/* * Core of Xen paravirt_ops implementation. * * This file contains the xen_paravirt_ops structure itself, and the * implementations for: * - privileged instructions * - interrupt flags * - segment operations * - booting and setup * * Jeremy Fitzhardinge , XenSource Inc, 2007 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "xen-ops.h" #include "mmu.h" #include "multicalls.h" EXPORT_SYMBOL_GPL(hypercall_page); DEFINE_PER_CPU(enum paravirt_lazy_mode, xen_lazy_mode); DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu); DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info); DEFINE_PER_CPU(unsigned long, xen_cr3); struct start_info *xen_start_info; EXPORT_SYMBOL_GPL(xen_start_info); static /* __initdata */ struct shared_info dummy_shared_info; /* * Point at some empty memory to start with. We map the real shared_info * page as soon as fixmap is up and running. */ struct shared_info *HYPERVISOR_shared_info = (void *)&dummy_shared_info; /* * Flag to determine whether vcpu info placement is available on all * VCPUs. We assume it is to start with, and then set it to zero on * the first failure. This is because it can succeed on some VCPUs * and not others, since it can involve hypervisor memory allocation, * or because the guest failed to guarantee all the appropriate * constraints on all VCPUs (ie buffer can't cross a page boundary). * * Note that any particular CPU may be using a placed vcpu structure, * but we can only optimise if the all are. * * 0: not available, 1: available */ static int have_vcpu_info_placement = 1; static void __init xen_vcpu_setup(int cpu) { struct vcpu_register_vcpu_info info; int err; struct vcpu_info *vcpup; per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; if (!have_vcpu_info_placement) return; /* already tested, not available */ vcpup = &per_cpu(xen_vcpu_info, cpu); info.mfn = virt_to_mfn(vcpup); info.offset = offset_in_page(vcpup); printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %x, offset %d\n", cpu, vcpup, info.mfn, info.offset); /* Check to see if the hypervisor will put the vcpu_info structure where we want it, which allows direct access via a percpu-variable. */ err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info); if (err) { printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err); have_vcpu_info_placement = 0; } else { /* This cpu is using the registered vcpu info, even if later ones fail to. */ per_cpu(xen_vcpu, cpu) = vcpup; printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n", cpu, vcpup); } } static void __init xen_banner(void) { printk(KERN_INFO "Booting paravirtualized kernel on %s\n", paravirt_ops.name); printk(KERN_INFO "Hypervisor signature: %s\n", xen_start_info->magic); } static void xen_cpuid(unsigned int *eax, unsigned int *ebx, unsigned int *ecx, unsigned int *edx) { unsigned maskedx = ~0; /* * Mask out inconvenient features, to try and disable as many * unsupported kernel subsystems as possible. */ if (*eax == 1) maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */ (1 << X86_FEATURE_ACPI) | /* disable ACPI */ (1 << X86_FEATURE_ACC)); /* thermal monitoring */ asm(XEN_EMULATE_PREFIX "cpuid" : "=a" (*eax), "=b" (*ebx), "=c" (*ecx), "=d" (*edx) : "0" (*eax), "2" (*ecx)); *edx &= maskedx; } static void xen_set_debugreg(int reg, unsigned long val) { HYPERVISOR_set_debugreg(reg, val); } static unsigned long xen_get_debugreg(int reg) { return HYPERVISOR_get_debugreg(reg); } static unsigned long xen_save_fl(void) { struct vcpu_info *vcpu; unsigned long flags; vcpu = x86_read_percpu(xen_vcpu); /* flag has opposite sense of mask */ flags = !vcpu->evtchn_upcall_mask; /* convert to IF type flag -0 -> 0x00000000 -1 -> 0xffffffff */ return (-flags) & X86_EFLAGS_IF; } static void xen_restore_fl(unsigned long flags) { struct vcpu_info *vcpu; /* convert from IF type flag */ flags = !