/* * Device probing and sysfs code. * * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include <linux/module.h> #include <linux/wait.h> #include <linux/errno.h> #include <linux/kthread.h> #include <linux/device.h> #include <linux/delay.h> #include <linux/idr.h> #include <linux/rwsem.h> #include <asm/semaphore.h> #include <linux/ctype.h> #include "fw-transaction.h" #include "fw-topology.h" #include "fw-device.h" void fw_csr_iterator_init(struct fw_csr_iterator *ci, u32 * p) { ci->p = p + 1; ci->end = ci->p + (p[0] >> 16); } EXPORT_SYMBOL(fw_csr_iterator_init); int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value) { *key = *ci->p >> 24; *value = *ci->p & 0xffffff; return ci->p++ < ci->end; } EXPORT_SYMBOL(fw_csr_iterator_next); static int is_fw_unit(struct device *dev); static int match_unit_directory(u32 * directory, const struct fw_device_id *id) { struct fw_csr_iterator ci; int key, value, match; match = 0; fw_csr_iterator_init(&ci, directory); while (fw_csr_iterator_next(&ci, &key, &value)) { if (key == CSR_VENDOR && value == id->vendor) match |= FW_MATCH_VENDOR; if (key == CSR_MODEL && value == id->model) match |= FW_MATCH_MODEL; if (key == CSR_SPECIFIER_ID && value == id->specifier_id) match |= FW_MATCH_SPECIFIER_ID; if (key == CSR_VERSION && value == id->version) match |= FW_MATCH_VERSION; } return (match & id->match_flags) == id->match_flags; } static int fw_unit_match(struct device *dev, struct device_driver *drv) { struct fw_unit *unit = fw_unit(dev); struct fw_driver *driver = fw_driver(drv); int i; /* We only allow binding to fw_units. */ if (!is_fw_unit(dev)) return 0; for (i = 0; driver->id_table[i].match_flags != 0; i++) { if (match_unit_directory(unit->directory, &driver->id_table[i])) return 1; } return 0; } static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size) { struct fw_device *device = fw_device(unit->device.parent); struct fw_csr_iterator ci; int key, value; int vendor = 0; int model = 0; int specifier_id = 0; int version = 0; fw_csr_iterator_init(&ci, &device->config_rom[5]); while (fw_csr_iterator_next(&ci, &key, &value)) { switch (key) { case CSR_VENDOR: vendor = value; break; case CSR_MODEL: model = value; break; } } fw_csr_iterator_init(&ci, unit->directory); while (fw_csr_iterator_next(&ci, &key, &value)) { switch (key) { case CSR_SPECIFIER_ID: specifier_id = value; break; case CSR_VERSION: version = value; break; } } return snprintf(buffer, buffer_size, "ieee1394:ven%08Xmo%08Xsp%08Xver%08X", vendor, model, specifier_id, version); } static int fw_unit_uevent(struct device *dev, char **envp, int num_envp, char *buffer, int buffer_size) { struct fw_unit *unit = fw_unit(dev); char modalias[64]; int length = 0; int i = 0; get_modalias(unit, modalias, sizeof(modalias)); if (add_uevent_var(envp, num_envp, &i, buffer, buffer_size, &length, "MODALIAS=%s", modalias)) return -ENOMEM; envp[i] = NULL; return 0; } struct bus_type fw_bus_type = { .name = "firewire", .match = fw_unit_match, }; EXPORT_SYMBOL(fw_bus_type); struct fw_device *fw_device_get(struct fw_device *device) { get_device(&device->device); return device; } void fw_device_put(struct fw_device *device) { put_device(&device->device); } static void fw_device_release(struct device *dev) { struct fw_device *device = fw_device(dev); unsigned long flags; /* * Take the card lock so we don't set this to NULL while a * FW_NODE_UPDATED callback is being handled. */ spin_lock_irqsave(&device->card->lock, flags); device->node->data = NULL; spin_unlock_irqrestore(&device->card->lock, flags); fw_node_put(device->node); fw_card_put(device->card); kfree(device->config_rom); kfree(device); } int fw_device_enable_phys_dma(struct fw_device *device) { return device->card->driver->enable_phys_dma(device->card, device->node_id, device->generation); } EXPORT_SYMBOL(fw_device_enable_phys_dma); struct