/* * SBP2 driver (SCSI over IEEE1394) * * Copyright (C) 2005-2007 Kristian Hoegsberg * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* * The basic structure of this driver is based on the old storage driver, * drivers/ieee1394/sbp2.c, originally written by * James Goodwin * with later contributions and ongoing maintenance from * Ben Collins , * Stefan Richter * and many others. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fw-transaction.h" #include "fw-topology.h" #include "fw-device.h" /* * So far only bridges from Oxford Semiconductor are known to support * concurrent logins. Depending on firmware, four or two concurrent logins * are possible on OXFW911 and newer Oxsemi bridges. * * Concurrent logins are useful together with cluster filesystems. */ static int sbp2_param_exclusive_login = 1; module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644); MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device " "(default = Y, use N for concurrent initiators)"); /* I don't know why the SCSI stack doesn't define something like this... */ typedef void (*scsi_done_fn_t)(struct scsi_cmnd *); static const char sbp2_driver_name[] = "sbp2"; struct sbp2_device { struct kref kref; struct fw_unit *unit; struct fw_address_handler address_handler; struct list_head orb_list; u64 management_agent_address; u64 command_block_agent_address; u32 workarounds; int login_id; /* * We cache these addresses and only update them once we've * logged in or reconnected to the sbp2 device. That way, any * IO to the device will automatically fail and get retried if * it happens in a window where the device is not ready to * handle it (e.g. after a bus reset but before we reconnect). */ int node_id; int address_high; int generation; int retries; struct delayed_work work; }; #define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000 #define SBP2_MAX_SECTORS 255 /* Max sectors supported */ #define SBP2_ORB_TIMEOUT 2000 /* Timeout in ms */ #define SBP2_ORB_NULL 0x80000000 #define SBP2_DIRECTION_TO_MEDIA 0x0 #define SBP2_DIRECTION_FROM_MEDIA 0x1 /* Unit directory keys */ #define SBP2_COMMAND_SET_SPECIFIER 0x38 #define SBP2_COMMAND_SET 0x39 #define SBP2_COMMAND_SET_REVISION 0x3b #define SBP2_FIRMWARE_REVISION 0x3c /* Flags for detected oddities and brokeness */ #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1 #define SBP2_WORKAROUND_INQUIRY_36 0x2 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8 #define SBP2_WORKAROUND_OVERRIDE 0x100 /* Management orb opcodes */ #define SBP2_LOGIN_REQUEST 0x0 #define SBP2_QUERY_LOGINS_REQUEST 0x1 #define SBP2_RECONNECT_REQUEST 0x3 #define SBP2_SET_PASSWORD_REQUEST 0x4 #define SBP2_LOGOUT_REQUEST 0x7 #define SBP2_ABORT_TASK_REQUEST 0xb #define SBP2_ABORT_TASK_SET 0xc #define SBP2_LOGICAL_UNIT_RESET 0xe #define SBP2_TARGET_RESET_REQUEST 0xf /* Offsets for command block agent registers */ #define SBP2_AGENT_STATE 0x00 #define SBP2_AGENT_RESET 0x04 #define SBP2_ORB_POINTER 0x08 #define SBP2_DOORBELL 0x10 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14 /* Status write response codes */ #define SBP2_STATUS_REQUEST_COMPLETE 0x0 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff) #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff) #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07) #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01) #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03) #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03) #define STATUS_GET_ORB_LOW(v) ((v).orb_low) #define STATUS_GET_DATA(v) ((v).data) struct sbp2_status { u32 status; u32 orb_low; u8 data[24]; }; struct sbp2_pointer { u32 high; u32 low; }; struct sbp2_orb { struct fw_transaction t; dma_addr_t request_bus; int rcode; struct sbp2_pointer pointer; void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status); struct list_head link; }; #define