(flags & X86_EFLAGS_IF); /* There's a one instruction preempt window here. We need to make sure we're don't switch CPUs between getting the vcpu pointer and updating the mask. */ preempt_disable(); vcpu = x86_read_percpu(xen_vcpu); vcpu->evtchn_upcall_mask = flags; preempt_enable_no_resched(); /* Doesn't matter if we get preempted here, because any pending event will get dealt with anyway. */ if (flags == 0) { preempt_check_resched(); barrier(); /* unmask then check (avoid races) */ if (unlikely(vcpu->evtchn_upcall_pending)) force_evtchn_callback(); } } static void xen_irq_disable(void) { /* There's a one instruction preempt window here. We need to make sure we're don't switch CPUs between getting the vcpu pointer and updating the mask. */ preempt_disable(); x86_read_percpu(xen_vcpu)->evtchn_upcall_mask = 1; preempt_enable_no_resched(); } static void xen_irq_enable(void) { struct vcpu_info *vcpu; /* There's a one instruction preempt window here. We need to make sure we're don't switch CPUs between getting the vcpu pointer and updating the mask. */ preempt_disable(); vcpu = x86_read_percpu(xen_vcpu); vcpu->evtchn_upcall_mask = 0; preempt_enable_no_resched(); /* Doesn't matter if we get preempted here, because any pending event will get dealt with anyway. */ barrier(); /* unmask then check (avoid races) */ if (unlikely(vcpu->evtchn_upcall_pending)) force_evtchn_callback(); } static void xen_safe_halt(void) { /* Blocking includes an implicit local_irq_enable(). */ if (HYPERVISOR_sched_op(SCHEDOP_block, 0) != 0) BUG(); } static void xen_halt(void) { if (irqs_disabled()) HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL); else xen_safe_halt(); } static void xen_set_lazy_mode(enum paravirt_lazy_mode mode) { BUG_ON(preemptible()); switch (mode) { case PARAVIRT_LAZY_NONE: BUG_ON(x86_read_percpu(xen_lazy_mode) == PARAVIRT_LAZY_NONE); break; case PARAVIRT_LAZY_MMU: case PARAVIRT_LAZY_CPU: BUG_ON(x86_read_percpu(xen_lazy_mode) != PARAVIRT_LAZY_NONE); break; case PARAVIRT_LAZY_FLUSH: /* flush if necessary, but don't change state */ if (x86_read_percpu(xen_lazy_mode) != PARAVIRT_LAZY_NONE) xen_mc_flush(); return; } xen_mc_flush(); x86_write_percpu(xen_lazy_mode, mode); } static unsigned long xen_store_tr(void) { return 0; } static void xen_set_ldt(const void *addr, unsigned entries) { unsigned long linear_addr = (unsigned long)addr; struct mmuext_op *op; struct multicall_space mcs = xen_mc_entry(sizeof(*op)); op = mcs.args; op->cmd = MMUEXT_SET_LDT; if (linear_addr) { /* ldt my be vmalloced, use arbitrary_virt_to_machine */ xmaddr_t maddr; maddr = arbitrary_virt_to_machine((unsigned long)addr); linear_addr = (unsigned long)maddr.maddr; } op->arg1.linear_addr = linear_addr; op->arg2.nr_ents = entries; MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); xen_mc_issue(PARAVIRT_LAZY_CPU); } static void xen_load_gdt(const struct Xgt_desc_struct *dtr) { unsigned long *frames; unsigned long va = dtr->address; unsigned int size = dtr->size + 1; unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; int f; struct multicall_space mcs; /* A GDT can be up to 64k in size, which corresponds to 8192 8-byte entries, or 16 4k pages.. */ BUG_ON(size > 65536); BUG_ON(va & ~PAGE_MASK); mcs = xen_mc_entry(sizeof(*frames) * pages); frames = mcs.args; for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { frames[f] = virt_to_mfn(va); make_lowmem_page_readonly((void *)va); } MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct)); xen_mc_issue(PARAVIRT_LAZY_CPU); } static void load_TLS_descriptor(struct thread_struct *t, unsigned int