/****************************************************************************** * * Name: acmacros.h - C macros for the entire subsystem. * *****************************************************************************/ /* * Copyright (C) 2000 - 2016, Intel Corp. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. */ #ifndef __ACMACROS_H__ #define __ACMACROS_H__ /* * Extract data using a pointer. Any more than a byte and we * get into potential aligment issues -- see the STORE macros below. * Use with care. */ #define ACPI_CAST8(ptr) ACPI_CAST_PTR (u8, (ptr)) #define ACPI_CAST16(ptr) ACPI_CAST_PTR (u16, (ptr)) #define ACPI_CAST32(ptr) ACPI_CAST_PTR (u32, (ptr)) #define ACPI_CAST64(ptr) ACPI_CAST_PTR (u64, (ptr)) #define ACPI_GET8(ptr) (*ACPI_CAST8 (ptr)) #define ACPI_GET16(ptr) (*ACPI_CAST16 (ptr)) #define ACPI_GET32(ptr) (*ACPI_CAST32 (ptr)) #define ACPI_GET64(ptr) (*ACPI_CAST64 (ptr)) #define ACPI_SET8(ptr, val) (*ACPI_CAST8 (ptr) = (u8) (val)) #define ACPI_SET16(ptr, val) (*ACPI_CAST16 (ptr) = (u16) (val)) #define ACPI_SET32(ptr, val) (*ACPI_CAST32 (ptr) = (u32) (val)) #define ACPI_SET64(ptr, val) (*ACPI_CAST64 (ptr) = (u64) (val)) /* * printf() format helper. This macros is a workaround for the difficulties * with emitting 64-bit integers and 64-bit pointers with the same code * for both 32-bit and 64-bit hosts. */ #define ACPI_FORMAT_UINT64(i) ACPI_HIDWORD(i), ACPI_LODWORD(i) /* * Macros for moving data around to/from buffers that are possibly unaligned. * If the hardware supports the transfer of unaligned data, just do the store. * Otherwise, we have to move one byte at a time. */ #ifdef ACPI_BIG_ENDIAN /* * Macros for big-endian machines */ /* These macros reverse the bytes during the move, converting little-endian to big endian */ /* Big Endian <== Little Endian */ /* Hi...Lo Lo...Hi */ /* 16-bit source, 16/32/64 destination */ #define ACPI_MOVE_16_TO_16(d, s) {(( u8 *)(void *)(d))[0] = ((u8 *)(void *)(s))[1];\ (( u8 *)(void *)(d))[1] = ((u8 *)(void *)(s))[0];} #define ACPI_MOVE_16_TO_32(d, s) {(*(u32 *)(void *)(d))=0;\ ((u8 *)(void *)(d))[2] = ((u8 *)(void *)(s))[1];\ ((u8 *)(void *)(d))[3] = ((u8 *)(void *)(s))[0];} #define ACPI_MOVE_16_TO_64(d, s) {(*(u64 *)(void *)(d))=0;\ ((u8 *)(void *)(d))[6] = ((u8 *)(void *)(s))[1];\ ((u8 *)(void *)(d))[7] = ((u8 *)(void *)(s))[0];} /* 32-bit source, 16/32/64 destination */ #define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ #define ACPI_MOVE_32_TO_32(d, s) {(( u8 *)(void *)(d))[0] = ((u8 *)(void *)(s))[3];\ (( u8 *)(void *)(d))[1] = ((u8 *)(void *)(s))[2];\ (( u8 *)(void *)(d))[2] = ((u8 *)(void *)(s))[1];\ (( u8 *)(void *)(d))[3] = ((u8 *)(void *)(s))[0];} #define ACPI_MOVE_32_TO_64(d, s) {(*(u64 *)(void *)(d))=0;\ ((u8 *)(void *)(d))[4] = ((u8 *)(void *)(s))[3];\ ((u8 *)(void *)(d))[5] = ((u8 *)(void *)(s))[2];\ ((u8 *)(void *)(d))[6] = ((u8 *)(void *)(s))[1];\ ((u8 *)(void *)(d))[7] = ((u8 *)(void *)(s))[0];} /* 64-bit source, 16/32/64 destination */ #define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ #define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate to 32 */ #define ACPI_MOVE_64_TO_64(d, s) {(( u8 *)(void *)(d))[0] = ((u8 *)(void *)(s))[7];\ (( u8 *)(void *)(d))[1] = ((u8 *)(void *)(s))[6];\ (( u8 *)(void *)(d))[2] = ((u8 *)(void *)(s))[5];\ (( u8 *)(void *)(d))[3] = ((u8 *)(void *)(s))[4];\ (( u8 *)(void *)(d))[4] = ((u8 *)(void *)(s))[3];\ (( u8 *)(void *)(d))[5] = ((u8 *)(void *)(s))[2];\ (( u8 *)(void *)(d))[6] = ((u8 *)(void *)(s))[1];\ (( u8 *)(void *)(d))[7] = ((u8 *)(void *)(s))[0];} #else /* * Macros for little-endian machines */ #ifndef ACPI_MISALIGNMENT_NOT_SUPPORTED /* The hardware supports unaligned transfers, just do the little-endian move */ /* 16-bit source, 16/32/64 destination */ #define ACPI_MOVE_16_TO_16(d, s) *(u16 *)(void *)(d) = *(u16 *)(void *)(s) #define ACPI_MOVE_16_TO_32(d, s) *(u32 *)(void *)(d) = *(u16 *)(void *)(s) #define ACPI_MOVE_16_TO_64(d, s) *(u64 *)(void *)(d) = *(u16 *)(void *)(s) /* 32-bit source, 16/32/64 destination */ #define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ #define ACPI_MOVE_32_TO_32(d, s) *(u32 *)(void *)(d) = *(u32 *)(void *)(s) #define ACPI_MOVE_32_TO_64(d, s) *(u64 *)(void *)(d) = *(u32 *)(void *)(s) /* 64-bit source, 16/32/64 destination */ #define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ #define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate to 32 */ #define ACPI_MOVE_64_TO_64(d, s) *(u64 *)(void *)(d) = *(u64 *)(void *)(s) #else /* * The hardware does not support unaligned transfers. We must move the * data one byte at a time. These macros work whether the source or * the destination (or both) is/are unaligned. (Little-endian move) */ /* 16-bit source, 16/32/64 destination */ #define ACPI_MOVE_16_TO_16(d, s) {(( u8 *)(void *)(d))[0] = ((u8 *)(void *)(s))[0];\ (( u8 *)(void *)(d))[1] = ((u8 *)(void *)(s))[1];} #define ACPI_MOVE_16_TO_32(d, s) {(*(u32 *)(void *)(d)) = 0; ACPI_MOVE_16_TO_16(d, s);} #define ACPI_MOVE_16_TO_64(d, s) {(*(u64 *)(void *)(d)) = 0; ACPI_MOVE_16_TO_16(d, s);} /* 32-bit source, 16/32/64 destination */ #define ACPI_MOVE_32_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ #define ACPI_MOVE_32_TO_32(d, s) {(( u8 *)(void *)(d))[0] = ((u8 *)(void *)(s))[0];\ (( u8 *)(void *)(d))[1] = ((u8 *)(void *)(s))[1];\ (( u8 *)(void *)(d))[2] = ((u8 *)(void *)(s))[2];\ (( u8 *)(void *)(d))[3] = ((u8 *)(void *)(s))[3];} #define ACPI_MOVE_32_TO_64(d, s) {(*(u64 *)(void *)(d)) = 0; ACPI_MOVE_32_TO_32(d, s);} /* 64-bit source, 16/32/64 destination */ #define ACPI_MOVE_64_TO_16(d, s) ACPI_MOVE_16_TO_16(d, s) /* Truncate to 16 */ #define ACPI_MOVE_64_TO_32(d, s) ACPI_MOVE_32_TO_32(d, s) /* Truncate to 32 */ #define ACPI_MOVE_64_TO_64(d, s) {(( u8 *)(void *)(d))[0] = ((u8 *)(void *)(s))[0];\ (( u8 *)(void *)(d))[1] = ((u8 *)(void *)(s))[1];\ (( u8 *)(void *)(d))[2] = ((u8 *)(void *)(s))[2];\ (( u8 *)(void *)(d))[3] = ((u8 *)(void *)(s))[3];\ (( u8 *)(void *)(d))[4] = ((u8 *)(void *)(s))[4];\ (( u8 *)(void *)(d))[5] = ((u8 *)(void *)(s))[5];\ (( u8 *)(void *)(d))[6] = ((u8 *)(void *)(s))[6];\ (( u8 *)(void *)(d))[7] = ((u8 *)(void *)(s))[7];} #endif #endif /* * Fast power-of-two math macros for non-optimized compilers */ #define _ACPI_DIV(value, power_of2) ((u32) ((value) >> (power_of2))) #define _ACPI_MUL(value, power_of2) ((u32) ((value) << (power_of2))) #define _ACPI_MOD(value, divisor) ((u32) ((value) & ((divisor) -1))) #define ACPI_DIV_2(a) _ACPI_DIV(a, 1) #define ACPI_MUL_2(a) _ACPI_MUL(a, 1) #define ACPI_MOD_2(a) _ACPI_MOD(a, 2) #define ACPI_DIV_4(a) _ACPI_DIV(a, 2) #define ACPI_MUL_4(a) _ACPI_MUL(a, 2) #define ACPI_MOD_4(a) _ACPI_MOD(a, 4) #define ACPI_DIV_8(a) _ACPI_DIV(a, 3) #define ACPI_MUL_8(a) _ACPI_MUL(a, 3) #define ACPI_MOD_8(a) _ACPI_MOD(a, 8) #define ACPI_DIV_16(a) _ACPI_DIV(a, 4) #define ACPI_MUL_16(a) _ACPI_MUL(a, 4) #define ACPI_MOD_16(a) _ACPI_MOD(a, 16) #define ACPI_DIV_32(a) _ACPI_DIV(a, 5) #define ACPI_MUL_32(a) _ACPI_MUL(a, 5) #define ACPI_MOD_32(a) _ACPI_MOD(a, 32) /* Test for ASCII character */ #define ACPI_IS_ASCII(c) ((c) < 0x80) /* Signed integers */ #define ACPI_SIGN_POSITIVE 0 #define ACPI_SIGN_NEGATIVE 1 /* * Rounding macros (Power of two boundaries only) */ #define ACPI_ROUND_DOWN(value, boundary) (((acpi_size)(value)) & \ (~(((acpi_size) boundary)-1))) #define ACPI_ROUND_UP(value, boundary) ((((acpi_size)(value)) + \ (((acpi_size) boundary)-1)) & \ (~(((acpi_size) boundary)-1))) /* Note: sizeof(acpi_size) evaluates to either 4 or 8 (32- vs 64-bit mode) */ #define ACPI_ROUND_DOWN_TO_32BIT(a) ACPI_ROUND_DOWN(a, 4) #define ACPI_ROUND_DOWN_TO_64BIT(a) ACPI_ROUND_DOWN(a, 8) #define ACPI_ROUND_DOWN_TO_NATIVE_WORD(a) ACPI_ROUND_DOWN(a, sizeof(acpi_size)) #define ACPI_ROUND_UP_TO_32BIT(a) ACPI_ROUND_UP(a, 4) #define ACPI_ROUND_UP_TO_64BIT(a) ACPI_ROUND_UP(a, 8) #define ACPI_ROUND_UP_TO_NATIVE_WORD(a) ACPI_ROUND_UP(a, sizeof(acpi_size)) #define ACPI_ROUND_BITS_UP_TO_BYTES(a) ACPI_DIV_8((a) + 7) #define ACPI_ROUND_BITS_DOWN_TO_BYTES(a) ACPI_DIV_8((a)) #define ACPI_ROUND_UP_TO_1K(a) (((a) + 1023) >> 10) /* Generic (non-power-of-two) rounding */ #define ACPI_ROUND_UP_TO(value, boundary) (((value) + ((boundary)-1)) / (boundary)) #define ACPI_IS_MISALIGNED(value) (((acpi_size) value) & (sizeof(acpi_size)-1)) /* Generic (power-of-two) rounding */ #define ACPI_IS_POWER_OF_TWO(a) (((a) & ((a) - 1)) == 0) /* * Bitmask creation * Bit positions start at zero. * MASK_BITS_ABOVE creates a mask starting AT the position and above * MASK_BITS_BELOW creates a mask starting one bit BELOW the position */ #define ACPI_MASK_BITS_ABOVE(position) (~((ACPI_UINT64_MAX) << ((u32) (position)))) #define