/* * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Derived from "arch/m68k/kernel/ptrace.c" * Copyright (C) 1994 by Hamish Macdonald * Taken from linux/kernel/ptrace.c and modified for M680x0. * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds * * Modified by Cort Dougan (cort@hq.fsmlabs.com) * and Paul Mackerras (paulus@samba.org). * * This file is subject to the terms and conditions of the GNU General * Public License. See the file README.legal in the main directory of * this archive for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include /* * The parameter save area on the stack is used to store arguments being passed * to callee function and is located at fixed offset from stack pointer. */ #ifdef CONFIG_PPC32 #define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */ #else /* CONFIG_PPC32 */ #define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */ #endif struct pt_regs_offset { const char *name; int offset; }; #define STR(s) #s /* convert to string */ #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)} #define GPR_OFFSET_NAME(num) \ {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \ {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])} #define REG_OFFSET_END {.name = NULL, .offset = 0} static const struct pt_regs_offset regoffset_table[] = { GPR_OFFSET_NAME(0), GPR_OFFSET_NAME(1), GPR_OFFSET_NAME(2), GPR_OFFSET_NAME(3), GPR_OFFSET_NAME(4), GPR_OFFSET_NAME(5), GPR_OFFSET_NAME(6), GPR_OFFSET_NAME(7), GPR_OFFSET_NAME(8), GPR_OFFSET_NAME(9), GPR_OFFSET_NAME(10), GPR_OFFSET_NAME(11), GPR_OFFSET_NAME(12), GPR_OFFSET_NAME(13), GPR_OFFSET_NAME(14), GPR_OFFSET_NAME(15), GPR_OFFSET_NAME(16), GPR_OFFSET_NAME(17), GPR_OFFSET_NAME(18), GPR_OFFSET_NAME(19), GPR_OFFSET_NAME(20), GPR_OFFSET_NAME(21), GPR_OFFSET_NAME(22), GPR_OFFSET_NAME(23), GPR_OFFSET_NAME(24), GPR_OFFSET_NAME(25), GPR_OFFSET_NAME(26), GPR_OFFSET_NAME(27), GPR_OFFSET_NAME(28), GPR_OFFSET_NAME(29), GPR_OFFSET_NAME(30), GPR_OFFSET_NAME(31), REG_OFFSET_NAME(nip), REG_OFFSET_NAME(msr), REG_OFFSET_NAME(ctr), REG_OFFSET_NAME(link), REG_OFFSET_NAME(xer), REG_OFFSET_NAME(ccr), #ifdef CONFIG_PPC64 REG_OFFSET_NAME(softe), #else REG_OFFSET_NAME(mq), #endif REG_OFFSET_NAME(trap), REG_OFFSET_NAME(dar), REG_OFFSET_NAME(dsisr), REG_OFFSET_END, }; /** * regs_query_register_offset() - query register offset from its name * @name: the name of a register * * regs_query_register_offset() returns the offset of a register in struct * pt_regs from its name. If the name is invalid, this returns -EINVAL; */ int regs_query_register_offset(const char *name) { const struct pt_regs_offset *roff; for (roff = regoffset_table; roff->name != NULL; roff++) if (!strcmp(roff->name, name)) return roff->offset; return -EINVAL; } /** * regs_query_register_name() - query register name from its offset * @offset: the offset of a register in struct pt_regs. * * regs_query_register_name() returns the name of a register from its * offset in struct pt_regs. If the @offset is invalid, this returns NULL; */ const char *regs_query_register_name(unsigned int offset) { const struct pt_regs_offset *roff; for (roff = regoffset_table; roff->name != NULL; roff++) if (roff->offset == offset) return roff->name; return NULL; } /* * does not yet catch signals sent when the child dies. * in exit.c or in signal.c. */ /* * Set of msr bits that gdb can change on behalf of a process. */ #ifdef CONFIG_PPC_ADV_DEBUG_REGS #define MSR_DEBUGCHANGE 0 #else #define MSR_DEBUGCHANGE (MSR_SE | MSR_BE) #endif /* * Max register writeable via put_reg */ #ifdef CONFIG_PPC32 #define PT_MAX_PUT_REG PT_MQ #else #define PT_MAX_PUT_REG PT_CCR #endif static unsigned long get_user_msr(struct task_struct *task) { return task->thread.regs->msr | task->thread.fpexc_mode; } static int set_user_msr(struct task_struct *task, unsigned long msr) { task->thread.regs->msr &= ~MSR_DEBUGCHANGE; task->thread.regs->msr |= msr & MSR_DEBUGCHANGE; return 0; } #ifdef CONFIG_PPC64 static int get_user_dscr(struct task_struct *task, unsigned long *data) { *data = task->thread.dscr; return 0; } static int set_user_dscr(struct task_struct *task, unsigned long dscr) { task->thread.dscr = dscr; task->thread.dscr_inherit = 1; return 0; } #else static int get_user_dscr(struct task_struct *task, unsigned long *data) { return -EIO; } static int set_user_dscr(struct task_struct *task, unsigned long dscr) { return -EIO; } #endif /* * We prevent mucking around with the reserved area of trap * which are used internally by the kernel. */ static int set_user_trap(struct task_struct *task, unsigned long trap) { task->thread.regs->trap = trap & 0xfff0; return 0; } /* * Get contents of register REGNO in task TASK. */ int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data) { if ((task->thread.regs == NULL) || !data) return -EIO; if (regno == PT_MSR) { *data = get_user_msr(task); return 0; } if (regno == PT_DSCR) return get_user_dscr(task, data); if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) { *data = ((unsigned long *)task->thread.regs)[regno]; return 0; } return -EIO; } /* * Write contents of register REGNO in task TASK. */ int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data) { if (task->thread.regs == NULL) return -EIO; if (regno == PT_MSR) return set_user_msr(task, data); if (regno == PT_TRAP) return set_user_trap(task, data); if (regno == PT_DSCR) return set_user_dscr(task, data); if (regno <= PT_MAX_PUT_REG) { ((unsigned long *)task->thread.regs)[regno] = data; return 0; } return -EIO; } static int gpr_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { int i, ret; if (target->thread.regs == NULL) return -EIO; if (!FULL_REGS(target->thread.regs)) { /* We have a partial register set. Fill 14-31 with bogus values */ for (i = 14; i < 32; i++) target->thread.regs->gpr[i] = NV_REG_POISON; } ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, target->thread.regs, 0, offsetof(struct pt_regs, msr)); if (!ret) { unsigned long msr = get_user_msr(target); ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr, offsetof(struct pt_regs, msr), offsetof(struct pt_regs, msr) + sizeof(msr)); } BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) != offsetof(struct pt_regs, msr) + sizeof(long)); if (!ret) ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &target->thread.regs->orig_gpr3, offsetof(struct pt_regs, orig_gpr3), sizeof(struct pt_regs)); if (!ret) ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, sizeof(struct pt_regs), -1); return ret; } static int gpr_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { unsigned long reg; int ret; if (target->thread.regs == NULL) return -EIO; CHECK_FULL_REGS(target->thread.regs); ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, target->thread.regs, 0, PT_MSR * sizeof(reg)); if (!ret && count > 0) { ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®, PT_MSR * sizeof(reg), (PT_MSR + 1) * sizeof(reg)); if (!ret) ret = set_user_msr(target, reg); } BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) != offsetof(struct pt_regs, msr) + sizeof(long)); if (!ret) ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &target->thread.regs->orig_gpr3, PT_ORIG_R3 * sizeof(reg), (PT_MAX_PUT_REG + 1) * sizeof(reg)); if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret) ret = user_regset_copyin_ignore( &pos, &count, &kbuf, &ubuf, (PT_MAX_PUT_REG + 1) * sizeof(reg), PT_TRAP * sizeof(reg)); if (!ret && count > 0) { ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®, PT_TRAP * sizeof(reg), (PT_TRAP + 1) * sizeof(reg)); if (!ret) ret = set_user_trap(target, reg); } if (!ret) ret = user_regset_copyin_ignore( &pos, &count, &kbuf, &ubuf, (PT_TRAP + 1) * sizeof(reg), -1); return ret; } /* * When the transaction is active, 'transact_fp' holds the current running * value of all FPR registers and 'fp_state' holds the last checkpointed * value of all FPR registers for the current transaction. When transaction * is not active 'fp_state' holds the current running state of all the FPR * registers. So this function which returns the current running values of * all the FPR