config_rom_attribute { struct device_attribute attr; u32 key; }; static ssize_t show_immediate(struct device *dev, struct device_attribute *dattr, char *buf) { struct config_rom_attribute *attr = container_of(dattr, struct config_rom_attribute, attr); struct fw_csr_iterator ci; u32 *dir; int key, value; if (is_fw_unit(dev)) dir = fw_unit(dev)->directory; else dir = fw_device(dev)->config_rom + 5; fw_csr_iterator_init(&ci, dir); while (fw_csr_iterator_next(&ci, &key, &value)) if (attr->key == key) return snprintf(buf, buf ? PAGE_SIZE : 0, "0x%06x\n", value); return -ENOENT; } #define IMMEDIATE_ATTR(name, key) \ { __ATTR(name, S_IRUGO, show_immediate, NULL), key } static ssize_t show_text_leaf(struct device *dev, struct device_attribute *dattr, char *buf) { struct config_rom_attribute *attr = container_of(dattr, struct config_rom_attribute, attr); struct fw_csr_iterator ci; u32 *dir, *block = NULL, *p, *end; int length, key, value, last_key = 0; char *b; if (is_fw_unit(dev)) dir = fw_unit(dev)->directory; else dir = fw_device(dev)->config_rom + 5; fw_csr_iterator_init(&ci, dir); while (fw_csr_iterator_next(&ci, &key, &value)) { if (attr->key == last_key && key == (CSR_DESCRIPTOR | CSR_LEAF)) block = ci.p - 1 + value; last_key = key; } if (block == NULL) return -ENOENT; length = min(block[0] >> 16, 256U); if (length < 3) return -ENOENT; if (block[1] != 0 || block[2] != 0) /* Unknown encoding. */ return -ENOENT; if (buf == NULL) return length * 4; b = buf; end = &block[length + 1]; for (p = &block[3]; p < end; p++, b += 4) * (u32 *) b = (__force u32) __cpu_to_be32(*p); /* Strip trailing whitespace and add newline. */ while (b--, (isspace(*b) || *b == '\0') && b > buf); strcpy(b + 1, "\n"); return b + 2 - buf; } #define TEXT_LEAF_ATTR(name, key) \ { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key } static struct config_rom_attribute config_rom_attributes[] = { IMMEDIATE_ATTR(vendor, CSR_VENDOR), IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION), IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID), IMMEDIATE_ATTR(version, CSR_VERSION), IMMEDIATE_ATTR(model, CSR_MODEL), TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR), TEXT_LEAF_ATTR(model_name, CSR_MODEL), TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION), }; static void init_fw_attribute_group(struct device *dev, struct device_attribute *attrs, struct fw_attribute_group *group) { struct device_attribute *attr; int i, j; for (j = 0; attrs[j].attr.name != NULL; j++) group->attrs[j] = &attrs[j].attr; for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) { attr = &config_rom_attributes[i].attr; if (attr->show(dev, attr, NULL) < 0) continue; group->attrs[j++] = &attr->attr; } BUG_ON(j >= ARRAY_SIZE(group->attrs)); group->attrs[j++] = NULL; group->groups[0] = &group->group; group->groups[1] = NULL; group->group.attrs = group->attrs; dev->groups = group->groups; } static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, char *buf) { struct fw_unit *unit = fw_unit(dev); int length; length = get_modalias(unit, buf, PAGE_SIZE); strcpy(buf + length, "\n"); return length + 1; } static ssize_t rom_index_show(struct device *dev, struct device_attribute *attr, char *buf) { struct fw_device *device = fw_device(dev->parent); struct fw_unit *unit = fw_unit(dev); return snprintf(buf, PAGE_SIZE, "%d\n", (int)(unit->directory - device->config_rom)); } static struct device_attribute fw_unit_attributes[] = { __ATTR_RO(modalias), __ATTR_RO(rom_index), __ATTR_NULL, }; static ssize_t config_rom_show(struct device *dev, struct device_attribute *attr, char *buf) { struct fw_device *device = fw_device(dev); memcpy(buf, device->config_rom, device->config_rom_length * 4); return