/* * Copyright (c) 2007, Intel Corporation. * All Rights Reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * * Authors: Thomas Hellstrom * Alan Cox */ #include #include #include "psb_drv.h" /* * GTT resource allocator - manage page mappings in GTT space */ /** * psb_gtt_mask_pte - generate GTT pte entry * @pfn: page number to encode * @type: type of memory in the GTT * * Set the GTT entry for the appropriate memory type. */ static inline uint32_t psb_gtt_mask_pte(uint32_t pfn, int type) { uint32_t mask = PSB_PTE_VALID; if (type & PSB_MMU_CACHED_MEMORY) mask |= PSB_PTE_CACHED; if (type & PSB_MMU_RO_MEMORY) mask |= PSB_PTE_RO; if (type & PSB_MMU_WO_MEMORY) mask |= PSB_PTE_WO; return (pfn << PAGE_SHIFT) | mask; } /** * psb_gtt_entry - find the GTT entries for a gtt_range * @dev: our DRM device * @r: our GTT range * * Given a gtt_range object return the GTT offset of the page table * entries for this gtt_range */ static u32 *psb_gtt_entry(struct drm_device *dev, struct gtt_range *r) { struct drm_psb_private *dev_priv = dev->dev_private; unsigned long offset; offset = r->resource.start - dev_priv->gtt_mem->start; return dev_priv->gtt_map + (offset >> PAGE_SHIFT); } /** * psb_gtt_insert - put an object into the GTT * @dev: our DRM device * @r: our GTT range * * Take our preallocated GTT range and insert the GEM object into * the GTT. This is protected via the gtt mutex which the caller * must hold. */ static int psb_gtt_insert(struct drm_device *dev, struct gtt_range *r) { u32 *gtt_slot, pte; struct page **pages; int i; if (r->pages == NULL) { WARN_ON(1); return -EINVAL; } WARN_ON(r->stolen); /* refcount these maybe ? */ gtt_slot = psb_gtt_entry(dev, r); pages = r->pages; /* Make sure changes are visible to the GPU */ set_pages_array_uc(pages, r->npage); /* Write our page entries into the GTT itself */ for (i = r->roll; i < r->npage; i++) { pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0); iowrite32(pte, gtt_slot++); } for (i = 0; i < r->roll; i++) { pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0); iowrite32(pte, gtt_slot++); } /* Make sure all the entries are set before we return */ ioread32(gtt_slot - 1); return 0; } /** * psb_gtt_remove - remove an object from the GTT * @dev: our DRM device * @r: our GTT range * * Remove a preallocated GTT range from the GTT. Overwrite all the * page table entries with the dummy page. This is protected via the gtt * mutex which the caller must hold. */ static void psb_gtt_remove(struct drm_device *dev, struct gtt_range *r) { struct drm_psb_private *dev_priv = dev->dev_private; u32 *gtt_slot, pte; int i; WARN_ON(r->stolen); gtt_slot = psb_gtt_entry(dev, r); pte = psb_gtt_mask_pte(page_to_pfn(dev_priv->scratch_page), 0); for (i = 0; i < r->npage; i++) iowrite32(pte, gtt_slot++); ioread32(gtt_slot - 1); set_pages_array_wb(r->pages, r->npage); } /** * psb_gtt_roll - set scrolling position * @dev: our DRM device * @r: the gtt mapping we are using * @roll: roll offset * * Roll an existing pinned mapping by moving the pages through the GTT. * This allows us to implement hardware scrolling on the consoles without * a 2D engine */ void psb_gtt_roll(struct drm_device *dev, struct gtt_range *r, int roll) { u32 *gtt_slot, pte; int i; if (roll >= r->npage) { WARN_ON(1); return; } r->roll = roll; /* Not currently in the GTT - no worry we will write the mapping at the right position when it