registers, needs to know whether any transaction is active * or not. * * Userspace interface buffer layout: * * struct data { * u64 fpr[32]; * u64 fpscr; * }; * * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM * which determines the final code in this function. All the combinations of * these two config options are possible except the one below as transactional * memory config pulls in CONFIG_VSX automatically. * * !defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM) */ static int fpr_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { #ifdef CONFIG_VSX u64 buf[33]; int i; #endif flush_fp_to_thread(target); #if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM) /* copy to local buffer then write that out */ if (MSR_TM_ACTIVE(target->thread.regs->msr)) { flush_altivec_to_thread(target); flush_tmregs_to_thread(target); for (i = 0; i < 32 ; i++) buf[i] = target->thread.TS_TRANS_FPR(i); buf[32] = target->thread.transact_fp.fpscr; } else { for (i = 0; i < 32 ; i++) buf[i] = target->thread.TS_FPR(i); buf[32] = target->thread.fp_state.fpscr; } return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1); #endif #if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM) /* copy to local buffer then write that out */ for (i = 0; i < 32 ; i++) buf[i] = target->thread.TS_FPR(i); buf[32] = target->thread.fp_state.fpscr; return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1); #endif #if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM) BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) != offsetof(struct thread_fp_state, fpr[32])); return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &target->thread.fp_state, 0, -1); #endif } /* * When the transaction is active, 'transact_fp' holds the current running * value of all FPR registers and 'fp_state' holds the last checkpointed * value of all FPR registers for the current transaction. When transaction * is not active 'fp_state' holds the current running state of all the FPR * registers. So this function which setss the current running values of * all the FPR registers, needs to know whether any transaction is active * or not. * * Userspace interface buffer layout: * * struct data { * u64 fpr[32]; * u64 fpscr; * }; * * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM * which determines the final code in this function. All the combinations of * these two config options are possible except the one below as transactional * memory config pulls in CONFIG_VSX automatically. * * !defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM) */ static int fpr_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { #ifdef CONFIG_VSX u64 buf[33]; int i; #endif flush_fp_to_thread(target); #if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM) /* copy to local buffer then write that out */ i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1); if (i) return i; if (MSR_TM_ACTIVE(target->thread.regs->msr)) { flush_altivec_to_thread(target); flush_tmregs_to_thread(target); for (i = 0; i < 32 ; i++) target->thread.TS_TRANS_FPR(i) = buf[i]; target->thread.transact_fp.fpscr = buf[32]; } else { for (i = 0; i < 32 ; i++) target->thread.TS_FPR(i) = buf[i]; target->thread.fp_state.fpscr = buf[32]; } return 0; #endif #if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM) /* copy to local buffer then write that out */ i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1); if (i) return i; for (i = 0; i < 32 ; i++) target->thread.TS_FPR(i) = buf[i]; target->thread.fp_state.fpscr = buf[32]; return 0; #endif #if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM) BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) != offsetof(struct thread_fp_state, fpr[32])); return user_regset_copyin(&pos, &count, &kbuf, &ubuf, &target->thread.fp_state, 0, -1); #endif } #ifdef CONFIG_ALTIVEC /* * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go. * The transfer totals 34 quadword. Quadwords 0-31 contain the * corresponding vector registers. Quadword 32 contains the vscr as the * last word (offset 12) within that