MANAGEMENT_ORB_LUN(v) ((v)) #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16) #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20) #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0) #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29) #define MANAGEMENT_ORB_NOTIFY ((1) << 31) #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v)) #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16) struct sbp2_management_orb { struct sbp2_orb base; struct { struct sbp2_pointer password; struct sbp2_pointer response; u32 misc; u32 length; struct sbp2_pointer status_fifo; } request; __be32 response[4]; dma_addr_t response_bus; struct completion done; struct sbp2_status status; }; #define LOGIN_RESPONSE_GET_LOGIN_ID(v) ((v).misc & 0xffff) #define LOGIN_RESPONSE_GET_LENGTH(v) (((v).misc >> 16) & 0xffff) struct sbp2_login_response { u32 misc; struct sbp2_pointer command_block_agent; u32 reconnect_hold; }; #define COMMAND_ORB_DATA_SIZE(v) ((v)) #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16) #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19) #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20) #define COMMAND_ORB_SPEED(v) ((v) << 24) #define COMMAND_ORB_DIRECTION(v) ((v) << 27) #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29) #define COMMAND_ORB_NOTIFY ((1) << 31) struct sbp2_command_orb { struct sbp2_orb base; struct { struct sbp2_pointer next; struct sbp2_pointer data_descriptor; u32 misc; u8 command_block[12]; } request; struct scsi_cmnd *cmd; scsi_done_fn_t done; struct fw_unit *unit; struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8))); dma_addr_t page_table_bus; }; /* * List of devices with known bugs. * * The firmware_revision field, masked with 0xffff00, is the best * indicator for the type of bridge chip of a device. It yields a few * false positives but this did not break correctly behaving devices * so far. We use ~0 as a wildcard, since the 24 bit values we get * from the config rom can never match that. */ static const struct { u32 firmware_revision; u32 model; unsigned workarounds; } sbp2_workarounds_table[] = { /* DViCO Momobay CX-1 with TSB42AA9 bridge */ { .firmware_revision = 0x002800, .model = 0x001010, .workarounds = SBP2_WORKAROUND_INQUIRY_36 | SBP2_WORKAROUND_MODE_SENSE_8, }, /* Initio bridges, actually only needed for some older ones */ { .firmware_revision = 0x000200, .model = ~0, .workarounds = SBP2_WORKAROUND_INQUIRY_36, }, /* Symbios bridge */ { .firmware_revision = 0xa0b800, .model = ~0, .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, }, /* * There are iPods (2nd gen, 3rd gen) with model_id == 0, but * these iPods do not feature the read_capacity bug according * to one report. Read_capacity behaviour as well as model_id * could change due to Apple-supplied firmware updates though. */ /* iPod 4th generation. */ { .firmware_revision = 0x0a2700, .model = 0x000021, .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, }, /* iPod mini */ { .firmware_revision = 0x0a2700, .model = 0x000023, .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, }, /* iPod Photo */ { .firmware_revision = 0x0a2700, .model = 0x00007e, .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, } }; static void sbp2_status_write(struct fw_card *card, struct fw_request *request, int tcode, int destination, int source, int generation, int speed, unsigned long long offset, void *payload, size_t length, void *callback_data) { struct sbp2_device *sd = callback_data; struct sbp2_orb *orb; struct sbp2_status status; size_t header_size; unsigned long flags; if (tcode != TCODE_WRITE_BLOCK_REQUEST || length == 0 || length > sizeof(status)) { fw_send_response(card, request, RCODE_TYPE_ERROR); return; } header_size = min(length, 2 * sizeof(u32)); fw_memcpy_from_be32(&status, payload, header_size); if (length > header_size) memcpy(status.data, payload + 8, length - header_size); if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) { fw_notify("non-orb