device->config_rom_length * 4; } static ssize_t guid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct fw_device *device = fw_device(dev); u64 guid; guid = ((u64)device->config_rom[3] << 32) | device->config_rom[4]; return snprintf(buf, PAGE_SIZE, "0x%016llx\n", (unsigned long long)guid); } static struct device_attribute fw_device_attributes[] = { __ATTR_RO(config_rom), __ATTR_RO(guid), __ATTR_NULL, }; struct read_quadlet_callback_data { struct completion done; int rcode; u32 data; }; static void complete_transaction(struct fw_card *card, int rcode, void *payload, size_t length, void *data) { struct read_quadlet_callback_data *callback_data = data; if (rcode == RCODE_COMPLETE) callback_data->data = be32_to_cpu(*(__be32 *)payload); callback_data->rcode = rcode; complete(&callback_data->done); } static int read_rom(struct fw_device *device, int index, u32 * data) { struct read_quadlet_callback_data callback_data; struct fw_transaction t; u64 offset; init_completion(&callback_data.done); offset = 0xfffff0000400ULL + index * 4; fw_send_request(device->card, &t, TCODE_READ_QUADLET_REQUEST, device->node_id, device->generation, SCODE_100, offset, NULL, 4, complete_transaction, &callback_data); wait_for_completion(&callback_data.done); *data = callback_data.data; return callback_data.rcode; } static int read_bus_info_block(struct fw_device *device) { static u32 rom[256]; u32 stack[16], sp, key; int i, end, length; /* First read the bus info block. */ for (i = 0; i < 5; i++) { if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE) return -1; /* * As per IEEE1212 7.2, during power-up, devices can * reply with a 0 for the first quadlet of the config * rom to indicate that they are booting (for example, * if the firmware is on the disk of a external * harddisk). In that case we just fail, and the * retry mechanism will try again later. */ if (i == 0 && rom[i] == 0) return -1; } /* * Now parse the config rom. The config rom is a recursive * directory structure so we parse it using a stack of * references to the blocks that make up the structure. We * push a reference to the root directory on the stack to * start things off. */ length = i; sp = 0; stack[sp++] = 0xc0000005; while (sp > 0) { /* * Pop the next block reference of the stack. The * lower 24 bits is the offset into the config rom, * the upper 8 bits are the type of the reference the * block. */ key = stack[--sp]; i = key & 0xffffff; if (i >= ARRAY_SIZE(rom)) /* * The reference points outside the standard * config rom area, something's fishy. */ return -1; /* Read header quadlet for the block to get the length. */ if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE) return -1; end = i + (rom[i] >> 16) + 1; i++; if (end > ARRAY_SIZE(rom)) /* * This block extends outside standard config * area (and the array we're reading it * into). That's broken, so ignore this * device. */ return -1; /* * Now read in the block. If this is a directory * block, check the entries as we read them to see if * it references another block, and push it in that case. */ while (i < end) { if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE) return -1; if ((key >> 30) == 3 && (rom[i] >> 30) > 1 && sp < ARRAY_SIZE(stack)) stack[sp++] = i + rom[i]; i++; } if (length < i) length = i; } device->config_rom = kmalloc(length * 4, GFP_KERNEL); if (device->config_rom == NULL) return -1; memcpy(device->config_rom, rom, length * 4); device->config_rom_length = length; return 0; } static void fw_unit_release(struct device *dev) { struct fw_unit *unit = fw_unit(dev); kfree(unit); } static struct device_type fw_unit_type = { .uevent = fw_unit_uevent, .release = fw_unit_release, }; static int is_fw_unit(struct device *dev) { return dev->type == &fw_unit_type; } static void create_units(struct fw_device *device) { struct fw_csr_iterator ci; struct fw_unit *unit; int key, value, i; i = 0; fw_csr_iterator_init(&ci, &device->config_rom[5]); while (fw_csr_iterator_next(&ci, &key, &value)) { if (key != (CSR_UNIT | CSR_DIRECTORY)) continue; /* * Get the address of the unit directory and try to * match the drivers id_tables against it. */ unit = kzalloc(sizeof(*unit), GFP_KERNEL); if (unit == NULL) { fw_error("failed to allocate memory for unit\n"); continue; } unit->directory = ci.p + value - 1; unit->device.bus = &fw_bus_type; unit->device.type = &fw_unit_type; unit->device.parent = &device->device; snprintf(unit->device.bus_id, sizeof(unit->device.bus_id), "%s.%d", device->device.bus_id, i++); init_fw_attribute_group(&unit->device, fw_unit_attributes, &unit->attribute_group); if (device_register(&unit->device) < 0) goto skip_unit; continue; skip_unit: kfree(unit); } } static int shutdown_unit(struct device *device, void *data) { device_unregister(device); return 0; } static DECLARE_RWSEM(idr_rwsem); static DEFINE_IDR(fw_device_idr); int fw_cdev_major; struct fw_device *fw_device_from_devt(dev_t devt) { struct fw_device *device; down_read(&idr_rwsem); device = idr_find(&fw_device_idr, MINOR(devt)); up_read(&idr_rwsem); return device; } static void fw_device_shutdown(struct work_struct *work) { struct fw_device *device = container_of(work, struct fw_device, work.work); int minor = MINOR(device->device.devt); down_write(&idr_rwsem); idr_remove(&fw_device_idr, minor); up_write(&idr_rwsem); fw_device_cdev_remove(device); device_for_each_child(&device->device, NULL, shutdown_unit); device_unregister(&device->device); } static struct device_type fw_device_type = { .release = fw_device_release, }; /* * These defines control the retry behavior for reading the config * rom. It shouldn't be necessary to tweak these; if the device * doesn't respond to a config rom read within 10 seconds, it's not * going to respond at all. As for the initial delay, a lot of * devices will be able to respond within half a second after bus * reset. On the other hand, it's not really worth being more * aggressive than that, since it scales pretty well; if 10 devices * are plugged in, they're all getting read within one second. */ #define MAX_RETRIES 10 #define RETRY_DELAY (3 * HZ) #define INITIAL_DELAY (HZ / 2) static void fw_device_init(struct work_struct *work) { struct fw_device *device = container_of(work, struct fw_device, work.work); int minor, err; /* * All failure paths here set node->data to NULL, so that we * don't try to do device_for_each_child() on a kfree()'d * device. */ if (read_bus_info_block(device) < 0) { if (device->config_rom_retries < MAX_RETRIES) { device->config_rom_retries++; schedule_delayed_work(&device->work, RETRY_DELAY); } else { fw_notify("giving up on config rom for node id %x\n", device->node_id); if (device->node == device->card->root_node) schedule_delayed_work(&device->card->work, 0); fw_device_release(&device->device); } return; } err = -ENOMEM; down_write(&idr_rwsem); if (idr_pre_get(&fw_device_idr, GFP_KERNEL)) err = idr_get_new(&fw_device_idr, device, &minor); up_write(&idr_rwsem); if (err < 0) goto error; device->device.bus = &fw_bus_type; device->device.type = &fw_device_type; device->device.parent = device->card->device; device->device.devt = MKDEV(fw_cdev_major, minor); snprintf(device->device.bus_id, sizeof(device->device.bus_id), "fw%d", minor); init_fw_attribute_group(&device->device, fw_device_attributes, &device->attribute_group); if (device_add(&device->device)) { fw_error("Failed to add device.