quadword. Quadword 33 contains the * vrsave as the first word (offset 0) within the quadword. * * This definition of the VMX state is compatible with the current PPC32 * ptrace interface. This allows signal handling and ptrace to use the * same structures. This also simplifies the implementation of a bi-arch * (combined (32- and 64-bit) gdb. */ static int vr_active(struct task_struct *target, const struct user_regset *regset) { flush_altivec_to_thread(target); return target->thread.used_vr ? regset->n : 0; } /* * When the transaction is active, 'transact_vr' holds the current running * value of all the VMX registers and 'vr_state' holds the last checkpointed * value of all the VMX registers for the current transaction to fall back * on in case it aborts. When transaction is not active 'vr_state' holds * the current running state of all the VMX registers. So this function which * gets the current running values of all the VMX registers, needs to know * whether any transaction is active or not. * * Userspace interface buffer layout: * * struct data { * vector128 vr[32]; * vector128 vscr; * vector128 vrsave; * }; */ static int vr_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { struct thread_vr_state *addr; int ret; flush_altivec_to_thread(target); BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) != offsetof(struct thread_vr_state, vr[32])); #ifdef CONFIG_PPC_TRANSACTIONAL_MEM if (MSR_TM_ACTIVE(target->thread.regs->msr)) { flush_fp_to_thread(target); flush_tmregs_to_thread(target); addr = &target->thread.transact_vr; } else { addr = &target->thread.vr_state; } #else addr = &target->thread.vr_state; #endif ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, addr, 0, 33 * sizeof(vector128)); if (!ret) { /* * Copy out only the low-order word of vrsave. */ union { elf_vrreg_t reg; u32 word; } vrsave; memset(&vrsave, 0, sizeof(vrsave)); #ifdef CONFIG_PPC_TRANSACTIONAL_MEM if (MSR_TM_ACTIVE(target->thread.regs->msr)) vrsave.word = target->thread.transact_vrsave; else vrsave.word = target->thread.vrsave; #else vrsave.word = target->thread.vrsave; #endif ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave, 33 * sizeof(vector128), -1); } return ret; } /* * When the transaction is active, 'transact_vr' holds the current running * value of all the VMX registers and 'vr_state' holds the last checkpointed * value of all the VMX registers for the current transaction to fall back * on in case it aborts. When transaction is not active 'vr_state' holds * the current running state of all the VMX registers. So this function which * sets the current running values of all the VMX registers, needs to know * whether any transaction is active or not. * * Userspace interface buffer layout: * * struct data { * vector128 vr[32]; * vector128 vscr; * vector128 vrsave; * }; */ static int vr_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { struct thread_vr_state *addr; int ret; flush_altivec_to_thread(target); BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) != offsetof(struct thread_vr_state, vr[32])); #ifdef CONFIG_PPC_TRANSACTIONAL_MEM if (MSR_TM_ACTIVE(target->thread.regs->msr)) { flush_fp_to_thread(target); flush_tmregs_to_thread(target); addr = &target->thread.transact_vr; } else { addr = &target->thread.vr_state; } #else addr = &target->thread.vr_state; #endif ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, addr, 0, 33 * sizeof(vector128)); if (!ret && count > 0) { /* * We use only the first word of vrsave. */ union { elf_vrreg_t reg; u32 word; } vrsave; memset(&vrsave, 0, sizeof(vrsave)); #ifdef CONFIG_PPC_TRANSACTIONAL_MEM if (MSR_TM_ACTIVE(target->thread.regs->msr)) vrsave.word = target->thread.transact_vrsave; else vrsave.word = target->thread.vrsave; #else vrsave.word = target->thread.vrsave; #endif ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave, 33 * sizeof(vector128), -1); if (!ret) { #ifdef CONFIG_PPC_TRANSACTIONAL_MEM if (MSR_TM_ACTIVE(target->thread.regs->msr)) target->thread.transact_vrsave = vrsave.word; else target->thread.vrsave = vrsave.word; #else target->thread.vrsave = vrsave.word; #endif } } return ret; } #endif /* CONFIG_ALTIVEC */ #ifdef CONFIG_VSX /* * Currently to set and and get all the vsx state, you need to call * the fp and VMX calls as well. This only get/sets the lower 32 * 128bit VSX registers. */ static int vsr_active(struct task_struct *target, const struct user_regset *regset) { flush_vsx_to_thread(target); return target->thread.used_vsr ? regset->n : 0; } /* * When the transaction is active, 'transact_fp' holds the current running * value of all FPR registers and 'fp_state' holds the last checkpointed * value of all FPR registers for the current transaction. When transaction * is not active 'fp_state' holds the current running state of all the FPR * registers. So this function which returns the current running values of * all the FPR registers, needs to know whether any transaction is active * or not. * * Userspace interface buffer layout: * * struct data { * u64 vsx[32]; * }; */ static int vsr_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { u64 buf[32]; int ret, i; #ifdef CONFIG_PPC_TRANSACTIONAL_MEM flush_fp_to_thread(target); flush_altivec_to_thread(target); flush_tmregs_to_thread(target); #endif flush_vsx_to_thread(target); #ifdef CONFIG_PPC_TRANSACTIONAL_MEM if (MSR_TM_ACTIVE(target->thread.regs->msr)) { for (i = 0; i < 32 ; i++) buf[i] = target->thread. transact_fp.fpr[i][TS_VSRLOWOFFSET]; } else { for (i = 0; i < 32 ; i++) buf[i] = target->thread. fp_state.fpr[i][TS_VSRLOWOFFSET]; } #else for (i = 0; i < 32 ; i++) buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET]; #endif ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, 32 * sizeof(double)); return ret; } /* * When the transaction is active, 'transact_fp' holds the current running * value of all FPR registers and 'fp_state' holds the last checkpointed * value of all FPR registers for the current transaction. When transaction * is not active 'fp_state' holds the current running state of all the FPR * registers. So this function which sets the current running values of all * the FPR registers, needs to know whether any transaction is active or not. * * Userspace interface buffer layout: * * struct data { * u64 vsx[32]; * }; */ static int vsr_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { u64 buf[32]; int ret,i; #ifdef CONFIG_PPC_TRANSACTIONAL_MEM flush_fp_to_thread(target); flush_altivec_to_thread(target); flush_tmregs_to_thread(target); #endif flush_vsx_to_thread(target); ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, 32 * sizeof(double)); #ifdef CONFIG_PPC_TRANSACTIONAL_MEM if (MSR_TM_ACTIVE(target->thread.regs->msr)) { for (i = 0; i < 32 ; i++) target->thread.transact_fp. fpr[i][TS_VSRLOWOFFSET] = buf[i]; } else { for (i = 0; i < 32 ; i++) target->thread.fp_state. fpr[i][TS_VSRLOWOFFSET] = buf[i]; } #else for (i = 0; i < 32 ; i++) target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i]; #endif return ret; } #endif /* CONFIG_VSX */ #ifdef CONFIG_SPE /* * For get_evrregs/set_evrregs functions 'data' has the following layout: * * struct { * u32 evr[32]; * u64 acc; * u32 spefscr; * } */ static int evr_active(struct task_struct *target, const struct user_regset *regset) { flush_spe_to_thread(target); return target->thread.used_spe ? regset->n : 0; } static int evr_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { int ret; flush_spe_to_thread(target); ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &target->thread.evr, 0, sizeof(target->thread.evr)); BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) != offsetof(struct thread_struct, spefscr)); if (!ret) ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &target->thread.acc, sizeof(target->thread.evr), -1); return ret; } static int evr_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { int ret; flush_spe_to_thread(target); ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &target->thread.evr, 0, sizeof(target->thread.evr)); BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) != offsetof(struct