related status write, not handled\n"); fw_send_response(card, request, RCODE_COMPLETE); return; } /* Lookup the orb corresponding to this status write. */ spin_lock_irqsave(&card->lock, flags); list_for_each_entry(orb, &sd->orb_list, link) { if (STATUS_GET_ORB_HIGH(status) == 0 && STATUS_GET_ORB_LOW(status) == orb->request_bus && orb->rcode == RCODE_COMPLETE) { list_del(&orb->link); break; } } spin_unlock_irqrestore(&card->lock, flags); if (&orb->link != &sd->orb_list) orb->callback(orb, &status); else fw_error("status write for unknown orb\n"); fw_send_response(card, request, RCODE_COMPLETE); } static void complete_transaction(struct fw_card *card, int rcode, void *payload, size_t length, void *data) { struct sbp2_orb *orb = data; unsigned long flags; orb->rcode = rcode; if (rcode != RCODE_COMPLETE) { spin_lock_irqsave(&card->lock, flags); list_del(&orb->link); spin_unlock_irqrestore(&card->lock, flags); orb->callback(orb, NULL); } } static void sbp2_send_orb(struct sbp2_orb *orb, struct fw_unit *unit, int node_id, int generation, u64 offset) { struct fw_device *device = fw_device(unit->device.parent); struct sbp2_device *sd = unit->device.driver_data; unsigned long flags; orb->pointer.high = 0; orb->pointer.low = orb->request_bus; fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer)); spin_lock_irqsave(&device->card->lock, flags); list_add_tail(&orb->link, &sd->orb_list); spin_unlock_irqrestore(&device->card->lock, flags); fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST, node_id, generation, device->max_speed, offset, &orb->pointer, sizeof(orb->pointer), complete_transaction, orb); } static int sbp2_cancel_orbs(struct fw_unit *unit) { struct fw_device *device = fw_device(unit->device.parent); struct sbp2_device *sd = unit->device.driver_data; struct sbp2_orb *orb, *next; struct list_head list; unsigned long flags; int retval = -ENOENT; INIT_LIST_HEAD(&list); spin_lock_irqsave(&device->card->lock, flags); list_splice_init(&sd->orb_list, &list); spin_unlock_irqrestore(&device->card->lock, flags); list_for_each_entry_safe(orb, next, &list, link) { retval = 0; if (fw_cancel_transaction(device->card, &orb->t) == 0) continue; orb->rcode = RCODE_CANCELLED; orb->callback(orb, NULL); } return retval; } static void complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status) { struct sbp2_management_orb *orb = container_of(base_orb, struct sbp2_management_orb, base); if (status) memcpy(&orb->status, status, sizeof(*status)); complete(&orb->done); } static int sbp2_send_management_orb(struct fw_unit *unit, int node_id, int generation, int function, int lun, void *response) { struct fw_device *device = fw_device(unit->device.parent); struct sbp2_device *sd = unit->device.driver_data; struct sbp2_management_orb *orb; int retval = -ENOMEM; orb = kzalloc(sizeof(*orb), GFP_ATOMIC); if (orb == NULL) return -ENOMEM; orb->response_bus = dma_map_single(device->card->device, &orb->response, sizeof(orb->response), DMA_FROM_DEVICE); if (dma_mapping_error(orb->response_bus)) goto fail_mapping_response; orb->request.response.high = 0; orb->request.response.low = orb->response_bus; orb->request.misc = MANAGEMENT_ORB_NOTIFY | MANAGEMENT_ORB_FUNCTION(function) | MANAGEMENT_ORB_LUN(lun); orb->request.length = MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)); orb->request.status_fifo.high = sd->address_handler.offset >> 32; orb->request.status_fifo.low = sd->address_handler.offset; if (function == SBP2_LOGIN_REQUEST) { orb->request.misc |= MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login) | MANAGEMENT_ORB_RECONNECT(0); } fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request)); init_completion(&orb->done); orb->base.callback = complete_management_orb; orb->base.request_bus = dma_map_single(device->card->device, &orb->request, sizeof(orb->request), DMA_TO_DEVICE); if (dma_mapping_error(orb->base.request_bus)) goto fail_mapping_request; sbp2_send_orb(&orb->base, unit, node_id, generation, sd->management_agent_address); wait_for_completion_timeout(&orb->done, msecs_to_jiffies(SBP2_ORB_TIMEOUT)); retval = -EIO; if (sbp2_cancel_orbs(unit) == 0) { fw_error("orb reply timed out, rcode=0x%02x\n", orb->base.rcode); goto out; } if (orb->base.rcode != RCODE_COMPLETE) { fw_error("management write failed, rcode 0x%02x\n", orb->base.rcode); goto out; } if (STATUS_GET_RESPONSE(orb->status) != 0 || STATUS_GET_SBP_STATUS(orb->status) != 0) { fw_error("error status: %d:%d\n", STATUS_GET_RESPONSE(orb->status), STATUS_GET_SBP_STATUS(orb->status)); goto out; } retval = 0; out: dma_unmap_single(device->card->device, orb->base.request_bus, sizeof(orb->request), DMA_TO_DEVICE); fail_mapping_request: dma_unmap_single(device->card->device, orb->response_bus, sizeof(orb->response), DMA_FROM_DEVICE); fail_mapping_response: if (response) fw_memcpy_from_be32(response, orb->response, sizeof(orb->response)); kfree(orb); return retval; } static void complete_agent_reset_write(struct fw_card *card, int rcode, void *payload, size_t length, void *data) { struct fw_transaction *t = data; kfree(t); } static int sbp2_agent_reset(struct fw_unit *unit) { struct fw_device *device = fw_device(unit->device.parent); struct sbp2_device *sd = unit->device.driver_data; struct fw_transaction *t; static u32 zero; t = kzalloc(sizeof(*t), GFP_ATOMIC); if (t == NULL) return -ENOMEM; fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST, sd->node_id, sd->generation, device->max_speed, sd->command_block_agent_address + SBP2_AGENT_RESET, &zero, sizeof(zero), complete_agent_reset_write, t); return 0; } static void sbp2_reconnect(struct work_struct *work); static struct scsi_host_template scsi_driver_template; static void release_sbp2_device(struct kref *kref) { struct sbp2_device *sd = container_of(kref, struct sbp2_device, kref); struct Scsi_Host *host = container_of((void *)sd, struct Scsi_Host, hostdata[0]); scsi_remove_host(host); sbp2_send_management_orb(sd->unit, sd->node_id, sd->generation, SBP2_LOGOUT_REQUEST, sd->login_id, NULL); fw_core_remove_address_handler(&sd->address_handler); fw_notify("removed sbp2 unit %s\n", sd->unit->device.bus_id); put_device(&sd->unit->device); scsi_host_put(host); } static void sbp2_login(struct work_struct *work) { struct sbp2_device *sd = container_of(work, struct sbp2_device, work.work); struct Scsi_Host *host = container_of((void *)sd, struct Scsi_Host, hostdata[0]); struct fw_unit *unit = sd->unit; struct fw_device *device = fw_device(unit->device.parent); struct sbp2_login_response response; int generation, node_id, local_node_id, lun, retval; /* FIXME: Make this work for multi-lun devices. */ lun = 0; generation = device->card->generation; node_id = device->node->node_id; local_node_id = device->card->local_node->node_id; if (sbp2_send_management_orb(unit, node_id, generation, SBP2_LOGIN_REQUEST, lun, &response) < 0) { if (sd->retries++ < 5) { schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5)); } else { fw_error("failed to login to %s\n", unit->device.bus_id); kref_put(&sd->kref, release_sbp2_device); } return; } sd->generation = generation; sd->node_id = node_id; sd->address_high = local_node_id << 16; /* Get command block agent offset and login id. */ sd->command_block_agent_address = ((u64) (response.command_block_agent.high & 0xffff) << 32) | response.command_block_agent.low; sd->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response); fw_notify("logged in to sbp2 unit %s (%d retries)\n", unit->device.bus_id, sd->retries); fw_notify(" - management_agent_address: 0x%012llx\n", (unsigned long long) sd->management_agent_address); fw_notify(" - command_block_agent_address: 0x%012llx\n", (unsigned long long) sd->command_block_agent_address); fw_notify(" - status write address: 0x%012llx\n", (unsigned