/* * Copyright 2007, Michael Ellerman, IBM Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include /* * MSIC registers, specified as offsets from dcr_base */ #define MSIC_CTRL_REG 0x0 /* Base Address registers specify FIFO location in BE memory */ #define MSIC_BASE_ADDR_HI_REG 0x3 #define MSIC_BASE_ADDR_LO_REG 0x4 /* Hold the read/write offsets into the FIFO */ #define MSIC_READ_OFFSET_REG 0x5 #define MSIC_WRITE_OFFSET_REG 0x6 /* MSIC control register flags */ #define MSIC_CTRL_ENABLE 0x0001 #define MSIC_CTRL_FIFO_FULL_ENABLE 0x0002 #define MSIC_CTRL_IRQ_ENABLE 0x0008 #define MSIC_CTRL_FULL_STOP_ENABLE 0x0010 /* * The MSIC can be configured to use a FIFO of 32KB, 64KB, 128KB or 256KB. * Currently we're using a 64KB FIFO size. */ #define MSIC_FIFO_SIZE_SHIFT 16 #define MSIC_FIFO_SIZE_BYTES (1 << MSIC_FIFO_SIZE_SHIFT) /* * To configure the FIFO size as (1 << n) bytes, we write (n - 15) into bits * 8-9 of the MSIC control reg. */ #define MSIC_CTRL_FIFO_SIZE (((MSIC_FIFO_SIZE_SHIFT - 15) << 8) & 0x300) /* * We need to mask the read/write offsets to make sure they stay within * the bounds of the FIFO. Also they should always be 16-byte aligned. */ #define MSIC_FIFO_SIZE_MASK ((MSIC_FIFO_SIZE_BYTES - 1) & ~0xFu) /* Each entry in the FIFO is 16 bytes, the first 4 bytes hold the irq # */ #define MSIC_FIFO_ENTRY_SIZE 0x10 struct axon_msic { struct irq_host *irq_host; __le32 *fifo_virt; dma_addr_t fifo_phys; dcr_host_t dcr_host; u32 read_offset; #ifdef DEBUG u32 __iomem *trigger; #endif }; #ifdef DEBUG void axon_msi_debug_setup(struct device_node *dn, struct axon_msic *msic); #else static inline void axon_msi_debug_setup(struct device_node *dn, struct axon_msic *msic) { } #endif static void msic_dcr_write(struct axon_msic *msic, unsigned int dcr_n, u32 val) { pr_devel("axon_msi: dcr_write(0x%x, 0x%x)\n", val, dcr_n); dcr_write(msic->dcr_host, dcr_n, val); } static void axon_msi_cascade(unsigned int irq, struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); struct axon_msic *msic = irq_get_handler_data(irq); u32 write_offset, msi; int idx; int retry = 0; write_offset = dcr_read(msic->dcr_host, MSIC_WRITE_OFFSET_REG); pr_devel("axon_msi: original write_offset 0x%x\n", write_offset); /* write_offset doesn't wrap properly, so we have to mask it */ write_offset &= MSIC_FIFO_SIZE_MASK; while (msic->read_offset != write_offset && retry < 100) { idx = msic->read_offset / sizeof(__le32); msi = le32_to_cpu(msic->fifo_virt[idx]); msi &= 0xFFFF; pr_devel("axon_msi: woff %x roff %x msi %x\n", write_offset, msic->read_offset, msi); if (msi < NR_IRQS && virq_to_host(msi) == msic->irq_host) { generic_handle_irq(msi); msic->fifo_virt[idx] = cpu_to_le32(0xffffffff); } else { /* * Reading the MSIC_WRITE_OFFSET_REG does not * reliably flush the outstanding DMA to the * FIFO buffer. Here we were reading stale * data, so we need to retry. */ udelay(1); retry++; pr_devel("axon_msi: invalid irq 0x%x!\n", msi); continue; } if (retry) { pr_devel("axon_msi: late irq 0x%x, retry %d\n", msi, retry); retry = 0; } msic->read_offset += MSIC_FIFO_ENTRY_SIZE; msic->read_offset &= MSIC_FIFO_SIZE_MASK; } if (retry) { printk(KERN_WARNING "axon_msi: irq timed out\n"); msic->read_offset += MSIC_FIFO_ENTRY_SIZE; msic->read_offset &= MSIC_FIFO_SIZE_MASK; } chip->irq_eoi(&desc->irq_data); } static struct axon_msic *find_msi_translator(struct pci_dev *dev) { struct irq_host *irq_host; struct device_node *dn, *tmp; const phandle *ph; struct axon_msic *msic = NULL; dn = of_node_get(pci_device_to_OF_node(dev)); if (!dn) { dev_dbg(&dev->dev, "axon_msi: no pci_dn