gets pinned */ if (!r->stolen && !r->in_gart) return; gtt_slot = psb_gtt_entry(dev, r); for (i = r->roll; i < r->npage; i++) { pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0); iowrite32(pte, gtt_slot++); } for (i = 0; i < r->roll; i++) { pte = psb_gtt_mask_pte(page_to_pfn(r->pages[i]), 0); iowrite32(pte, gtt_slot++); } ioread32(gtt_slot - 1); } /** * psb_gtt_attach_pages - attach and pin GEM pages * @gt: the gtt range * * Pin and build an in kernel list of the pages that back our GEM object. * While we hold this the pages cannot be swapped out. This is protected * via the gtt mutex which the caller must hold. */ static int psb_gtt_attach_pages(struct gtt_range *gt) { struct inode *inode; struct address_space *mapping; int i; struct page *p; int pages = gt->gem.size / PAGE_SIZE; WARN_ON(gt->pages); /* This is the shared memory object that backs the GEM resource */ inode = gt->gem.filp->f_path.dentry->d_inode; mapping = inode->i_mapping; gt->pages = kmalloc(pages * sizeof(struct page *), GFP_KERNEL); if (gt->pages == NULL) return -ENOMEM; gt->npage = pages; for (i = 0; i < pages; i++) { p = shmem_read_mapping_page(mapping, i); if (IS_ERR(p)) goto err; gt->pages[i] = p; } return 0; err: while (i--) page_cache_release(gt->pages[i]); kfree(gt->pages); gt->pages = NULL; return PTR_ERR(p); } /** * psb_gtt_detach_pages - attach and pin GEM pages * @gt: the gtt range * * Undo the effect of psb_gtt_attach_pages. At this point the pages * must have been removed from the GTT as they could now be paged out * and move bus address. This is protected via the gtt mutex which the * caller must hold. */ static void psb_gtt_detach_pages(struct gtt_range *gt) { int i; for (i = 0; i < gt->npage; i++) { /* FIXME: do we need to force dirty */ set_page_dirty(gt->pages[i]); page_cache_release(gt->pages[i]); } kfree(gt->pages); gt->pages = NULL; } /** * psb_gtt_pin - pin pages into the GTT * @gt: range to pin * * Pin a set of pages into the GTT. The pins are refcounted so that * multiple pins need multiple unpins to undo. * * Non GEM backed objects treat this as a no-op as they are always GTT * backed objects. */ int psb_gtt_pin(struct gtt_range *gt) { int ret = 0; struct drm_device *dev = gt->gem.dev; struct drm_psb_private *dev_priv = dev->dev_private; mutex_lock(&dev_priv->gtt_mutex); if (gt->in_gart == 0 && gt->stolen == 0) { ret = psb_gtt_attach_pages(gt); if (ret < 0) goto out; ret = psb_gtt_insert(dev, gt); if (ret < 0) { psb_gtt_detach_pages(gt); goto out; } } gt->in_gart++; out: mutex_unlock(&dev_priv->gtt_mutex); return ret; } /** * psb_gtt_unpin - Drop a GTT pin requirement * @gt: range to pin * * Undoes the effect of psb_gtt_pin. On the last drop the GEM object * will be removed from the GTT which will also drop the page references * and allow the VM to clean up or page stuff. * * Non GEM backed objects treat this as a no-op as they are always GTT * backed objects. */ void psb_gtt_unpin(struct gtt_range *gt) { struct drm_device *dev = gt->gem.dev; struct drm_psb_private *dev_priv = dev->dev_private; mutex_lock(&dev_priv->gtt_mutex); WARN_ON(!gt->in_gart); gt->in_gart--; if (gt->in_gart == 0 && gt->stolen == 0) { psb_gtt_remove(dev, gt); psb_gtt_detach_pages(gt); } mutex_unlock(&dev_priv->gtt_mutex); } /* * GTT resource allocator - allocate and manage GTT address space */ /** * psb_gtt_alloc_range - allocate GTT address space * @dev: Our DRM device * @len: length (bytes) of address space required * @name: resource name * @backed: resource should be backed by stolen pages * * Ask the kernel core to find us a suitable range of addresses * to use for a GTT mapping. * * Returns a gtt_range structure describing the object, or NULL on * error. On successful return the resource is both allocated and marked * as in use. */ struct gtt_range *psb_gtt_alloc_range(struct drm_device *dev, int len, const char *name, int backed) { struct drm_psb_private *dev_priv = dev->dev_private; struct gtt_range *gt; struct resource *r = dev_priv->gtt_mem; int ret; unsigned long start, end; if (backed) { /* The start of the GTT is the stolen pages */ start = r->start; end = r->start + dev_priv->gtt.stolen_size - 1; } else { /* The rest we will use for GEM backed objects */ start = r->start + dev_priv->gtt.stolen_size; end = r->end; } gt = kzalloc(sizeof(struct gtt_range), GFP_KERNEL); if (gt == NULL) return NULL; gt->resource.name = name; gt->stolen = backed; gt->in_gart = backed; gt->roll = 0; /* Ensure this is set for non GEM objects */ gt->gem.dev = dev; ret = allocate_resource(dev_priv->gtt_mem, >->resource, len, start, end, PAGE_SIZE, NULL, NULL); if (ret == 0) { gt->offset = gt->resource.start - r->start; return gt; } kfree(gt); return NULL; } /** * psb_gtt_free_range - release GTT address space * @dev: our DRM device * @gt: a mapping created with psb_gtt_alloc_range * * Release a resource that was allocated with psb_gtt_alloc_range. If the * object has been pinned by mmap users we clean this up here currently. */ void psb_gtt_free_range(struct drm_device *dev, struct gtt_range *gt) { /* Undo the mmap pin if we are destroying the object */ if (gt->mmapping) { psb_gtt_unpin(gt); gt->mmapping = 0; } WARN_ON(gt->in_gart && !gt->stolen); release_resource(>->resource); kfree(gt); } static void psb_gtt_alloc(struct drm_device *dev) { struct drm_psb_private *dev_priv = dev->dev_private; init_rwsem(&dev_priv->gtt.sem); } void psb_gtt_takedown(struct drm_device *dev) { struct drm_psb_private *dev_priv = dev->dev_private; if (dev_priv->gtt_map) { iounmap(dev_priv->gtt_map); dev_priv->gtt_map = NULL; } if (dev_priv->gtt_initialized) { pci_write_config_word(dev->pdev, PSB_GMCH_CTRL, dev_priv->gmch_ctrl); PSB_WVDC32(dev_priv->pge_ctl, PSB_PGETBL_CTL); (void) PSB_RVDC32(PSB_PGETBL_CTL); } if (dev_priv->vram_addr) iounmap(dev_priv->gtt_map); } int psb_gtt_init(struct drm_device *dev, int resume) { struct drm_psb_private *dev_priv = dev->dev_private; unsigned gtt_pages; unsigned long stolen_size, vram_stolen_size; unsigned i, num_pages; unsigned pfn_base; uint32_t vram_pages; uint32_t dvmt_mode = 0; struct psb_gtt *pg; int ret = 0; uint32_t pte; mutex_init(&dev_priv->gtt_mutex); psb_gtt_alloc(dev); pg = &dev_priv->gtt; /* Enable the GTT */ pci_read_config_word(dev->pdev, PSB_GMCH_CTRL, &dev_priv->gmch_ctrl); pci_write_config_word(dev->pdev, PSB_GMCH_CTRL, dev_priv->gmch_ctrl | _PSB_GMCH_ENABLED); dev_priv->pge_ctl = PSB_RVDC32(PSB_PGETBL_CTL); PSB_WVDC32(dev_priv->pge_ctl | _PSB_PGETBL_ENABLED, PSB_PGETBL_CTL); (void) PSB_RVDC32(PSB_PGETBL_CTL); /* The root resource we allocate address space from */ dev_priv->gtt_initialized = 1; pg->gtt_phys_start = dev_priv->pge_ctl & PAGE_MASK; /* * The video mmu has a hw bug when accessing 0x0D0000000. * Make gatt start at 0x0e000,0000. This doesn't actually * matter for us but may do if the video acceleration ever * gets opened up. */ pg->mmu_gatt_start = 0xE0000000; pg->gtt_start = pci_resource_start(dev->pdev, PSB_GTT_RESOURCE); gtt_pages = pci_resource_len(dev->pdev, PSB_GTT_RESOURCE) >> PAGE_SHIFT; /* CDV doesn't report this. In which case the system has 64 gtt pages */ if (pg->gtt_start == 0 || gtt_pages == 0) { dev_dbg(dev->dev, "GTT PCI BAR not initialized.