/* * Copyright (C) 1995 Linus Torvalds * * Pentium III FXSR, SSE support * Gareth Hughes <gareth@valinux.com>, May 2000 */ /* * This file handles the architecture-dependent parts of process handling.. */ #include <stdarg.h> #include <linux/cpu.h> #include <linux/errno.h> #include <linux/sched.h> #include <linux/fs.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/elfcore.h> #include <linux/smp.h> #include <linux/stddef.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/user.h> #include <linux/a.out.h> #include <linux/interrupt.h> #include <linux/utsname.h> #include <linux/delay.h> #include <linux/reboot.h> #include <linux/init.h> #include <linux/mc146818rtc.h> #include <linux/module.h> #include <linux/kallsyms.h> #include <linux/ptrace.h> #include <linux/random.h> #include <linux/personality.h> #include <linux/tick.h> #include <linux/percpu.h> #include <asm/uaccess.h> #include <asm/pgtable.h> #include <asm/system.h> #include <asm/io.h> #include <asm/ldt.h> #include <asm/processor.h> #include <asm/i387.h> #include <asm/desc.h> #include <asm/vm86.h> #ifdef CONFIG_MATH_EMULATION #include <asm/math_emu.h> #endif #include <linux/err.h> #include <asm/tlbflush.h> #include <asm/cpu.h> asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); static int hlt_counter; unsigned long boot_option_idle_override = 0; EXPORT_SYMBOL(boot_option_idle_override); DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; EXPORT_PER_CPU_SYMBOL(current_task); DEFINE_PER_CPU(int, cpu_number); EXPORT_PER_CPU_SYMBOL(cpu_number); /* * Return saved PC of a blocked thread. */ unsigned long thread_saved_pc(struct task_struct *tsk) { return ((unsigned long *)tsk->thread.esp)[3]; } /* * Powermanagement idle function, if any.. */ void (*pm_idle)(void); EXPORT_SYMBOL(pm_idle); static DEFINE_PER_CPU(unsigned int, cpu_idle_state); void disable_hlt(void) { hlt_counter++; } EXPORT_SYMBOL(disable_hlt); void enable_hlt(void) { hlt_counter--; } EXPORT_SYMBOL(enable_hlt); /* * We use this if we don't have any better * idle routine.. */ void default_idle(void) { if (!hlt_counter && boot_cpu_data.hlt_works_ok) { current_thread_info()->status &= ~TS_POLLING; /* * TS_POLLING-cleared state must be visible before we * test NEED_RESCHED: */ smp_mb(); local_irq_disable(); if (!need_resched()) safe_halt(); /* enables interrupts racelessly */ else local_irq_enable(); current_thread_info()->status |= TS_POLLING; } else { /* loop is done by the caller */ cpu_relax(); } } #ifdef CONFIG_APM_MODULE EXPORT_SYMBOL(default_idle); #endif /* * On SMP it's slightly faster (but much more power-consuming!) * to poll the ->work.need_resched flag instead of waiting for the * cross-CPU IPI to arrive. Use this option with caution. */ static void poll_idle (void) { cpu_relax(); } #ifdef CONFIG_HOTPLUG_CPU #include <asm/nmi.h> /* We don't actually take CPU down, just spin without interrupts. */ static inline void play_dead(void) { /* This must be done before dead CPU ack */ cpu_exit_clear(); wbinvd(); mb(); /* Ack it */ __get_cpu_var(cpu_state) = CPU_DEAD; /* * With physical CPU hotplug, we should halt the cpu */ local_irq_disable(); while (1) halt(); } #else static inline void play_dead(void) { BUG(); } #endif /* CONFIG_HOTPLUG_CPU */ /* * The idle thread. There's no useful work to be * done, so just try to conserve power and have a * low exit latency (ie sit in a loop waiting for * somebody to say that they'd like to reschedule) */ void cpu_idle(void) { int cpu = smp_processor_id(); current_thread_info()->status |= TS_POLLING; /* endless idle loop with no priority at all */ while (1) { tick_nohz_stop_sched_tick(); while (!need_resched()) { void (*idle)(void); if (__get_cpu_var(cpu_idle_state)) __get_cpu_var(cpu_idle_state) = 0; check_pgt_cache(); rmb(); idle = pm_idle; if (!idle) idle = default_idle; if (cpu_is_offline(cpu)) play_dead(); __get_cpu_var(irq_stat).idle_timestamp = jiffies; idle(); } tick_nohz_restart_sched_tick(); preempt_enable_no_resched(); schedule(); preempt_disable(); } } static void do_nothing(void *unused) { } void cpu_idle_wait(void) { unsigned int cpu, this_cpu = get_cpu(); cpumask_t map, tmp = current->cpus_allowed; set_cpus_allowed(current, cpumask_of_cpu(this_cpu)); put_cpu(); cpus_clear(map); for_each_online_cpu(cpu) { per_cpu(cpu_idle_state, cpu) = 1; cpu_set(cpu, map); } __get_cpu_var(cpu_idle_state) = 0; wmb(); do { ssleep(1); for_each_online_cpu(cpu) { if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu)) cpu_clear(cpu, map); } cpus_and(map, map, cpu_online_map); /* * We waited 1 sec, if a CPU still did not call idle * it may be because it is in idle and not waking up * because it has nothing to do. * Give all the remaining CPUS a kick. */ smp_call_function_mask(map, do_nothing, 0, 0); } while (!cpus_empty(map)); set_cpus_allowed(current, tmp); } EXPORT_SYMBOL_GPL(cpu_idle_wait); /* * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, * which can obviate IPI to trigger checking of need_resched. * We execute MONITOR against need_resched and enter optimized wait state * through MWAIT. Whenever someone changes need_resched, we would be woken * up from MWAIT (without an IPI). * * New with Core Duo processors, MWAIT can take some hints based on CPU * capability. */ void mwait_idle_with_hints(unsigned long eax, unsigned long ecx) { if (!need_resched()) { __monitor((void *)¤t_thread_info()->flags, 0, 0); smp_mb(); if (!need_resched()) __mwait(eax, ecx); } } /* Default MONITOR/MWAIT with no hints, used for default C1 state */ static void mwait_idle(void) { local_irq_enable(); mwait_idle_with_hints(0, 0); } void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) { if (cpu_has(c, X86_FEATURE_MWAIT)) { printk("monitor/mwait feature present.\n"); /* * Skip, if setup has overridden idle. * One CPU supports mwait => All CPUs supports mwait */ if (!pm_idle) { printk("using mwait in idle threads.\n"); pm_idle = mwait_idle; } } } static int __init idle_setup(char *str) { if (!strcmp(str, "poll")) { printk("using polling idle threads.\n"); pm_idle = poll_idle; #ifdef CONFIG_X86_SMP if (smp_num_siblings > 1) printk("WARNING: polling idle and HT enabled, performance may degrade.\n"); #endif } else if (!strcmp(str, "mwait")) force_mwait = 1; else return -1; boot_option_idle_override = 1; return 0; } early_param("idle", idle_setup); void __show_registers(struct pt_regs *regs, int all) { unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L; unsigned long d0, d1, d2, d3, d6, d7; unsigned long esp; unsigned short ss, gs; if (user_mode_vm(regs)) { esp = regs->esp; ss = regs->xss & 0xffff; savesegment(gs, gs); } else { esp = (unsigned long) (®s->esp); savesegment(ss, ss); savesegment(gs, gs); } printk("\n"); printk("Pid: %d, comm: %s %s (%s %.*s)\n", task_pid_nr(current), current->comm, print_tainted(), init_utsname()->release, (int)strcspn(init_utsname()->version, " "), init_utsname()->version); printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n", 0xffff & regs->xcs, regs->eip, regs->eflags, smp_processor_id()); print_symbol("EIP is at %s\n", regs->eip); printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n", regs->eax, regs->ebx, regs->ecx, regs->edx); printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n", regs->esi, regs->edi, regs->ebp, esp); printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n", regs->xds & 0xffff, regs->xes & 0xffff, regs->xfs & 0xffff, gs, ss); if (!all) return; cr0 = read_cr0(); cr2 = read_cr2(); cr3 = read_cr3(); cr4 = read_cr4_safe(); printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", cr0, cr2, cr3, cr4); get_debugreg(d0, 0); get_debugreg(d1, 1); get_debugreg(d2, 2); get_debugreg(d3, 3); printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n", d0, d1, d2, d3); get_debugreg(d6, 6); get_debugreg(d7, 7); printk("DR6: %08lx DR7: %08lx\n", d6, d7); } void show_regs(struct pt_regs *regs) { __show_registers(regs, 1); show_trace(NULL, regs, ®s->esp); } /* * This gets run with %ebx containing the * function to call, and %edx containing * the "args". */ extern void kernel_thread_helper(void); /* * Create a kernel thread */ int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) { struct pt_regs regs; memset(®s, 0, sizeof(regs)); regs.ebx = (unsigned long) fn; regs.edx = (unsigned long) arg; regs.xds = __USER_DS; regs.xes = __USER_DS; regs.xfs = __KERNEL_PERCPU; regs.orig_eax = -1; regs.eip = (unsigned long) kernel_thread_helper; regs.xcs = __KERNEL_CS | get_kernel_rpl(); regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2; /* Ok, create the new process.. */ return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); } EXPORT_SYMBOL(kernel_thread); /* * Free current thread data structures etc.. */ void exit_thread(void) { /* The process may have allocated an io port bitmap... nuke it. */ if (unlikely(test_thread_flag(TIF_IO_BITMAP))) { struct task_struct *tsk = current; struct thread_struct *t = &tsk->thread; int cpu = get_cpu(); struct tss_struct *tss = &per_cpu(init_tss, cpu); kfree(t->io_bitmap_ptr); t->io_bitmap_ptr = NULL; clear_thread_flag(TIF_IO_BITMAP); /* * Careful, clear this in the TSS too: */ memset(tss->io_bitmap, 0xff, tss->io_bitmap_max); t->io_bitmap_max = 0; tss->io_bitmap_owner = NULL; tss->io_bitmap_max = 0; tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; put_cpu(); } } void flush_thread(void) { struct task_struct *tsk = current; memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8); memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); clear_tsk_thread_flag(tsk, TIF_DEBUG); /* * Forget coprocessor state.. */ clear_fpu(tsk); clear_used_math(); } void release_thread(struct task_struct *dead_task) { BUG_ON(dead_task->mm); release_vm86_irqs(dead_task); } /* * This gets called before we allocate a new thread and copy * the current task into it. */ void prepare_to_copy(struct task_struct *tsk) { unlazy_fpu(tsk); } int copy_thread(int nr, unsigned long clone_flags, unsigned long esp, unsigned long unused, struct task_struct * p, struct pt_regs * regs) { struct pt_regs * childregs; struct task_struct *tsk; int err; childregs = task_pt_regs(p); *childregs = *regs; childregs->eax = 0; childregs->esp = esp; p->thread.esp = (unsigned long) childregs; p->thread.esp0 = (unsigned long) (childregs+1); p->thread.eip = (unsigned long) ret_from_fork; savesegment(gs,p->thread.gs); tsk = current; if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) { p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr, IO_BITMAP_BYTES, GFP_KERNEL); if (!p->thread.io_bitmap_ptr) { p->thread.io_bitmap_max = 0; return -ENOMEM; } set_tsk_thread_flag(p, TIF_IO_BITMAP); } /* * Set a new TLS for the child thread? */ if (clone_flags & CLONE_SETTLS) { struct desc_struct *desc; struct user_desc info; int idx; err = -EFAULT; if (copy_from_user(&info, (void __user *)childregs->esi, sizeof(info))) goto out; err = -EINVAL; if (LDT_empty(&info)) goto out; idx = info.entry_number; if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) goto out; desc = p->thread.tls_array + idx - GDT_ENTRY_TLS_MIN; desc->a = LDT_entry_a(&info); desc->b = LDT_entry_b(&info); } err = 0; out: if (err && p->thread.io_bitmap_ptr) { kfree(p->thread.io_bitmap_ptr); p->thread.io_bitmap_max = 0; } return err; } /* * fill in the user structure for a core dump.. */ void dump_thread(struct pt_regs * regs, struct user * dump) { int i; /* changed the size calculations - should hopefully work better. lbt */ dump->magic = CMAGIC; dump->start_code = 0; dump->start_stack = regs->esp & ~(PAGE_SIZE - 1); dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT; dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT; dump->u_dsize -= dump->u_tsize; dump->u_ssize = 0; for (i = 0; i < 8; i++) dump->u_debugreg[i] = current->thread.debugreg[i]; if (dump->start_stack < TASK_SIZE) dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT; dump->regs.ebx = regs->ebx; dump->regs.ecx = regs->ecx; dump->regs.edx = regs->edx; dump->regs.esi = regs->esi; dump->regs.edi = regs->edi; dump->regs.ebp = regs->ebp; dump->regs.eax = regs->eax; dump->regs.ds = regs->xds; dump->regs.es = regs->xes; dump->regs.fs = regs->xfs; savesegment(gs,dump->regs.gs); dump->regs.orig_eax = regs->orig_eax; dump->regs.eip = regs->eip; dump->regs.cs = regs->xcs; dump->regs.eflags = regs->eflags; dump->regs.esp = regs->esp; dump->regs.ss = regs->xss; dump->u_fpvalid = dump_fpu (regs, &dump->i387); } EXPORT_SYMBOL(dump_thread); /* * Capture the user space registers if the task is not running (in user space) */ int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs) { struct pt_regs ptregs = *task_pt_regs(tsk); ptregs.xcs &= 0xffff; ptregs.xds &= 0xffff; ptregs.xes &= 0xffff; ptregs.xss &= 0xffff; elf_core_copy_regs(regs, &ptregs); return 1; } #ifdef CONFIG_SECCOMP void hard_disable_TSC(void) { write_cr4(read_cr4() | X86_CR4_TSD); } void disable_TSC(void) { preempt_disable(); if (!test_and_set_thread_flag(TIF_NOTSC)) /* * Must flip the CPU state synchronously with * TIF_NOTSC in the current running context. */ hard_disable_TSC(); preempt_enable(); } void hard_enable_TSC(void) { write_cr4(read_cr4() & ~X86_CR4_TSD); } #endif /* CONFIG_SECCOMP */ static noinline void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, struct tss_struct *tss) { struct thread_struct *next; next = &next_p->thread; if (test_tsk_thread_flag(next_p, TIF_DEBUG)) { set_debugreg(next->debugreg[0], 0); set_debugreg(next->debugreg[1], 1); set_debugreg(next->debugreg[2], 2); set_debugreg(next->debugreg[3], 3); /* no 4 and 5 */ set_debugreg(next->debugreg[6], 6); set_debugreg(next->debugreg[7], 7); } #ifdef CONFIG_SECCOMP if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ test_tsk_thread_flag(next_p, TIF_NOTSC)) { /* prev and next are different */ if (test_tsk_thread_flag(next_p, TIF_NOTSC)) hard_disable_TSC(); else hard_enable_TSC(); } #endif if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { /* * Disable the bitmap via an invalid offset. We still cache * the previous bitmap owner and the IO bitmap contents: */ tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; return; } if (likely(next == tss->io_bitmap_owner)) { /* * Previous owner of the bitmap (hence the bitmap content) * matches the next task, we dont have to do anything but * to set a valid offset in the TSS: */ tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; return; } /* * Lazy TSS's I/O bitmap copy. We set an invalid offset here * and we let the task to get a GPF in case an I/O instruction * is performed. The handler of the GPF will verify that the * faulting task has a valid I/O bitmap and, it true, does the * real copy and restart the instruction. This will save us * redundant copies when the currently switched task does not * perform any I/O during its timeslice. */ tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY; } /* * switch_to(x,yn) should switch tasks from x to y. * * We fsave/fwait so that an exception goes off at the right time * (as a call from the fsave or fwait in effect) rather than to * the wrong process. Lazy FP saving no longer makes any sense * with modern CPU's, and this simplifies a lot of things (SMP * and UP become the same). * * NOTE! We used to use the x86 hardware context switching. The * reason for not using it any more becomes apparent when you * try to recover gracefully from saved state that is no longer * valid (stale segment register values in