cpu, unsigned int i) { struct desc_struct *gdt = get_cpu_gdt_table(cpu); xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); struct multicall_space mc = __xen_mc_entry(0); MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); } static void xen_load_tls(struct thread_struct *t, unsigned int cpu) { xen_mc_batch(); load_TLS_descriptor(t, cpu, 0); load_TLS_descriptor(t, cpu, 1); load_TLS_descriptor(t, cpu, 2); xen_mc_issue(PARAVIRT_LAZY_CPU); /* * XXX sleazy hack: If we're being called in a lazy-cpu zone, * it means we're in a context switch, and %gs has just been * saved. This means we can zero it out to prevent faults on * exit from the hypervisor if the next process has no %gs. * Either way, it has been saved, and the new value will get * loaded properly. This will go away as soon as Xen has been * modified to not save/restore %gs for normal hypercalls. */ if (xen_get_lazy_mode() == PARAVIRT_LAZY_CPU) loadsegment(gs, 0); } static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, u32 low, u32 high) { unsigned long lp = (unsigned long)&dt[entrynum]; xmaddr_t mach_lp = virt_to_machine(lp); u64 entry = (u64)high << 32 | low; preempt_disable(); xen_mc_flush(); if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) BUG(); preempt_enable(); } static int cvt_gate_to_trap(int vector, u32 low, u32 high, struct trap_info *info) { u8 type, dpl; type = (high >> 8) & 0x1f; dpl = (high >> 13) & 3; if (type != 0xf && type != 0xe) return 0; info->vector = vector; info->address = (high & 0xffff0000) | (low & 0x0000ffff); info->cs = low >> 16; info->flags = dpl; /* interrupt gates clear IF */ if (type == 0xe) info->flags |= 4; return 1; } /* Locations of each CPU's IDT */ static DEFINE_PER_CPU(struct Xgt_desc_struct, idt_desc); /* Set an IDT entry. If the entry is part of the current IDT, then also update Xen. */ static void xen_write_idt_entry(struct desc_struct *dt, int entrynum, u32 low, u32 high) { unsigned long p = (unsigned long)&dt[entrynum]; unsigned long start, end; preempt_disable(); start = __get_cpu_var(idt_desc).address; end = start + __get_cpu_var(idt_desc).size + 1; xen_mc_flush(); write_dt_entry(dt, entrynum, low, high); if (p >= start && (p + 8) <= end) { struct trap_info info[2]; info[1].address = 0; if (cvt_gate_to_trap(entrynum, low, high, &info[0])) if (HYPERVISOR_set_trap_table(info)) BUG(); } preempt_enable(); } static void xen_convert_trap_info(const struct Xgt_desc_struct *desc, struct trap_info *traps) { unsigned in, out, count; count = (desc->size+1) / 8; BUG_ON(count > 256); for (in = out = 0; in < count; in++) { const u32 *entry = (u32 *)(desc->address + in * 8); if (cvt_gate_to_trap(in, entry[0], entry[1], &traps[out])) out++; } traps[out].address = 0; } void xen_copy_trap_info(struct trap_info *traps) { const struct Xgt_desc_struct *desc = &__get_cpu_var(idt_desc); xen_convert_trap_info(desc, traps); } /* Load a new IDT into Xen. In principle this can be per-CPU, so we hold a spinlock to protect the static traps[] array (static because it avoids allocation, and saves stack space). */ static void xen_load_idt(const struct Xgt_desc_struct *desc) { static DEFINE_SPINLOCK(lock); static struct trap_info traps[257]; spin_lock(&lock); __get_cpu_var(idt_desc) = *desc; xen_convert_trap_info(desc, traps); xen_mc_flush(); if (HYPERVISOR_set_trap_table(traps)) BUG(); spin_unlock(&lock); } /* Write a GDT descriptor entry. Ignore LDT descriptors, since they're handled differently. */ static void xen_write_gdt_entry(struct desc_struct *dt, int entry, u32 low, u32 high) { preempt_disable(); switch ((high >> 8) & 0xff) { case DESCTYPE_LDT: case DESCTYPE_TSS: /* ignore */ break; default: { xmaddr_t maddr = virt_to_machine(&dt[entry]); u64 desc = (u64)high << 32 | low; xen_mc_flush(); if (HYPERVISOR_update_descriptor(maddr.maddr, desc)) BUG(); } } preempt_enable(); } static void xen_load_esp0(struct tss_struct *tss, struct thread_struct *thread) { struct multicall_space mcs = xen_mc_entry(0); MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->esp0); xen_mc_issue(PARAVIRT_LAZY_CPU); } static void xen_set_iopl_mask(unsigned mask) { struct physdev_set_iopl set_iopl; /* Force the change at ring 0. */ set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3; HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); } static void xen_io_delay(void) { } #ifdef CONFIG_X86_LOCAL_APIC static unsigned long xen_apic_read(unsigned long reg) { return 0; } static void xen_apic_write(unsigned long reg, unsigned long val) { /* Warn to see if there's any stray references */ WARN_ON(1); } #endif static void xen_flush_tlb(void) { struct mmuext_op *op; struct multicall_space mcs = xen_mc_entry(sizeof(*op)); op = mcs.args; op->cmd = MMUEXT_TLB_FLUSH_LOCAL; MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); xen_mc_issue(PARAVIRT_LAZY_MMU); } static void xen_flush_tlb_single(unsigned long addr) { struct mmuext_op *op; struct multicall_space mcs = xen_mc_entry(sizeof(*op)); op = mcs.args; op->cmd = MMUEXT_INVLPG_LOCAL; op->arg1.linear_addr = addr & PAGE_MASK; MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); xen_mc_issue(PARAVIRT_LAZY_MMU); } static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm, unsigned long va) { struct { struct mmuext_op op; cpumask_t mask; } *args; cpumask_t cpumask = *cpus; struct multicall_space mcs; /* * A couple of (to be removed) sanity checks: * * - current CPU must not be in mask * - mask must exist :) */ BUG_ON(cpus_empty(cpumask)); BUG_ON(cpu_isset(smp_processor_id(), cpumask)); BUG_ON(!mm); /* If a CPU which we ran on has gone down, OK. */ cpus_and(cpumask, cpumask, cpu_online_map); if (cpus_empty(cpumask)) return; mcs = xen_mc_entry(sizeof(*args)); args = mcs.args; args->mask = cpumask; args->op.arg2.vcpumask = &args->mask; if (va == TLB_FLUSH_ALL) { args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; } else { args->op.cmd = MMUEXT_INVLPG_MULTI; args->op.arg1.linear_addr = va; } MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); xen_mc_issue(PARAVIRT_LAZY_MMU); } static void xen_write_cr2(unsigned long cr2) { x86_read_percpu(xen_vcpu)->arch.cr2 = cr2; } static unsigned long xen_read_cr2(void) { return x86_read_percpu(xen_vcpu)->arch.cr2; } static unsigned long xen_read_cr2_direct(void) { return x86_read_percpu(xen_vcpu_info.arch.cr2); } static void xen_write_cr4(unsigned long cr4) { /* Just ignore cr4 changes; Xen doesn't allow us to do anything anyway. */ } static unsigned long xen_read_cr3(void) { return x86_read_percpu(xen_cr3); } static void xen_write_cr3(unsigned long cr3) { BUG_ON(preemptible()); if (cr3 == x86_read_percpu(xen_cr3)) { /* just a simple tlb flush */ xen_flush_tlb(); return; } x86_write_percpu(xen_cr3, cr3); { struct mmuext_op *op; struct multicall_space mcs = xen_mc_entry(sizeof(*op)); unsigned long mfn = pfn_to_mfn(PFN_DOWN(cr3)); op = mcs.args; op->cmd = MMUEXT_NEW_BASEPTR; op->arg1.mfn = mfn; MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); xen_mc_issue(PARAVIRT_LAZY_CPU); } } /* Early in boot, while setting up the initial pagetable, assume everything is pinned. */ static __init void xen_alloc_pt_init(struct mm_struct *mm, u32 pfn) { BUG_ON(mem_map); /* should only be used early */ make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); } /* This needs to make sure the new pte page is pinned iff its being attached to a pinned pagetable. */ static void xen_alloc_pt(struct mm_struct *mm, u32 pfn) { struct page *page = pfn_to_page(pfn); if (PagePinned(virt_to_page(mm->pgd))) { SetPagePinned(page); if (!PageHighMem(page)) make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); else /* make sure there are no stray mappings of this page */ kmap_flush_unused(); } } /* This should never happen until we're OK to use struct page */ static void xen_release_pt(u32 pfn) { struct page *page = pfn_to_page(pfn); if (PagePinned(page)) { if (!PageHighMem(page)) make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); } } #ifdef CONFIG_HIGHPTE static void *xen_kmap_atomic_pte(struct page *page, enum km_type type) { pgprot_t prot = PAGE_KERNEL; if (PagePinned(page)) prot = PAGE_KERNEL_RO; if (0 && PageHighMem(page)) printk("mapping highpte %lx type %d prot %s\n", page_to_pfn(page), type, (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ"); return kmap_atomic_prot(page, type, prot); } #endif static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte) { /* If there's an existing pte, then don't allow _PAGE_RW to be set */ if (pte_val_ma(*ptep) & _PAGE_PRESENT) pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & pte_val_ma(pte)); return pte; } /* Init-time set_pte while constructing initial pagetables, which doesn't allow RO pagetable pages to be remapped RW */ static __init void xen_set_pte_init(pte_t *ptep, pte_t pte) { pte = mask_rw_pte(ptep, pte); xen_set_pte(ptep, pte); } static __init void xen_pagetable_setup_start(pgd_t *base) { pgd_t *xen_pgd = (pgd_t *)xen_start_info->pt_base; /* special set_pte for pagetable initialization */ paravirt_ops.set_pte = xen_set_pte_init; init_mm.pgd = base; /* * copy top-level of Xen-supplied pagetable into place. For * !PAE we can use this as-is, but for PAE it is a stand-in * while we copy the pmd pages. */ memcpy(base, xen_pgd, PTRS_PER_PGD * sizeof(pgd_t)); if (PTRS_PER_PMD > 1) { int i; /* * For PAE, need to allocate new pmds, rather than * share Xen's, since Xen doesn't like pmd's being * shared between address spaces. */ for (i = 0; i < PTRS_PER_PGD; i++) { if (pgd_val_ma(xen_pgd[i]) & _PAGE_PRESENT) { pmd_t *pmd = (pmd_t *)alloc_bootmem_low_pages(PAGE_SIZE); memcpy(pmd, (void *)pgd_page_vaddr(xen_pgd[i]), PAGE_SIZE); make_lowmem_page_readonly(pmd); set_pgd(&base[i], __pgd(1 + __pa(pmd))); } else pgd_clear(&base[i]); } } /* make sure zero_page is mapped RO so we can use it in pagetables */ make_lowmem_page_readonly(empty_zero_page); make_lowmem_page_readonly(base); /* * Switch to new pagetable. This is done before * pagetable_init has done anything so that the new pages * added to the table can be prepared properly for Xen. */ xen_write_cr3(__pa(base)); } static __init void xen_pagetable_setup_done(pgd_t *base) { /* This will work as long as patching hasn't happened yet (which it hasn't) */ paravirt_ops.alloc_pt = xen_alloc_pt; paravirt_ops.set_pte = xen_set_pte; if (!xen_feature(XENFEAT_auto_translated_physmap)) { /* * Create a mapping for the shared info page. * Should be set_fixmap(), but shared_info is a machine * address with no corresponding pseudo-phys address. */ set_pte_mfn(fix_to_virt(FIX_PARAVIRT_BOOTMAP), PFN_DOWN(xen_start_info->shared_info), PAGE_KERNEL); HYPERVISOR_shared_info = (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP); } else HYPERVISOR_shared_info = (struct shared_info *)__va(xen_start_info->shared_info); /* Actually pin the pagetable down, but we can't set PG_pinned yet because the page structures don't exist yet. */ { struct mmuext_op op; #ifdef CONFIG_X86_PAE op.cmd = MMUEXT_PIN_L3_TABLE; #else op.cmd = MMUEXT_PIN_L3_TABLE; #endif op.arg1.mfn = pfn_to_mfn(PFN_DOWN(__pa(base))); if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) BUG(); } } /* This is called once we