long long) sd->address_handler.offset); #if 0 /* FIXME: The linux1394 sbp2 does this last step. */ sbp2_set_busy_timeout(scsi_id); #endif PREPARE_DELAYED_WORK(&sd->work, sbp2_reconnect); sbp2_agent_reset(unit); /* FIXME: Loop over luns here. */ lun = 0; retval = scsi_add_device(host, 0, 0, lun); if (retval < 0) { sbp2_send_management_orb(unit, sd->node_id, sd->generation, SBP2_LOGOUT_REQUEST, sd->login_id, NULL); /* * Set this back to sbp2_login so we fall back and * retry login on bus reset. */ PREPARE_DELAYED_WORK(&sd->work, sbp2_login); } kref_put(&sd->kref, release_sbp2_device); } static int sbp2_probe(struct device *dev) { struct fw_unit *unit = fw_unit(dev); struct fw_device *device = fw_device(unit->device.parent); struct sbp2_device *sd; struct fw_csr_iterator ci; struct Scsi_Host *host; int i, key, value, err; u32 model, firmware_revision; err = -ENOMEM; host = scsi_host_alloc(&scsi_driver_template, sizeof(*sd)); if (host == NULL) goto fail; sd = (struct sbp2_device *) host->hostdata; unit->device.driver_data = sd; sd->unit = unit; INIT_LIST_HEAD(&sd->orb_list); kref_init(&sd->kref); sd->address_handler.length = 0x100; sd->address_handler.address_callback = sbp2_status_write; sd->address_handler.callback_data = sd; err = fw_core_add_address_handler(&sd->address_handler, &fw_high_memory_region); if (err < 0) goto fail_host; err = fw_device_enable_phys_dma(device); if (err < 0) goto fail_address_handler; err = scsi_add_host(host, &unit->device); if (err < 0) goto fail_address_handler; /* * Scan unit directory to get management agent address, * firmware revison and model. Initialize firmware_revision * and model to values that wont match anything in our table. */ firmware_revision = 0xff000000; model = 0xff000000; fw_csr_iterator_init(&ci, unit->directory); while (fw_csr_iterator_next(&ci, &key, &value)) { switch (key) { case CSR_DEPENDENT_INFO | CSR_OFFSET: sd->management_agent_address = 0xfffff0000000ULL + 4 * value; break; case SBP2_FIRMWARE_REVISION: firmware_revision = value; break; case CSR_MODEL: model = value; break; } } for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) { if (sbp2_workarounds_table[i].firmware_revision != (firmware_revision & 0xffffff00)) continue; if (sbp2_workarounds_table[i].model != model && sbp2_workarounds_table[i].model != ~0) continue; sd->workarounds |= sbp2_workarounds_table[i].workarounds; break; } if (sd->workarounds) fw_notify("Workarounds for node %s: 0x%x " "(firmware_revision 0x%06x, model_id 0x%06x)\n", unit->device.bus_id, sd->workarounds, firmware_revision, model); get_device(&unit->device); /* * We schedule work to do the login so we can easily * reschedule retries. Always get the ref before scheduling * work. */ INIT_DELAYED_WORK(&sd->work, sbp2_login); if (schedule_delayed_work(&sd->work, 0)) kref_get(&sd->kref); return 0; fail_address_handler: fw_core_remove_address_handler(&sd->address_handler); fail_host: scsi_host_put(host); fail: return err; } static int sbp2_remove(struct device *dev) { struct fw_unit *unit = fw_unit(dev); struct sbp2_device *sd = unit->device.driver_data; kref_put(&sd->kref, release_sbp2_device); return 0; } static void sbp2_reconnect(struct work_struct *work) { struct sbp2_device *sd = container_of(work, struct sbp2_device, work.work); struct fw_unit *unit = sd->unit; struct fw_device *device = fw_device(unit->device.parent); int generation, node_id, local_node_id; generation = device->card->generation; node_id = device->node->node_id; local_node_id = device->card->local_node->node_id; if (sbp2_send_management_orb(unit, node_id, generation, SBP2_RECONNECT_REQUEST, sd->login_id, NULL) < 0) { if (sd->retries++ >= 5) { fw_error("failed to reconnect to %s\n", unit->device.bus_id); /* Fall back and try to log in again. */ sd->retries = 0; PREPARE_DELAYED_WORK(&sd->work, sbp2_login); } schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5)); return; } sd->generation = generation; sd->node_id = node_id; sd->address_high = local_node_id << 16; fw_notify("reconnected to unit %s (%d retries)\n", unit->device.bus_id, sd->retries); sbp2_agent_reset(unit); sbp2_cancel_orbs(unit); kref_put(&sd->kref, release_sbp2_device); } static void sbp2_update(struct fw_unit *unit) { struct fw_device *device = fw_device(unit->device.parent); struct sbp2_device *sd = unit->device.driver_data; sd->retries = 0; fw_device_enable_phys_dma(device); if (schedule_delayed_work(&sd->work, 0)) kref_get(&sd->kref); } #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e #define SBP2_SW_VERSION_ENTRY 0x00010483 static const struct fw_device_id sbp2_id_table[] = { { .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION, .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY, .version = SBP2_SW_VERSION_ENTRY, }, { } }; static struct fw_driver sbp2_driver = { .driver = { .owner = THIS_MODULE, .name = sbp2_driver_name, .bus = &fw_bus_type, .probe = sbp2_probe, .remove = sbp2_remove, }, .update = sbp2_update, .id_table = sbp2_id_table, }; static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data) { int sam_status; sense_data[0] = 0x70; sense_data[1] = 0x0; sense_data[2] = sbp2_status[1]; sense_data[3] = sbp2_status[4]; sense_data[4] = sbp2_status[5]; sense_data[5] = sbp2_status[6]; sense_data[6] = sbp2_status[7]; sense_data[7] = 10; sense_data[8] = sbp2_status[8]; sense_data[9] = sbp2_status[9]; sense_data[10] = sbp2_status[10]; sense_data[11] = sbp2_status[11]; sense_data[12] = sbp2_status[2]; sense_data[13] = sbp2_status[3]; sense_data[14] = sbp2_status[12]; sense_data[15] = sbp2_status[13]; sam_status = sbp2_status[0] & 0x3f; switch (sam_status) { case SAM_STAT_GOOD: case SAM_STAT_CHECK_CONDITION: case SAM_STAT_CONDITION_MET: case SAM_STAT_BUSY: case SAM_STAT_RESERVATION_CONFLICT: case SAM_STAT_COMMAND_TERMINATED: return DID_OK << 16 | sam_status; default: return DID_ERROR << 16; } } static void complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status) { struct sbp2_command_orb *orb = container_of(base_orb, struct sbp2_command_orb, base); struct fw_unit *unit = orb->unit; struct fw_device *device = fw_device(unit->device.parent); struct scatterlist *sg; int result; if (status != NULL) { if (STATUS_GET_DEAD(*status)) sbp2_agent_reset(unit); switch (STATUS_GET_RESPONSE(*status)) { case SBP2_STATUS_REQUEST_COMPLETE: result = DID_OK << 16; break; case SBP2_STATUS_TRANSPORT_FAILURE: result = DID_BUS_BUSY << 16; break; case SBP2_STATUS_ILLEGAL_REQUEST: case SBP2_STATUS_VENDOR_DEPENDENT: default: result = DID_ERROR << 16; break; } if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1) result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status), orb->cmd->sense_buffer); } else { /* * If the orb completes with status == NULL, something * went wrong, typically a bus reset happened mid-orb * or when sending the write (less likely). */ result = DID_BUS_BUSY << 16; } dma_unmap_single(device->card->device, orb->base.request_bus, sizeof(orb->request), DMA_TO_DEVICE); if (orb->cmd->use_sg > 0) { sg = (struct scatterlist *)orb->cmd->request_buffer; dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg, orb->cmd->sc_data_direction); } if (orb->page_table_bus != 0) dma_unmap_single(device->card->device, orb->page_table_bus, sizeof(orb->page_table), DMA_TO_DEVICE); orb->cmd->result = result; orb->done(orb->cmd); kfree(orb); } static int sbp2_command_orb_map_scatterlist(struct sbp2_command_orb *orb) { struct sbp2_device *sd = (struct sbp2_device *)orb->cmd->device->host->hostdata; struct fw_unit *unit = sd->unit; struct fw_device *device = fw_device(unit->device.parent); struct scatterlist *sg; int sg_len, l, i, j, count; dma_addr_t sg_addr; sg = (struct scatterlist *)orb->cmd->request_buffer; count = dma_map_sg(device->card->device, sg, orb->cmd->use_sg, orb->cmd->sc_data_direction); if (count == 0) goto fail; /* * Handle the special case where there is only one element in * the scatter list by converting it to an immediate block * request. This is also a workaround for broken devices such * as the second generation iPod which doesn't support page * tables. */ if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) { orb->request.data_descriptor.high = sd->address_high; orb->request.data_descriptor.low = sg_dma_address(sg); orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)); return 0; } /* * Convert the scatterlist to an sbp2 page table. If any * scatterlist entries are too big for sbp2, we split them as we * go. Even if we ask the block I/O layer to not give us sg * elements larger than 65535 bytes, some IOMMUs may merge sg elements * during DMA mapping, and Linux currently doesn't prevent this. */ for (i = 0, j = 0; i < count; i++) { sg_len = sg_dma_len(sg + i); sg_addr = sg_dma_address(sg + i); while (sg_len) { /* FIXME: This won't get us out of the pinch. */ if (unlikely(j >= ARRAY_SIZE(orb->page_table))) { fw_error("page table overflow\n"); goto fail_page_table; } l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH); orb->page_table[j].low = sg_addr; orb->page_table[j].high = (l << 16); sg_addr += l; sg_len -= l; j++; } } fw_memcpy_to_be32(orb->page_table, orb->page_table, sizeof(orb->page_table[0]) * j); orb->page_table_bus = dma_map_single(device->card->device, orb->page_table, sizeof(orb->page_table), DMA_TO_DEVICE); if (dma_mapping_error(orb->page_table_bus)) goto fail_page_table; /* * The data_descriptor pointer is the one case where we need * to fill in the node ID part of the address. All other * pointers assume that the data referenced reside on the * initiator (i.e. us), but data_descriptor can refer to data * on other nodes so we need to put our ID in descriptor.high. */ orb->request.data_descriptor.high = sd->address_high; orb->request.data_descriptor.low = orb->page_table_bus; orb->request.misc |= COMMAND_ORB_PAGE_TABLE_PRESENT | COMMAND_ORB_DATA_SIZE(j); return 0; fail_page_table: dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg, orb->cmd->sc_data_direction); fail: return -ENOMEM; } /* SCSI stack integration */ static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done) { struct sbp2_device *sd = (struct sbp2_device *)cmd->device->host->hostdata; struct fw_unit *unit = sd->unit; struct fw_device *device = fw_device(unit->device.parent); struct sbp2_command_orb *orb; /* * Bidirectional commands are not yet implemented, and unknown * transfer direction not handled. */ if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) { fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n"); cmd->result = DID_ERROR << 16; done(cmd); return 0; } orb = kzalloc(sizeof(*orb), GFP_ATOMIC); if (orb == NULL) { fw_notify("failed to alloc orb\n"); goto fail_alloc; } /* Initialize rcode to something not RCODE_COMPLETE. */ orb->base.rcode = -1; orb->unit = unit; orb->done = done; orb->cmd = cmd; orb->request.next.high = SBP2_ORB_NULL; orb->request.next.low = 0x0; /* * At speed 100 we can do 512 bytes per packet, at speed 200, * 1024 bytes per packet etc. The SBP-2 max_payload field * specifies the max payload size as 2 ^ (max_payload + 2), so * if we set this to max_speed + 7, we get the right value. */ orb->request.misc = COMMAND_ORB_MAX_PAYLOAD(device->max_speed + 7) | COMMAND_ORB_SPEED(device->max_speed) | COMMAND_ORB_NOTIFY; if (cmd->sc_data_direction == DMA_FROM_DEVICE) orb->request.misc |= COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA); else if (cmd->sc_data_direction == DMA_TO_DEVICE) orb->request.misc |= COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA); if (cmd->use_sg && sbp2_command_orb_map_scatterlist(orb) < 0) goto fail_mapping; fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request)); memset(orb->request.command_block, 