particular). With the * hardware task-switch, there is no way to fix up bad state in * a reasonable manner. * * The fact that Intel documents the hardware task-switching to * be slow is a fairly red herring - this code is not noticeably * faster. However, there _is_ some room for improvement here, * so the performance issues may eventually be a valid point. * More important, however, is the fact that this allows us much * more flexibility. * * The return value (in %eax) will be the "prev" task after * the task-switch, and shows up in ret_from_fork in entry.S, * for example. */ struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p) { struct thread_struct *prev = &prev_p->thread, *next = &next_p->thread; int cpu = smp_processor_id(); struct tss_struct *tss = &per_cpu(init_tss, cpu); /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */ __unlazy_fpu(prev_p); /* we're going to use this soon, after a few expensive things */ if (next_p->fpu_counter > 5) prefetch(&next->i387.fxsave); /* * Reload esp0. */ load_esp0(tss, next); /* * Save away %gs. No need to save %fs, as it was saved on the * stack on entry. No need to save %es and %ds, as those are * always kernel segments while inside the kernel. Doing this * before setting the new TLS descriptors avoids the situation * where we temporarily have non-reloadable segments in %fs * and %gs. This could be an issue if the NMI handler ever * used %fs or %gs (it does not today), or if the kernel is * running inside of a hypervisor layer. */ savesegment(gs, prev->gs); /* * Load the per-thread Thread-Local Storage descriptor. */ load_TLS(next, cpu); /* * Restore IOPL if needed. In normal use, the flags restore * in the switch assembly will handle this. But if the kernel * is running virtualized at a non-zero CPL, the popf will * not restore flags, so it must be done in a separate step. */ if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl)) set_iopl_mask(next->iopl); /* * Now maybe handle debug registers and/or IO bitmaps */ if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV || task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT)) __switch_to_xtra(prev_p, next_p, tss); /* * Leave lazy mode, flushing any hypercalls made here. * This must be done before restoring TLS segments so * the GDT and LDT are properly updated, and must be * done before math_state_restore, so the TS bit is up * to date. */ arch_leave_lazy_cpu_mode(); /* If the task has used fpu the last 5 timeslices, just do a full * restore of the math state immediately to avoid the trap; the * chances of needing FPU soon are obviously high now */ if (next_p->fpu_counter > 5) math_state_restore(); /* * Restore %gs if needed (which is common) */ if (prev->gs | next->gs) loadsegment(gs, next->gs); x86_write_percpu(current_task, next_p); return prev_p; } asmlinkage int sys_fork(struct pt_regs regs) { return do_fork(SIGCHLD, regs.esp, ®s, 0, NULL, NULL); } asmlinkage int sys_clone(struct pt_regs regs) { unsigned long clone_flags; unsigned long newsp; int __user *parent_tidptr, *child_tidptr; clone_flags = regs.ebx; newsp = regs.ecx; parent_tidptr = (int __user *)regs.edx; child_tidptr = (int __user *)regs.edi; if (!newsp) newsp = regs.esp; return do_fork(clone_flags, newsp, ®s, 0, parent_tidptr, child_tidptr); } /* * This is trivial, and on the face of it looks like it * could equally well be done in user mode. * * Not so, for quite unobvious reasons - register pressure. * In user mode vfork() cannot have a stack frame, and if * done by calling the "clone()" system call directly, you * do not have enough call-clobbered registers to hold all * the information you need. */ asmlinkage int sys_vfork(struct pt_regs regs) { return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, ®s, 0, NULL, NULL); } /* * sys_execve() executes a new program. */ asmlinkage int