ACPI_MASK_BITS_BELOW(position) ((ACPI_UINT64_MAX) << ((u32) (position))) /* Bitfields within ACPI registers */ #define ACPI_REGISTER_PREPARE_BITS(val, pos, mask) \ ((val << pos) & mask) #define ACPI_REGISTER_INSERT_VALUE(reg, pos, mask, val) \ reg = (reg & (~(mask))) | ACPI_REGISTER_PREPARE_BITS(val, pos, mask) #define ACPI_INSERT_BITS(target, mask, source) \ target = ((target & (~(mask))) | (source & mask)) /* Generic bitfield macros and masks */ #define ACPI_GET_BITS(source_ptr, position, mask) \ ((*source_ptr >> position) & mask) #define ACPI_SET_BITS(target_ptr, position, mask, value) \ (*target_ptr |= ((value & mask) << position)) #define ACPI_1BIT_MASK 0x00000001 #define ACPI_2BIT_MASK 0x00000003 #define ACPI_3BIT_MASK 0x00000007 #define ACPI_4BIT_MASK 0x0000000F #define ACPI_5BIT_MASK 0x0000001F #define ACPI_6BIT_MASK 0x0000003F #define ACPI_7BIT_MASK 0x0000007F #define ACPI_8BIT_MASK 0x000000FF #define ACPI_16BIT_MASK 0x0000FFFF #define ACPI_24BIT_MASK 0x00FFFFFF /* Macros to extract flag bits from position zero */ #define ACPI_GET_1BIT_FLAG(value) ((value) & ACPI_1BIT_MASK) #define ACPI_GET_2BIT_FLAG(value) ((value) & ACPI_2BIT_MASK) #define ACPI_GET_3BIT_FLAG(value) ((value) & ACPI_3BIT_MASK) #define ACPI_GET_4BIT_FLAG(value) ((value) & ACPI_4BIT_MASK) /* Macros to extract flag bits from position one and above */ #define ACPI_EXTRACT_1BIT_FLAG(field, position) (ACPI_GET_1BIT_FLAG ((field) >> position)) #define ACPI_EXTRACT_2BIT_FLAG(field, position) (ACPI_GET_2BIT_FLAG ((field) >> position)) #define ACPI_EXTRACT_3BIT_FLAG(field, position) (ACPI_GET_3BIT_FLAG ((field) >> position)) #define ACPI_EXTRACT_4BIT_FLAG(field, position) (ACPI_GET_4BIT_FLAG ((field) >> position)) /* ACPI Pathname helpers */ #define ACPI_IS_ROOT_PREFIX(c) ((c) == (u8) 0x5C) /* Backslash */ #define ACPI_IS_PARENT_PREFIX(c) ((c) == (u8) 0x5E) /* Carat */ #define ACPI_IS_PATH_SEPARATOR(c) ((c) == (u8) 0x2E) /* Period (dot) */ /* * An object of type struct acpi_namespace_node can appear in some contexts * where a pointer to an object of type union acpi_operand_object can also * appear. This macro is used to distinguish them. * * The "DescriptorType" field is the second field in both structures. */ #define ACPI_GET_DESCRIPTOR_PTR(d) (((union acpi_descriptor *)(void *)(d))->common.common_pointer) #define ACPI_SET_DESCRIPTOR_PTR(d, p) (((union acpi_descriptor *)(void *)(d))->common.common_pointer = (p)) #define ACPI_GET_DESCRIPTOR_TYPE(d) (((union acpi_descriptor *)(void *)(d))->common.descriptor_type) #define ACPI_SET_DESCRIPTOR_TYPE(d, t) (((union acpi_descriptor *)(void *)(d))->common.descriptor_type = (t)) /* * Macros for the master AML opcode table */ #if defined (ACPI_DISASSEMBLER) || defined (ACPI_DEBUG_OUTPUT) #define ACPI_OP(name, Pargs, Iargs, obj_type, class, type, flags) \ {name, (u32)(Pargs), (u32)(Iargs), (u32)(flags), obj_type, class, type} #else #define ACPI_OP(name, Pargs, Iargs, obj_type, class, type, flags) \ {(u32)(Pargs), (u32)(Iargs), (u32)(flags), obj_type, class, type} #endif #define ARG_TYPE_WIDTH 5 #define ARG_1(x) ((u32)(x)) #define ARG_2(x) ((u32)(x) << (1 * ARG_TYPE_WIDTH)) #define ARG_3(x) ((u32)(x) << (2 * ARG_TYPE_WIDTH)) #define ARG_4(x) ((u32)(x) << (3 * ARG_TYPE_WIDTH)) #define ARG_5(x) ((u32)(x) << (4 * ARG_TYPE_WIDTH)) #define ARG_6(x) ((u32)(x) << (5 * ARG_TYPE_WIDTH)) #define ARGI_LIST1(a) (ARG_1(a)) #define ARGI_LIST2(a, b) (ARG_1(b)|ARG_2(a)) #define ARGI_LIST3(a, b, c) (ARG_1(c)|ARG_2(b)|ARG_3(a)) #define ARGI_LIST4(a, b, c, d) (ARG_1(d)|ARG_2(c)|ARG_3(b)|ARG_4(a)) #define ARGI_LIST5(a, b, c, d, e) (ARG_1(e)|ARG_2(d)|ARG_3(c)|ARG_4(b)|ARG_5(a)) #define ARGI_LIST6(a, b, c, d, e, f) (ARG_1(f)|ARG_2(e)|ARG_3(d)|ARG_4(c)|ARG_5(b)|ARG_6(a)) #define ARGP_LIST1(a) (ARG_1(a)) #define ARGP_LIST2(a, b) (ARG_1(a)|ARG_2(b)) #define ARGP_LIST3(a, b, c) (ARG_1(a)|ARG_2(b)|ARG_3(c)) #define ARGP_LIST4(a, b, c, d) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d)) #define ARGP_LIST5(a, b, c, d, e) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d)|ARG_5(e)) #define ARGP_LIST6(a, b, c, d, e, f) (ARG_1(a)|ARG_2(b)|ARG_3(c)|ARG_4(d)|ARG_5(e)|ARG_6(f)) #define GET_CURRENT_ARG_TYPE(list) (list & ((u32) 0x1F)) #define INCREMENT_ARG_LIST(list) (list >>= ((u32) ARG_TYPE_WIDTH)) /* * Ascii error messages can be configured out */ #ifndef ACPI_NO_ERROR_MESSAGES /* * Error reporting. Callers module and line number are inserted by AE_INFO, * the plist contains a set of parens to allow variable-length lists. * These macros are used for both the debug and non-debug versions of the code. */ #define ACPI_ERROR_NAMESPACE(s, e) acpi_ut_namespace_error (AE_INFO, s, e); #define ACPI_ERROR_METHOD(s, n, p, e) acpi_ut_method_error (AE_INFO, s, n, p, e); #define ACPI_WARN_PREDEFINED(plist) acpi_ut_predefined_warning plist #define ACPI_INFO_PREDEFINED(plist) acpi_ut_predefined_info plist #define ACPI_BIOS_ERROR_PREDEFINED(plist) acpi_ut_predefined_bios_error plist #else /* No error messages */ #define ACPI_ERROR_NAMESPACE(s, e) #define ACPI_ERROR_METHOD(s, n, p, e) #define ACPI_WARN_PREDEFINED(plist) #define ACPI_INFO_PREDEFINED(plist) #define ACPI_BIOS_ERROR_PREDEFINED(plist) #endif /* ACPI_NO_ERROR_MESSAGES */ #if (!ACPI_REDUCED_HARDWARE) #define ACPI_HW_OPTIONAL_FUNCTION(addr) addr #else #define ACPI_HW_OPTIONAL_FUNCTION(addr) NULL #endif /* * Macros used for ACPICA utilities only */ /* Generate a UUID */ #define ACPI_INIT_UUID(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \ (a) & 0xFF, ((a) >> 8) & 0xFF, ((a) >> 16) & 0xFF, ((a) >> 24) & 0xFF, \ (b) & 0xFF, ((b) >> 8) & 0xFF, \ (c) & 0xFF, ((c) >> 8) & 0xFF, \ (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) #define ACPI_IS_OCTAL_DIGIT(d) (((char)(d) >= '0') && ((char)(d) <= '7')) #endif /* ACMACROS_H */