\n"); gtt_pages = 64; pg->gtt_start = dev_priv->pge_ctl; } pg->gatt_start = pci_resource_start(dev->pdev, PSB_GATT_RESOURCE); pg->gatt_pages = pci_resource_len(dev->pdev, PSB_GATT_RESOURCE) >> PAGE_SHIFT; dev_priv->gtt_mem = &dev->pdev->resource[PSB_GATT_RESOURCE]; if (pg->gatt_pages == 0 || pg->gatt_start == 0) { static struct resource fudge; /* Preferably peppermint */ /* This can occur on CDV systems. Fudge it in this case. We really don't care what imaginary space is being allocated at this point */ dev_dbg(dev->dev, "GATT PCI BAR not initialized.\n"); pg->gatt_start = 0x40000000; pg->gatt_pages = (128 * 1024 * 1024) >> PAGE_SHIFT; /* This is a little confusing but in fact the GTT is providing a view from the GPU into memory and not vice versa. As such this is really allocating space that is not the same as the CPU address space on CDV */ fudge.start = 0x40000000; fudge.end = 0x40000000 + 128 * 1024 * 1024 - 1; fudge.name = "fudge"; fudge.flags = IORESOURCE_MEM; dev_priv->gtt_mem = &fudge; } pci_read_config_dword(dev->pdev, PSB_BSM, &dev_priv->stolen_base); vram_stolen_size = pg->gtt_phys_start - dev_priv->stolen_base - PAGE_SIZE; stolen_size = vram_stolen_size; printk(KERN_INFO "Stolen memory information\n"); printk(KERN_INFO " base in RAM: 0x%x\n", dev_priv->stolen_base); printk(KERN_INFO " size: %luK, calculated by (GTT RAM base) - (Stolen base), seems wrong\n", vram_stolen_size/1024); dvmt_mode = (dev_priv->gmch_ctrl >> 4) & 0x7; printk(KERN_INFO " the correct size should be: %dM(dvmt mode=%d)\n", (dvmt_mode == 1) ? 1 : (2 << (dvmt_mode - 1)), dvmt_mode); if (resume && (gtt_pages != pg->gtt_pages) && (stolen_size != pg->stolen_size)) { dev_err(dev->dev, "GTT resume error.\n"); ret = -EINVAL; goto out_err; } pg->gtt_pages = gtt_pages; pg->stolen_size = stolen_size; dev_priv->vram_stolen_size = vram_stolen_size; /* * Map the GTT and the stolen memory area */ dev_priv->gtt_map = ioremap_nocache(pg->gtt_phys_start, gtt_pages << PAGE_SHIFT); if (!dev_priv->gtt_map) { dev_err(dev->dev, "Failure to map gtt.\n"); ret = -ENOMEM; goto out_err; } dev_priv->vram_addr = ioremap_wc(dev_priv->stolen_base, stolen_size); if (!dev_priv->vram_addr) { dev_err(dev->dev, "Failure to map stolen base.\n"); ret = -ENOMEM; goto out_err; } /* * Insert vram stolen pages into the GTT */ pfn_base = dev_priv->stolen_base >> PAGE_SHIFT; vram_pages = num_pages = vram_stolen_size >> PAGE_SHIFT; printk(KERN_INFO"Set up %d stolen pages starting at 0x%08x, GTT offset %dK\n", num_pages, pfn_base << PAGE_SHIFT, 0); for (i = 0; i < num_pages; ++i) { pte = psb_gtt_mask_pte(pfn_base + i, 0); iowrite32(pte, dev_priv->gtt_map + i); } /* * Init rest of GTT to the scratch page to avoid accidents or scribbles */ pfn_base = page_to_pfn(dev_priv->scratch_page); pte = psb_gtt_mask_pte(pfn_base, 0); for (; i < gtt_pages; ++i) iowrite32(pte, dev_priv->gtt_map + i); (void) ioread32(dev_priv->gtt_map + i - 1); return 0; out_err: psb_gtt_takedown(dev); return ret; }