found\n"); return NULL; } for (; dn; dn = of_get_next_parent(dn)) { ph = of_get_property(dn, "msi-translator", NULL); if (ph) break; } if (!ph) { dev_dbg(&dev->dev, "axon_msi: no msi-translator property found\n"); goto out_error; } tmp = dn; dn = of_find_node_by_phandle(*ph); of_node_put(tmp); if (!dn) { dev_dbg(&dev->dev, "axon_msi: msi-translator doesn't point to a node\n"); goto out_error; } irq_host = irq_find_host(dn); if (!irq_host) { dev_dbg(&dev->dev, "axon_msi: no irq_host found for node %s\n", dn->full_name); goto out_error; } msic = irq_host->host_data; out_error: of_node_put(dn); return msic; } static int axon_msi_check_device(struct pci_dev *dev, int nvec, int type) { if (!find_msi_translator(dev)) return -ENODEV; return 0; } static int setup_msi_msg_address(struct pci_dev *dev, struct msi_msg *msg) { struct device_node *dn; struct msi_desc *entry; int len; const u32 *prop; dn = of_node_get(pci_device_to_OF_node(dev)); if (!dn) { dev_dbg(&dev->dev, "axon_msi: no pci_dn found\n"); return -ENODEV; } entry = list_first_entry(&dev->msi_list, struct msi_desc, list); for (; dn; dn = of_get_next_parent(dn)) { if (entry->msi_attrib.is_64) { prop = of_get_property(dn, "msi-address-64", &len); if (prop) break; } prop = of_get_property(dn, "msi-address-32", &len); if (prop) break; } if (!prop) { dev_dbg(&dev->dev, "axon_msi: no msi-address-(32|64) properties found\n"); return -ENOENT; } switch (len) { case 8: msg->address_hi = prop[0]; msg->address_lo = prop[1]; break; case 4: msg->address_hi = 0; msg->address_lo = prop[0]; break; default: dev_dbg(&dev->dev, "axon_msi: malformed msi-address-(32|64) property\n"); of_node_put(dn); return -EINVAL; } of_node_put(dn); return 0; } static int axon_msi_setup_msi_irqs(struct pci_dev *dev, int nvec, int type) { unsigned int virq, rc; struct msi_desc *entry; struct msi_msg msg; struct axon_msic *msic; msic = find_msi_translator(dev); if (!msic) return -ENODEV; rc = setup_msi_msg_address(dev, &msg); if (rc) return rc; /* We rely on being able to stash a virq in a u16 */ BUILD_BUG_ON(NR_IRQS > 65536); list_for_each_entry(entry, &dev->msi_list, list) { virq = irq_create_direct_mapping(msic->irq_host); if (virq == NO_IRQ) { dev_warn(&dev->dev, "axon_msi: virq allocation failed!\n"); return -1; } dev_dbg(&dev->dev, "axon_msi: allocated virq 0x%x\n", virq); irq_set_msi_desc(virq, entry); msg.data = virq; write_msi_msg(virq, &msg); } return 0; } static void axon_msi_teardown_msi_irqs(struct pci_dev *dev) { struct msi_desc *entry; dev_dbg(&dev->dev, "axon_msi: tearing down msi irqs\n"); list_for_each_entry(entry, &dev->msi_list, list) { if (entry->irq == NO_IRQ) continue; irq_set_msi_desc(entry->irq, NULL); irq_dispose_mapping(entry->irq); } } static struct irq_chip msic_irq_chip = { .irq_mask = mask_msi_irq, .irq_unmask = unmask_msi_irq, .irq_shutdown = mask_msi_irq, .name = "AXON-MSI", }; static int msic_host_map(struct irq_host *h, unsigned int virq, irq_hw_number_t hw) { irq_set_chip_and_handler(virq, &msic_irq_chip, handle_simple_irq); return 0; } static struct irq_host_ops msic_host_ops = { .map = msic_host_map, }; static void axon_msi_shutdown(struct platform_device *device) { struct axon_msic *msic = dev_get_drvdata(&device->dev); u32 tmp; pr_devel("axon_msi: disabling %s\n", msic->irq_host->of_node->full_name); tmp = dcr_read(msic->dcr_host, MSIC_CTRL_REG); tmp &= ~MSIC_CTRL_ENABLE & ~MSIC_CTRL_IRQ_ENABLE; msic_dcr_write(msic, MSIC_CTRL_REG, tmp); } static int axon_msi_probe(struct platform_device *device) { struct device_node *dn = device->dev.of_node; struct axon_msic *msic; unsigned int virq; int dcr_base, dcr_len; pr_devel("axon_msi: setting up dn %s\n", dn->full_name); msic = kzalloc(sizeof(struct axon_msic), GFP_KERNEL); if (!msic) { printk(KERN_ERR "axon_msi: couldn't allocate msic for %s\n", dn->full_name); goto out; } dcr_base = dcr_resource_start(dn, 0); dcr_len = dcr_resource_len(dn, 0); if (dcr_base == 0 || dcr_len == 0) { printk(KERN_ERR "axon_msi: couldn't parse dcr properties on %s\n", dn->full_name); goto out_free_msic; } msic->dcr_host = dcr_map(dn, dcr_base, dcr_len); if (!DCR_MAP_OK(msic->dcr_host)) { printk(KERN_ERR "axon_msi: dcr_map failed for %s\n", dn->full_name); goto out_free_msic; } msic->fifo_virt = dma_alloc_coherent(&device->dev, MSIC_FIFO_SIZE_BYTES, &msic->fifo_phys, GFP_KERNEL); if (!msic->fifo_virt) { printk(KERN_ERR "axon_msi: couldn't allocate fifo for %s\n", dn->full_name); goto out_free_msic; } virq = irq_of_parse_and_map(dn, 0); if (virq == NO_IRQ) { printk(KERN_ERR "axon_msi: irq parse and map failed for %s\n", dn->full_name); goto out_free_fifo; } memset(msic->fifo_virt, 0xff, MSIC_FIFO_SIZE_BYTES); msic->irq_host = irq_alloc_host(dn, IRQ_HOST_MAP_NOMAP, NR_IRQS, &msic_host_ops, 0); if (!msic->irq_host) { printk(KERN_ERR "axon_msi: couldn't allocate irq_host for %s\n", dn->full_name); goto out_free_fifo; } msic->irq_host->host_data = msic; irq_set_handler_data(virq, msic); irq_set_chained_handler(virq, axon_msi_cascade); pr_devel("axon_msi: irq 0x%x setup for axon_msi\n", virq); /* Enable the MSIC hardware */ msic_dcr_write(msic, MSIC_BASE_ADDR_HI_REG, msic->fifo_phys >> 32); msic_dcr_write(msic, MSIC_BASE_ADDR_LO_REG, msic->fifo_phys & 0xFFFFFFFF); msic_dcr_write(msic, MSIC_CTRL_REG, MSIC_CTRL_IRQ_ENABLE | MSIC_CTRL_ENABLE | MSIC_CTRL_FIFO_SIZE); msic->read_offset = dcr_read(msic->dcr_host, MSIC_WRITE_OFFSET_REG) & MSIC_FIFO_SIZE_MASK; dev_set_drvdata(&device->dev, msic); ppc_md.setup_msi_irqs = axon_msi_setup_msi_irqs; ppc_md.teardown_msi_irqs = axon_msi_teardown_msi_irqs; ppc_md.msi_check_device = axon_msi_check_device; axon_msi_debug_setup(dn, msic); printk(KERN_DEBUG "axon_msi: setup MSIC on %s\n", dn->full_name); return 0; out_free_fifo: dma_free_coherent(&device->dev, MSIC_FIFO_SIZE_BYTES, msic->fifo_virt, msic->fifo_phys); out_free_msic: kfree(msic); out: return -1; } static const struct of_device_id axon_msi_device_id[] = { { .compatible = "ibm,axon-msic" }, {} }; static struct platform_driver axon_msi_driver = { .probe = axon_msi_probe, .shutdown = axon_msi_shutdown, .driver = { .name = "axon-msi", .owner = THIS_MODULE, .of_match_table = axon_msi_device_id, }, }; static int __init axon_msi_init(void) { return platform_driver_register(&axon_msi_driver); } subsys_initcall(axon_msi_init); #ifdef DEBUG static int msic_set(void *data, u64 val) { struct axon_msic *msic = data; out_le32(msic->trigger, val); return 0; } static int msic_get(void *data, u64 *val) { *val = 0; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_msic, msic_get, msic_set, "%llu\n"); void axon_msi_debug_setup(struct device_node *dn, struct axon_msic *msic) { char name[8]; u64 addr; addr = of_translate_address(dn, of_get_property(dn, "reg", NULL)); if (addr == OF_BAD_ADDR) { pr_devel("axon_msi: couldn't translate reg property\n"); return; } msic->trigger = ioremap(addr, 0x4); if (!msic->trigger) { pr_devel("axon_msi: ioremap failed\n"); return; } snprintf(name, sizeof(name), "msic_%d", of_node_to_nid(dn)); if (!debugfs_create_file(name, 0600, powerpc_debugfs_root, msic, &fops_msic)) { pr_devel("axon_msi: debugfs_create_file failed!\n"); return; } } #endif /* DEBUG */