\n"); goto error_with_cdev; } create_units(device); /* * Transition the device to running state. If it got pulled * out from under us while we did the intialization work, we * have to shut down the device again here. Normally, though, * fw_node_event will be responsible for shutting it down when * necessary. We have to use the atomic cmpxchg here to avoid * racing with the FW_NODE_DESTROYED case in * fw_node_event(). */ if (atomic_cmpxchg(&device->state, FW_DEVICE_INITIALIZING, FW_DEVICE_RUNNING) == FW_DEVICE_SHUTDOWN) fw_device_shutdown(&device->work.work); else fw_notify("created new fw device %s (%d config rom retries)\n", device->device.bus_id, device->config_rom_retries); /* * Reschedule the IRM work if we just finished reading the * root node config rom. If this races with a bus reset we * just end up running the IRM work a couple of extra times - * pretty harmless. */ if (device->node == device->card->root_node) schedule_delayed_work(&device->card->work, 0); return; error_with_cdev: down_write(&idr_rwsem); idr_remove(&fw_device_idr, minor); up_write(&idr_rwsem); error: put_device(&device->device); } static int update_unit(struct device *dev, void *data) { struct fw_unit *unit = fw_unit(dev); struct fw_driver *driver = (struct fw_driver *)dev->driver; if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) { down(&dev->sem); driver->update(unit); up(&dev->sem); } return 0; } static void fw_device_update(struct work_struct *work) { struct fw_device *device = container_of(work, struct fw_device, work.work); fw_device_cdev_update(device); device_for_each_child(&device->device, NULL, update_unit); } void fw_node_event(struct fw_card *card, struct fw_node *node, int event) { struct fw_device *device; switch (event) { case FW_NODE_CREATED: case FW_NODE_LINK_ON: if (!node->link_on) break; device = kzalloc(sizeof(*device), GFP_ATOMIC); if (device == NULL) break; /* * Do minimal intialization of the device here, the * rest will happen in fw_device_init(). We need the * card and node so we can read the config rom and we * need to do device_initialize() now so * device_for_each_child() in FW_NODE_UPDATED is * doesn't freak out. */ device_initialize(&device->device); atomic_set(&device->state, FW_DEVICE_INITIALIZING); device->card = fw_card_get(card); device->node = fw_node_get(node); device->node_id = node->node_id; device->generation = card->generation; INIT_LIST_HEAD(&device->client_list); /* * Set the node data to point back to this device so * FW_NODE_UPDATED callbacks can update the node_id * and generation for the device. */ node->data = device; /* * Many devices are slow to respond after bus resets, * especially if they are bus powered and go through * power-up after getting plugged in. We schedule the * first config rom scan half a second after bus reset. */ INIT_DELAYED_WORK(&device->work, fw_device_init); schedule_delayed_work(&device->work, INITIAL_DELAY); break; case FW_NODE_UPDATED: if (!node->link_on || node->data == NULL) break; device = node->data; device->node_id = node->node_id; device->generation = card->generation; if (atomic_read(&device->state) == FW_DEVICE_RUNNING) { PREPARE_DELAYED_WORK(&device->work, fw_device_update); schedule_delayed_work(&device->work, 0); } break; case FW_NODE_DESTROYED: case FW_NODE_LINK_OFF: if (!node->data) break; /* * Destroy the device associated with the node. There * are two cases here: either the device is fully * initialized (FW_DEVICE_RUNNING) or we're in the * process of reading its config rom * (FW_DEVICE_INITIALIZING). If it is fully * initialized we can reuse device->work to schedule a * full fw_device_shutdown(). If not, there's work * scheduled to read it's config rom, and we just put * the device in shutdown state to have that code fail * to create the device. */ device = node->data; if (atomic_xchg(&device->state, FW_DEVICE_SHUTDOWN) == FW_DEVICE_RUNNING) { PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown); schedule_delayed_work(&device->work, 0); } break; } }