx\n", ggtt->mappable_end, ggtt->base.total); ggtt->mappable_end = ggtt->base.total; } /* GMADR is the PCI mmio aperture into the global GTT. */ DRM_INFO("Memory usable by graphics device = %lluM\n", ggtt->base.total >> 20); DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20); DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20); #ifdef CONFIG_INTEL_IOMMU if (intel_iommu_gfx_mapped) DRM_INFO("VT-d active for gfx access\n"); #endif return 0; } /** * i915_ggtt_init_hw - Initialize GGTT hardware * @dev_priv: i915 device */ int i915_ggtt_init_hw(struct drm_i915_private *dev_priv) { struct i915_ggtt *ggtt = &dev_priv->ggtt; int ret; INIT_LIST_HEAD(&dev_priv->vm_list); /* Subtract the guard page before address space initialization to * shrink the range used by drm_mm. */ mutex_lock(&dev_priv->drm.struct_mutex); ggtt->base.total -= PAGE_SIZE; i915_address_space_init(&ggtt->base, dev_priv, "[global]"); ggtt->base.total += PAGE_SIZE; if (!HAS_LLC(dev_priv)) ggtt->base.mm.color_adjust = i915_gtt_color_adjust; mutex_unlock(&dev_priv->drm.struct_mutex); if (!io_mapping_init_wc(&dev_priv->ggtt.mappable, dev_priv->ggtt.mappable_base, dev_priv->ggtt.mappable_end)) { ret = -EIO; goto out_gtt_cleanup; } ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end); /* * Initialise stolen early so that we may reserve preallocated * objects for the BIOS to KMS transition. */ ret = i915_gem_init_stolen(dev_priv); if (ret) goto out_gtt_cleanup; return 0; out_gtt_cleanup: ggtt->base.cleanup(&ggtt->base); return ret; } int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv) { if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt()) return -EIO; return 0; } void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv) { struct i915_ggtt *ggtt = &dev_priv->ggtt; struct drm_i915_gem_object *obj, *on; i915_check_and_clear_faults(dev_priv); /* First fill our portion of the GTT with scratch pages */ ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total); ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */ /* clflush objects bound into the GGTT and rebind them. */ list_for_each_entry_safe(obj, on, &dev_priv->mm.bound_list, global_link) { bool ggtt_bound = false; struct i915_vma *vma; list_for_each_entry(vma, &obj->vma_list, obj_link) { if (vma->vm != &ggtt->base) continue; if (!i915_vma_unbind(vma)) continue; WARN_ON(i915_vma_bind(vma, obj->cache_level, PIN_UPDATE)); ggtt_bound = true; } if (ggtt_bound) WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false)); } ggtt->base.closed = false; if (INTEL_GEN(dev_priv) >= 8) { if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv)) chv_setup_private_ppat(dev_priv); else bdw_setup_private_ppat(dev_priv); return; } if (USES_PPGTT(dev_priv)) { struct i915_address_space *vm; list_for_each_entry(vm, &dev_priv->vm_list, global_link) { /* TODO: Perhaps it shouldn't be gen6 specific */ struct i915_hw_ppgtt *ppgtt; if (i915_is_ggtt(vm)) ppgtt = dev_priv->mm.aliasing_ppgtt; else ppgtt = i915_vm_to_ppgtt(vm); gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total); } } i915_ggtt_flush(dev_priv); } struct i915_vma * i915_gem_obj_to_vma(struct drm_i915_gem_object *obj, struct i915_address_space *vm, const struct i915_ggtt_view *view) { struct rb_node *rb; rb = obj->vma_tree.rb_node; while (rb) { struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node); long cmp; cmp = i915_vma_compare(vma, vm, view); if (cmp == 0) return vma; if (cmp < 0) rb = rb->rb_right; else rb = rb->rb_left; } return NULL; } struct i915_vma * i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj, struct i915_address_space *vm, const struct i915_ggtt_view *view) { struct i915_vma *vma; lockdep_assert_held(&obj->base.dev->struct_mutex); GEM_BUG_ON(view && !i915_is_ggtt(vm)); vma = i915_gem_obj_to_vma(obj, vm, view); if (!vma) { vma = i915_vma_create(obj, vm, view); GEM_BUG_ON(vma != i915_gem_obj_to_vma(obj, vm, view)); } GEM_BUG_ON(i915_vma_is_closed(vma)); return vma; } static struct scatterlist * rotate_pages(const dma_addr_t *in, unsigned int offset, unsigned int width, unsigned int height, unsigned int