/* * Copyright 2006 Andi Kleen, SUSE Labs. * Subject to the GNU Public License, v.2 * * Fast user context implementation of clock_gettime, gettimeofday, and time. * * 32 Bit compat layer by Stefani Seibold * sponsored by Rohde & Schwarz GmbH & Co. KG Munich/Germany * * The code should have no internal unresolved relocations. * Check with readelf after changing. */ #include #include #include #include #include #include #include #include #include #include #define gtod (&VVAR(vsyscall_gtod_data)) extern int __vdso_clock_gettime(clockid_t clock, struct timespec *ts); extern int __vdso_gettimeofday(struct timeval *tv, struct timezone *tz); extern time_t __vdso_time(time_t *t); #ifdef CONFIG_PARAVIRT_CLOCK extern u8 pvclock_page __attribute__((visibility("hidden"))); #endif #ifdef CONFIG_HYPERV_TSCPAGE extern u8 hvclock_page __attribute__((visibility("hidden"))); #endif #ifndef BUILD_VDSO32 notrace static long vdso_fallback_gettime(long clock, struct timespec *ts) { long ret; asm ("syscall" : "=a" (ret), "=m" (*ts) : "0" (__NR_clock_gettime), "D" (clock), "S" (ts) : "memory", "rcx", "r11"); return ret; } notrace static long vdso_fallback_gtod(struct timeval *tv, struct timezone *tz) { long ret; asm ("syscall" : "=a" (ret), "=m" (*tv), "=m" (*tz) : "0" (__NR_gettimeofday), "D" (tv), "S" (tz) : "memory", "rcx", "r11"); return ret; } #else notrace static long vdso_fallback_gettime(long clock, struct timespec *ts) { long ret; asm ( "mov %%ebx, %%edx \n" "mov %2, %%ebx \n" "call __kernel_vsyscall \n" "mov %%edx, %%ebx \n" : "=a" (ret), "=m" (*ts) : "0" (__NR_clock_gettime), "g" (clock), "c" (ts) : "memory", "edx"); return ret; } notrace static long vdso_fallback_gtod(struct timeval *tv, struct timezone *tz) { long ret; asm ( "mov %%ebx, %%edx \n" "mov %2, %%ebx \n" "call __kernel_vsyscall \n" "mov %%edx, %%ebx \n" : "=a" (ret), "=m" (*tv), "=m" (*tz) : "0" (__NR_gettimeofday), "g" (tv), "c" (tz) : "memory", "edx"); return ret; } #endif #ifdef CONFIG_PARAVIRT_CLOCK static notrace const struct pvclock_vsyscall_time_info *get_pvti0(void) { return (const struct pvclock_vsyscall_time_info *)&pvclock_page; } static notrace u64 vread_pvclock(int *mode) { const struct pvclock_vcpu_time_info *pvti = &get_pvti0()->pvti; u64 ret; u64 last; u32 version; /* * Note: The kernel and hypervisor must guarantee that cpu ID * number maps 1:1 to per-CPU pvclock time info. * * Because the hypervisor is entirely unaware of guest userspace * preemption, it cannot guarantee that per-CPU pvclock time * info is updated if the underlying CPU changes or that that * version is increased whenever underlying CPU changes. * * On KVM, we are guaranteed that pvti updates for any vCPU are * atomic as seen by *all* vCPUs. This is an even stronger * guarantee than we get with a normal seqlock. * * On Xen, we don't appear to have that guarantee, but Xen still * supplies a valid seqlock using the version field. * * We only do pvclock vdso timing at all if * PVCLOCK_TSC_STABLE_BIT is set, and we interpret that bit to * mean that all vCPUs have matching pvti and that the TSC is * synced, so we can just look at vCPU 0's pvti. */ do { version = pvclock_read_begin(pvti); if (unlikely(!(pvti->flags & PVCLOCK_TSC_STABLE_BIT))) { *mode = VCLOCK_NONE; return 0; } ret = __pvclock_read_cycles(pvti, rdtsc_ordered()); } while (pvclock_read_retry(pvti, version)); /* refer to vread_tsc() comment for rationale */ last = gtod->cycle_last; if (likely(ret >= last)) return ret; return last; } #endif #ifdef CONFIG_HYPERV_TSCPAGE static notrace u64 vread_hvclock(int *mode) { const struct ms_hyperv_tsc_page *tsc_pg = (const struct ms_hyperv_tsc_page *)&hvclock_page; u64 current_tick = hv_read_tsc_page(tsc_pg); if (current_tick != U64_MAX) return current_tick; *mode = VCLOCK_NONE; return 0; } #endif notrace static u64 vread_tsc(void) { u64 ret = (u64)rdtsc_ordered(); u64 last = gtod->cycle_last; if (likely(ret >= last)) return ret; /* * GCC likes to generate cmov here, but this branch is extremely * predictable (it's just a function of time and the likely is * very likely) and there's a data dependence, so force GCC * to generate a branch instead. I don't barrier() because * we don't actually need a barrier, and if this function * ever gets inlined it will generate worse code. */ asm volatile (""); return last; } notrace static inline u64 vgetsns(int *mode) { u64 v; cycles_t cycles; if (gtod->vclock_mode == VCLOCK_TSC) cycles = vread_tsc(); #ifdef CONFIG_PARAVIRT_CLOCK else if (gtod->vclock_mode == VCLOCK_PVCLOCK) cycles = vread_pvclock(mode); #endif #ifdef CONFIG_HYPERV_TSCPAGE else if (gtod->vclock_mode == VCLOCK_HVCLOCK) cycles = vread_hvclock(mode); #endif else return 0; v = (cycles - gtod->cycle_last) & gtod->mask; return v * gtod->mult; } /* Code size doesn't matter (vdso is 4k anyway) and this is faster. */ notrace static int __always_inline do_realtime(struct timespec *ts) { unsigned long seq; u64 ns; int mode; do { seq = gtod_read_begin(gtod); mode = gtod->vclock_mode; ts->tv_sec = gtod->wall_time_sec; ns = gtod->wall_time_snsec; ns += vgetsns(&mode); ns >>= gtod->shift; } while (unlikely(gtod_read_retry(gtod, seq))); ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); ts->tv_nsec = ns; return mode; } notrace static int __always_inline do_monotonic(struct timespec *ts) { unsigned long seq; u64 ns; int mode; do { seq = gtod_read_begin(gtod); mode = gtod->vclock_mode; ts->tv_sec = gtod->monotonic_time_sec; ns = gtod->monotonic_time_snsec; ns += vgetsns(&mode); ns >>= gtod->shift; } while (unlikely(gtod_read_retry(gtod, seq))); ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); ts->tv_nsec = ns; return mode; } notrace static void do_realtime_coarse(struct timespec *ts) { unsigned long seq; do { seq = gtod_read_begin(gtod); ts->tv_sec = gtod->wall_time_coarse_sec; ts->tv_nsec = gtod->wall_time_coarse_nsec; } while (unlikely(gtod_read_retry(gtod, seq))); } notrace static void do_monotonic_coarse(struct timespec *ts) { unsigned long seq; do { seq = gtod_read_begin(gtod); ts->tv_sec = gtod->monotonic_time_coarse_sec; ts->tv_nsec = gtod->monotonic_time_coarse_nsec; } while (unlikely(gtod_read_retry(gtod, seq))); } notrace int __vdso_clock_gettime(clockid_t clock, struct timespec *ts) { switch (clock) { case CLOCK_REALTIME: if (do_realtime(ts) == VCLOCK_NONE) goto fallback; break; case CLOCK_MONOTONIC: if (do_monotonic(ts) == VCLOCK_NONE) goto fallback; break; case CLOCK_REALTIME_COARSE: do_realtime_coarse(ts); break; case CLOCK_MONOTONIC_COARSE: do_monotonic_coarse(ts); break; default: goto fallback; } return 0; fallback: return vdso_fallback_gettime(clock, ts); } int clock_gettime(clockid_t, struct timespec *) __attribute__((weak, alias("__vdso_clock_gettime"))); notrace int __vdso_gettimeofday(struct timeval *tv, struct timezone *tz) { if (likely(tv != NULL)) { if (unlikely(do_realtime((struct timespec *)tv) == VCLOCK_NONE)) return vdso_fallback_gtod(tv, tz); tv->tv_usec /= 1000; } if (unlikely(tz != NULL)) { tz->tz_minuteswest = gtod->tz_minuteswest; tz->tz_dsttime = gtod->tz_dsttime; } return 0; } int gettimeofday(struct timeval *, struct timezone *) __attribute__((weak, alias("__vdso_gettimeofday"))); /* * This will break when the xtime seconds get inaccurate, but that is * unlikely */ notrace time_t __vdso_time(time_t *t) { /* This is atomic on x86 so we don't need any locks. */ time_t result = READ_ONCE(gtod->wall_time_sec); if (t) *t = result; return result; } time_t time(time_t *t) __attribute__((weak, alias("__vdso_time")));