have the cpu_possible_map */ void __init xen_setup_vcpu_info_placement(void) { int cpu; for_each_possible_cpu(cpu) xen_vcpu_setup(cpu); /* xen_vcpu_setup managed to place the vcpu_info within the percpu area for all cpus, so make use of it */ if (have_vcpu_info_placement) { printk(KERN_INFO "Xen: using vcpu_info placement\n"); paravirt_ops.save_fl = xen_save_fl_direct; paravirt_ops.restore_fl = xen_restore_fl_direct; paravirt_ops.irq_disable = xen_irq_disable_direct; paravirt_ops.irq_enable = xen_irq_enable_direct; paravirt_ops.read_cr2 = xen_read_cr2_direct; paravirt_ops.iret = xen_iret_direct; } } static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf, unsigned long addr, unsigned len) { char *start, *end, *reloc; unsigned ret; start = end = reloc = NULL; #define SITE(x) \ case PARAVIRT_PATCH(x): \ if (have_vcpu_info_placement) { \ start = (char *)xen_##x##_direct; \ end = xen_##x##_direct_end; \ reloc = xen_##x##_direct_reloc; \ } \ goto patch_site switch (type) { SITE(irq_enable); SITE(irq_disable); SITE(save_fl); SITE(restore_fl); #undef SITE patch_site: if (start == NULL || (end-start) > len) goto default_patch; ret = paravirt_patch_insns(insnbuf, len, start, end); /* Note: because reloc is assigned from something that appears to be an array, gcc assumes it's non-null, but doesn't know its relationship with start and end. */ if (reloc > start && reloc < end) { int reloc_off = reloc - start; long *relocp = (long *)(insnbuf + reloc_off); long delta = start - (char *)addr; *relocp += delta; } break; default_patch: default: ret = paravirt_patch_default(type, clobbers, insnbuf, addr, len); break; } return ret; } static const struct paravirt_ops xen_paravirt_ops __initdata = { .paravirt_enabled = 1, .shared_kernel_pmd = 0, .name = "Xen", .banner = xen_banner, .patch = xen_patch, .memory_setup = xen_memory_setup, .arch_setup = xen_arch_setup, .init_IRQ = xen_init_IRQ, .post_allocator_init = xen_mark_init_mm_pinned, .time_init = xen_time_init, .set_wallclock = xen_set_wallclock, .get_wallclock = xen_get_wallclock, .get_cpu_khz = xen_cpu_khz, .sched_clock = xen_sched_clock, .cpuid = xen_cpuid, .set_debugreg = xen_set_debugreg, .get_debugreg = xen_get_debugreg, .clts = native_clts, .read_cr0 = native_read_cr0, .write_cr0 = native_write_cr0, .read_cr2 = xen_read_cr2, .write_cr2 = xen_write_cr2, .read_cr3 = xen_read_cr3, .write_cr3 = xen_write_cr3, .read_cr4 = native_read_cr4, .read_cr4_safe = native_read_cr4_safe, .write_cr4 = xen_write_cr4, .save_fl = xen_save_fl, .restore_fl = xen_restore_fl, .irq_disable = xen_irq_disable, .irq_enable = xen_irq_enable, .safe_halt = xen_safe_halt, .halt = xen_halt, .wbinvd = native_wbinvd, .read_msr = native_read_msr_safe, .write_msr = native_write_msr_safe, .read_tsc = native_read_tsc, .read_pmc = native_read_pmc, .iret = (void *)&hypercall_page[__HYPERVISOR_iret], .irq_enable_sysexit = NULL, /* never called */ .load_tr_desc = paravirt_nop, .set_ldt = xen_set_ldt, .load_gdt = xen_load_gdt, .load_idt = xen_load_idt, .load_tls = xen_load_tls, .store_gdt = native_store_gdt, .store_idt = native_store_idt, .store_tr = xen_store_tr, .write_ldt_entry = xen_write_ldt_entry, .write_gdt_entry = xen_write_gdt_entry, .write_idt_entry = xen_write_idt_entry, .load_esp0 = xen_load_esp0, .set_iopl_mask = xen_set_iopl_mask, .io_delay = xen_io_delay, #ifdef CONFIG_X86_LOCAL_APIC .apic_write = xen_apic_write, .apic_write_atomic = xen_apic_write, .apic_read = xen_apic_read, .setup_boot_clock = paravirt_nop, .setup_secondary_clock = paravirt_nop, .startup_ipi_hook = paravirt_nop, #endif .flush_tlb_user = xen_flush_tlb, .flush_tlb_kernel = xen_flush_tlb, .flush_tlb_single = xen_flush_tlb_single, .flush_tlb_others = xen_flush_tlb_others, .pte_update = paravirt_nop, .pte_update_defer = paravirt_nop, .pagetable_setup_start = xen_pagetable_setup_start, .pagetable_setup_done = xen_pagetable_setup_done, .alloc_pt = xen_alloc_pt_init, .release_pt = xen_release_pt, .alloc_pd = paravirt_nop, .alloc_pd_clone = paravirt_nop, .release_pd = paravirt_nop, #ifdef CONFIG_HIGHPTE .kmap_atomic_pte = xen_kmap_atomic_pte, #endif .set_pte = NULL, /* see xen_pagetable_setup_* */ .set_pte_at = xen_set_pte_at, .set_pmd = xen_set_pmd, .pte_val = xen_pte_val, .pgd_val = xen_pgd_val, .make_pte = xen_make_pte, .make_pgd = xen_make_pgd, #ifdef CONFIG_X86_PAE .set_pte_atomic = xen_set_pte_atomic, .set_pte_present = xen_set_pte_at, .set_pud = xen_set_pud, .pte_clear = xen_pte_clear, .pmd_clear = xen_pmd_clear, .make_pmd = xen_make_pmd, .pmd_val = xen_pmd_val, #endif /* PAE */ .activate_mm = xen_activate_mm, .dup_mmap = xen_dup_mmap, .exit_mmap = xen_exit_mmap, .set_lazy_mode = xen_set_lazy_mode, }; #ifdef CONFIG_SMP static const struct smp_ops xen_smp_ops __initdata = { .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu, .smp_prepare_cpus = xen_smp_prepare_cpus, .cpu_up = xen_cpu_up, .smp_cpus_done = xen_smp_cpus_done, .smp_send_stop = xen_smp_send_stop, .smp_send_reschedule = xen_smp_send_reschedule, .smp_call_function_mask = xen_smp_call_function_mask, }; #endif /* CONFIG_SMP */ static void xen_reboot(int reason) { #ifdef CONFIG_SMP smp_send_stop(); #endif if (HYPERVISOR_sched_op(SCHEDOP_shutdown, reason)) BUG(); } static void xen_restart(char *msg) { xen_reboot(SHUTDOWN_reboot); } static void xen_emergency_restart(void) { xen_reboot(SHUTDOWN_reboot); } static void xen_machine_halt(void) { xen_reboot(SHUTDOWN_poweroff); } static void xen_crash_shutdown(struct pt_regs *regs) { xen_reboot(SHUTDOWN_crash); } static const struct machine_ops __initdata xen_machine_ops = { .restart = xen_restart, .halt = xen_machine_halt, .power_off = xen_machine_halt, .shutdown = xen_machine_halt, .crash_shutdown = xen_crash_shutdown, .emergency_restart = xen_emergency_restart, }; /* First C function to be called on Xen boot */ asmlinkage void __init xen_start_kernel(void) { pgd_t *pgd; if (!xen_start_info) return; BUG_ON(memcmp(xen_start_info->magic, "xen-3.0", 7) != 0); /* Install Xen paravirt ops */ paravirt_ops = xen_paravirt_ops; machine_ops = xen_machine_ops; #ifdef CONFIG_SMP smp_ops = xen_smp_ops; #endif xen_setup_features(); /* Get mfn list */ if (!xen_feature(XENFEAT_auto_translated_physmap)) phys_to_machine_mapping = (unsigned long *)xen_start_info->mfn_list; pgd = (pgd_t *)xen_start_info->pt_base; init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE; init_mm.pgd = pgd; /* use the Xen pagetables to start */ /* keep using Xen gdt for now; no urgent need to change it */ x86_write_percpu(xen_cr3, __pa(pgd)); #ifdef CONFIG_SMP /* Don't do the full vcpu_info placement stuff until we have a possible map. */ per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0]; #else /* May as well do it now, since there's no good time to call it later on UP. */ xen_setup_vcpu_info_placement(); #endif paravirt_ops.kernel_rpl = 1; if (xen_feature(XENFEAT_supervisor_mode_kernel)) paravirt_ops.kernel_rpl = 0; /* set the limit of our address space */ reserve_top_address(-HYPERVISOR_VIRT_START + 2 * PAGE_SIZE); /* set up basic CPUID stuff */ cpu_detect(&new_cpu_data); new_cpu_data.hard_math = 1; new_cpu_data.x86_capability[0] = cpuid_edx(1); /* Poke various useful things into boot_params */ boot_params.hdr.type_of_loader = (9 << 4) | 0; boot_params.hdr.ramdisk_image = xen_start_info->mod_start ? __pa(xen_start_info->mod_start) : 0; boot_params.hdr.ramdisk_size = xen_start_info->mod_len; /* Start the world */ start_kernel(); }