0, sizeof(orb->request.command_block)); memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd)); orb->base.callback = complete_command_orb; orb->base.request_bus = dma_map_single(device->card->device, &orb->request, sizeof(orb->request), DMA_TO_DEVICE); if (dma_mapping_error(orb->base.request_bus)) goto fail_mapping; sbp2_send_orb(&orb->base, unit, sd->node_id, sd->generation, sd->command_block_agent_address + SBP2_ORB_POINTER); return 0; fail_mapping: kfree(orb); fail_alloc: return SCSI_MLQUEUE_HOST_BUSY; } static int sbp2_scsi_slave_alloc(struct scsi_device *sdev) { struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata; sdev->allow_restart = 1; if (sd->workarounds & SBP2_WORKAROUND_INQUIRY_36) sdev->inquiry_len = 36; return 0; } static int sbp2_scsi_slave_configure(struct scsi_device *sdev) { struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata; struct fw_unit *unit = sd->unit; sdev->use_10_for_rw = 1; if (sdev->type == TYPE_ROM) sdev->use_10_for_ms = 1; if (sdev->type == TYPE_DISK && sd->workarounds & SBP2_WORKAROUND_MODE_SENSE_8) sdev->skip_ms_page_8 = 1; if (sd->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) { fw_notify("setting fix_capacity for %s\n", unit->device.bus_id); sdev->fix_capacity = 1; } if (sd->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS) blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512); return 0; } /* * Called by scsi stack when something has really gone wrong. Usually * called when a command has timed-out for some reason. */ static int sbp2_scsi_abort(struct scsi_cmnd *cmd) { struct sbp2_device *sd = (struct sbp2_device *)cmd->device->host->hostdata; struct fw_unit *unit = sd->unit; fw_notify("sbp2_scsi_abort\n"); sbp2_agent_reset(unit); sbp2_cancel_orbs(unit); return SUCCESS; } /* * Format of /sys/bus/scsi/devices/.../ieee1394_id: * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal) * * This is the concatenation of target port identifier and logical unit * identifier as per SAM-2...SAM-4 annex A. */ static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); struct sbp2_device *sd; struct fw_unit *unit; struct fw_device *device; u32 directory_id; struct fw_csr_iterator ci; int key, value, lun; if (!sdev) return 0; sd = (struct sbp2_device *)sdev->host->hostdata; unit = sd->unit; device = fw_device(unit->device.parent); /* implicit directory ID */ directory_id = ((unit->directory - device->config_rom) * 4 + CSR_CONFIG_ROM) & 0xffffff; /* explicit directory ID, overrides implicit ID if present */ fw_csr_iterator_init(&ci, unit->directory); while (fw_csr_iterator_next(&ci, &key, &value)) if (key == CSR_DIRECTORY_ID) { directory_id = value; break; } /* FIXME: Make this work for multi-lun devices. */ lun = 0; return sprintf(buf, "%08x%08x:%06x:%04x\n", device->config_rom[3], device->config_rom[4], directory_id, lun); } static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL); static struct device_attribute *sbp2_scsi_sysfs_attrs[] = { &dev_attr_ieee1394_id, NULL }; static struct scsi_host_template scsi_driver_template = { .module = THIS_MODULE, .name = "SBP-2 IEEE-1394", .proc_name = sbp2_driver_name, .queuecommand = sbp2_scsi_queuecommand, .slave_alloc = sbp2_scsi_slave_alloc, .slave_configure = sbp2_scsi_slave_configure, .eh_abort_handler = sbp2_scsi_abort, .this_id = -1, .sg_tablesize = SG_ALL, .use_clustering = ENABLE_CLUSTERING, .cmd_per_lun = 1, .can_queue = 1, .sdev_attrs = sbp2_scsi_sysfs_attrs, }; MODULE_AUTHOR("Kristian Hoegsberg "); MODULE_DESCRIPTION("SCSI over IEEE1394"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); /* Provide a module alias so root-on-sbp2 initrds don't break. */ #ifndef CONFIG_IEEE1394_SBP2_MODULE MODULE_ALIAS("sbp2"); #endif static int __init sbp2_init(void) { return driver_register(&sbp2_driver.driver); } static void __exit sbp2_cleanup(void) { driver_unregister(&sbp2_driver.driver); } module_init(sbp2_init); module_exit(sbp2_cleanup);