sys_execve(struct pt_regs regs) { int error; char * filename; filename = getname((char __user *) regs.ebx); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve(filename, (char __user * __user *) regs.ecx, (char __user * __user *) regs.edx, ®s); if (error == 0) { task_lock(current); current->ptrace &= ~PT_DTRACE; task_unlock(current); /* Make sure we don't return using sysenter.. */ set_thread_flag(TIF_IRET); } putname(filename); out: return error; } #define top_esp (THREAD_SIZE - sizeof(unsigned long)) #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long)) unsigned long get_wchan(struct task_struct *p) { unsigned long ebp, esp, eip; unsigned long stack_page; int count = 0; if (!p || p == current || p->state == TASK_RUNNING) return 0; stack_page = (unsigned long)task_stack_page(p); esp = p->thread.esp; if (!stack_page || esp < stack_page || esp > top_esp+stack_page) return 0; /* include/asm-i386/system.h:switch_to() pushes ebp last. */ ebp = *(unsigned long *) esp; do { if (ebp < stack_page || ebp > top_ebp+stack_page) return 0; eip = *(unsigned long *) (ebp+4); if (!in_sched_functions(eip)) return eip; ebp = *(unsigned long *) ebp; } while (count++ < 16); return 0; } /* * sys_alloc_thread_area: get a yet unused TLS descriptor index. */ static int get_free_idx(void) { struct thread_struct *t = ¤t->thread; int idx; for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++) if (desc_empty(t->tls_array + idx)) return idx + GDT_ENTRY_TLS_MIN; return -ESRCH; } /* * Set a given TLS descriptor: */ asmlinkage int sys_set_thread_area(struct user_desc __user *u_info) { struct thread_struct *t = ¤t->thread; struct user_desc info; struct desc_struct *desc; int cpu, idx; if (copy_from_user(&info, u_info, sizeof(info))) return -EFAULT; idx = info.entry_number; /* * index -1 means the kernel should try to find and * allocate an empty descriptor: */ if (idx == -1) { idx = get_free_idx(); if (idx < 0) return idx; if (put_user(idx, &u_info->entry_number)) return -EFAULT; } if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) return -EINVAL; desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN; /* * We must not get preempted while modifying the TLS. */ cpu = get_cpu(); if (LDT_empty(&info)) { desc->a = 0; desc->b = 0; } else { desc->a = LDT_entry_a(&info); desc->b = LDT_entry_b(&info); } load_TLS(t, cpu); put_cpu(); return 0; } /* * Get the current Thread-Local Storage area: */ #define GET_BASE(desc) ( \ (((desc)->a >> 16) & 0x0000ffff) | \ (((desc)->b << 16) & 0x00ff0000) | \ ( (desc)->b & 0xff000000) ) #define GET_LIMIT(desc) ( \ ((desc)->a & 0x0ffff) | \ ((desc)->b & 0xf0000) ) #define GET_32BIT(desc) (((desc)->b >> 22) & 1) #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3) #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1) #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1) #define GET_PRESENT(desc) (((desc)->b >> 15) & 1) #define GET_USEABLE(desc) (((desc)->b >> 20) & 1) asmlinkage int sys_get_thread_area(struct user_desc __user *u_info) { struct user_desc info; struct desc_struct *desc; int idx; if (get_user(idx, &u_info->entry_number)) return -EFAULT; if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX) return -EINVAL; memset(&info, 0, sizeof(info)); desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN; info.entry_number = idx; info.base_addr = GET_BASE(desc); info.limit = GET_LIMIT(desc); info.seg_32bit = GET_32BIT(desc); info.contents = GET_CONTENTS(desc); info.read_exec_only = !GET_WRITABLE(desc); info.limit_in_pages = GET_LIMIT_PAGES(desc); info.seg_not_present = !GET_PRESENT(desc); info.useable = GET_USEABLE(desc); if (copy_to_user(u_info, &info, sizeof(info))) return -EFAULT; return 0; } unsigned long arch_align_stack(unsigned long sp) { if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) sp -= get_random_int() % 8192; return sp & ~0xf; }