stride, struct sg_table *st, struct scatterlist *sg) { unsigned int column, row; unsigned int src_idx; for (column = 0; column < width; column++) { src_idx = stride * (height - 1) + column; for (row = 0; row < height; row++) { st->nents++; /* We don't need the pages, but need to initialize * the entries so the sg list can be happily traversed. * The only thing we need are DMA addresses. */ sg_set_page(sg, NULL, PAGE_SIZE, 0); sg_dma_address(sg) = in[offset + src_idx]; sg_dma_len(sg) = PAGE_SIZE; sg = sg_next(sg); src_idx -= stride; } } return sg; } static struct sg_table * intel_rotate_fb_obj_pages(const struct intel_rotation_info *rot_info, struct drm_i915_gem_object *obj) { const size_t n_pages = obj->base.size / PAGE_SIZE; unsigned int size = intel_rotation_info_size(rot_info); struct sgt_iter sgt_iter; dma_addr_t dma_addr; unsigned long i; dma_addr_t *page_addr_list; struct sg_table *st; struct scatterlist *sg; int ret = -ENOMEM; /* Allocate a temporary list of source pages for random access. */ page_addr_list = drm_malloc_gfp(n_pages, sizeof(dma_addr_t), GFP_TEMPORARY); if (!page_addr_list) return ERR_PTR(ret); /* Allocate target SG list. */ st = kmalloc(sizeof(*st), GFP_KERNEL); if (!st) goto err_st_alloc; ret = sg_alloc_table(st, size, GFP_KERNEL); if (ret) goto err_sg_alloc; /* Populate source page list from the object. */ i = 0; for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages) page_addr_list[i++] = dma_addr; GEM_BUG_ON(i != n_pages); st->nents = 0; sg = st->sgl; for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) { sg = rotate_pages(page_addr_list, rot_info->plane[i].offset, rot_info->plane[i].width, rot_info->plane[i].height, rot_info->plane[i].stride, st, sg); } DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n", obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); drm_free_large(page_addr_list); return st; err_sg_alloc: kfree(st); err_st_alloc: drm_free_large(page_addr_list); DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); return ERR_PTR(ret); } static struct sg_table * intel_partial_pages(const struct i915_ggtt_view *view, struct drm_i915_gem_object *obj) { struct sg_table *st; struct scatterlist *sg, *iter; unsigned int count = view->params.partial.size; unsigned int offset; int ret = -ENOMEM; st = kmalloc(sizeof(*st), GFP_KERNEL); if (!st) goto err_st_alloc; ret = sg_alloc_table(st, count, GFP_KERNEL); if (ret) goto err_sg_alloc; iter = i915_gem_object_get_sg(obj, view->params.partial.offset, &offset); GEM_BUG_ON(!iter); sg = st->sgl; st->nents = 0; do { unsigned int len; len = min(iter->length - (offset << PAGE_SHIFT), count << PAGE_SHIFT); sg_set_page(sg, NULL, len, 0); sg_dma_address(sg) = sg_dma_address(iter) + (offset << PAGE_SHIFT); sg_dma_len(sg) = len; st->nents++; count -= len >> PAGE_SHIFT; if (count == 0) { sg_mark_end(sg); return st; } sg = __sg_next(sg); iter = __sg_next(iter); offset = 0; } while (1); err_sg_alloc: kfree(st); err_st_alloc: return ERR_PTR(ret); } static int i915_get_ggtt_vma_pages(struct i915_vma *vma) { int ret = 0; /* The vma->pages are only valid within the lifespan of the borrowed * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so * must be the vma->pages. A simple rule is that vma->pages must only * be accessed when the obj->mm.pages are pinned. */ GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); if (vma->pages) return 0; if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) vma->pages = vma->obj->mm.pages; else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED) vma->pages = intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj); else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL) vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj); else WARN_ONCE(1, "GGTT view %u not implemented!\n", vma->ggtt_view.type); if (!vma->pages) { DRM_ERROR("Failed to get pages for GGTT view type %u!\n", vma->ggtt_view.type); ret = -EINVAL; } else if (IS_ERR(vma->pages)) { ret = PTR_ERR(vma->pages); vma->pages = NULL; DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n", vma->ggtt_view.type, ret); } return ret; }