thread_struct, spefscr)); if (!ret) ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &target->thread.acc, sizeof(target->thread.evr), -1); return ret; } #endif /* CONFIG_SPE */ /* * These are our native regset flavors. */ enum powerpc_regset { REGSET_GPR, REGSET_FPR, #ifdef CONFIG_ALTIVEC REGSET_VMX, #endif #ifdef CONFIG_VSX REGSET_VSX, #endif #ifdef CONFIG_SPE REGSET_SPE, #endif }; static const struct user_regset native_regsets[] = { [REGSET_GPR] = { .core_note_type = NT_PRSTATUS, .n = ELF_NGREG, .size = sizeof(long), .align = sizeof(long), .get = gpr_get, .set = gpr_set }, [REGSET_FPR] = { .core_note_type = NT_PRFPREG, .n = ELF_NFPREG, .size = sizeof(double), .align = sizeof(double), .get = fpr_get, .set = fpr_set }, #ifdef CONFIG_ALTIVEC [REGSET_VMX] = { .core_note_type = NT_PPC_VMX, .n = 34, .size = sizeof(vector128), .align = sizeof(vector128), .active = vr_active, .get = vr_get, .set = vr_set }, #endif #ifdef CONFIG_VSX [REGSET_VSX] = { .core_note_type = NT_PPC_VSX, .n = 32, .size = sizeof(double), .align = sizeof(double), .active = vsr_active, .get = vsr_get, .set = vsr_set }, #endif #ifdef CONFIG_SPE [REGSET_SPE] = { .core_note_type = NT_PPC_SPE, .n = 35, .size = sizeof(u32), .align = sizeof(u32), .active = evr_active, .get = evr_get, .set = evr_set }, #endif }; static const struct user_regset_view user_ppc_native_view = { .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets) }; #ifdef CONFIG_PPC64 #include static int gpr32_get_common(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf, bool tm_active) { const unsigned long *regs = &target->thread.regs->gpr[0]; const unsigned long *ckpt_regs; compat_ulong_t *k = kbuf; compat_ulong_t __user *u = ubuf; compat_ulong_t reg; int i; #ifdef CONFIG_PPC_TRANSACTIONAL_MEM ckpt_regs = &target->thread.ckpt_regs.gpr[0]; #endif if (tm_active) { regs = ckpt_regs; } else { if (target->thread.regs == NULL) return -EIO; if (!FULL_REGS(target->thread.regs)) { /* * We have a partial register set. * Fill 14-31 with bogus values. */ for (i = 14; i < 32; i++) target->thread.regs->gpr[i] = NV_REG_POISON; } } pos /= sizeof(reg); count /= sizeof(reg); if (kbuf) for (; count > 0 && pos < PT_MSR; --count) *k++ = regs[pos++]; else for (; count > 0 && pos < PT_MSR; --count) if (__put_user((compat_ulong_t) regs[pos++], u++)) return -EFAULT; if (count > 0 && pos == PT_MSR) { reg = get_user_msr(target); if (kbuf) *k++ = reg; else if (__put_user(reg, u++)) return -EFAULT; ++pos; --count; } if (kbuf) for (; count > 0 && pos < PT_REGS_COUNT; --count) *k++ = regs[pos++]; else for (; count > 0 && pos < PT_REGS_COUNT; --count) if (__put_user((compat_ulong_t) regs[pos++], u++)) return -EFAULT; kbuf = k; ubuf = u; pos *= sizeof(reg); count *= sizeof(reg); return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf, PT_REGS_COUNT * sizeof(reg), -1); } static int gpr32_set_common(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf, bool tm_active) { unsigned long *regs = &target->thread.regs->gpr[0]; unsigned long *ckpt_regs; const compat_ulong_t *k = kbuf; const compat_ulong_t __user *u = ubuf; compat_ulong_t reg; #ifdef CONFIG_PPC_TRANSACTIONAL_MEM ckpt_regs = &target->thread.ckpt_regs.gpr[0]; #endif if (tm_active) { regs = ckpt_regs; } else { regs = &target->thread.regs->gpr[0]; if (target->thread.regs == NULL) return -EIO; CHECK_FULL_REGS(target->thread.regs); } pos /= sizeof(reg); count /= sizeof(reg); if (kbuf) for (; count > 0 && pos < PT_MSR; --count) regs[pos++] = *k++; else for (; count > 0 && pos < PT_MSR; --count) { if (__get_user(reg, u++)) return -EFAULT; regs[pos++] = reg; } if (count > 0 && pos == PT_MSR) { if (kbuf) reg = *k++; else if (__get_user(reg, u++)) return -EFAULT; set_user_msr(target, reg); ++pos; --count; } if (kbuf) { for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) regs[pos++] = *k++; for (; count > 0 && pos < PT_TRAP; --count, ++pos) ++k; } else { for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) { if (__get_user(reg, u++)) return -EFAULT; regs[pos++] = reg; } for (; count > 0 && pos < PT_TRAP; --count, ++pos) if (__get_user(reg, u++)) return -EFAULT; } if (count > 0 && pos == PT_TRAP) { if (kbuf) reg = *k++; else if (__get_user(reg, u++)) return -EFAULT; set_user_trap(target, reg); ++pos; --count; } kbuf = k; ubuf = u; pos *= sizeof(reg); count *= sizeof(reg); return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, (PT_TRAP + 1) * sizeof(reg), -1); } static int gpr32_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { return gpr32_get_common(target, regset, pos, count, kbuf, ubuf, 0); } static int gpr32_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { return gpr32_set_common(target, regset, pos, count, kbuf, ubuf, 0); } /* * These are the regset flavors matching the CONFIG_PPC32 native set. */ static const struct user_regset compat_regsets[] = { [REGSET_GPR] = { .core_note_type = NT_PRSTATUS, .n = ELF_NGREG, .size = sizeof(compat_long_t), .align = sizeof(compat_long_t), .get = gpr32_get, .set = gpr32_set }, [REGSET_FPR] = { .core_note_type = NT_PRFPREG, .n = ELF_NFPREG, .size = sizeof(double), .align = sizeof(double), .get = fpr_get, .set = fpr_set }, #ifdef CONFIG_ALTIVEC [REGSET_VMX] = { .core_note_type = NT_PPC_VMX, .n = 34, .size = sizeof(vector128), .align = sizeof(vector128), .active = vr_active, .get = vr_get, .set = vr_set }, #endif #ifdef CONFIG_SPE [REGSET_SPE] = { .core_note_type = NT_PPC_SPE, .n = 35, .size = sizeof(u32), .align = sizeof(u32), .active = evr_active, .get = evr_get, .set = evr_set }, #endif }; static const struct user_regset_view user_ppc_compat_view = { .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI, .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets) }; #endif /* CONFIG_PPC64 */ const struct user_regset_view *task_user_regset_view(struct task_struct *task) { #ifdef CONFIG_PPC64 if (test_tsk_thread_flag(task, TIF_32BIT)) return &user_ppc_compat_view; #endif return &user_ppc_native_view; } void user_enable_single_step(struct task_struct *task) { struct pt_regs *regs = task->thread.regs; if (regs != NULL) { #ifdef CONFIG_PPC_ADV_DEBUG_REGS task->thread.debug.dbcr0 &= ~DBCR0_BT; task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC; regs->msr |= MSR_DE; #else regs->msr &= ~MSR_BE; regs->msr |= MSR_SE; #endif } set_tsk_thread_flag(task, TIF_SINGLESTEP); } void user_enable_block_step(struct task_struct *task) { struct pt_regs *regs = task->thread.regs; if (regs != NULL) { #ifdef CONFIG_PPC_ADV_DEBUG_REGS task->thread.debug.dbcr0 &= ~DBCR0_IC; task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT; regs->msr |= MSR_DE; #else regs->msr &= ~MSR_SE; regs->msr |= MSR_BE; #endif } set_tsk_thread_flag(task, TIF_SINGLESTEP); } void user_disable_single_step(struct task_struct *task) { struct pt_regs *regs = task->thread.regs; if (regs != NULL) { #ifdef CONFIG_PPC_ADV_DEBUG_REGS /* * The logic to disable single stepping should be as * simple as turning off the Instruction Complete flag. * And, after doing so, if all debug flags are off, turn * off DBCR0(IDM) and MSR(DE) .... Torez */ task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT); /* * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set. */ if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0, task->thread.debug.dbcr1)) { /* * All debug events were off..... */ task->thread.debug.dbcr0 &= ~DBCR0_IDM; regs->msr &= ~MSR_DE; } #else regs->msr &= ~(MSR_SE | MSR_BE); #endif } clear_tsk_thread_flag(task, TIF_SINGLESTEP); } #ifdef CONFIG_HAVE_HW_BREAKPOINT void ptrace_triggered(struct perf_event *bp, struct perf_sample_data *data, struct pt_regs *regs) { struct perf_event_attr attr; /* * Disable the breakpoint request here since ptrace has defined a * one-shot behaviour for breakpoint exceptions in PPC64. * The SIGTRAP signal is generated automatically for us in do_dabr(). * We don't have to do anything about that here */ attr = bp->attr; attr.disabled = true; modify_user_hw_breakpoint(bp, &attr); } #endif /* CONFIG_HAVE_HW_BREAKPOINT */ static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr, unsigned long data) { #ifdef CONFIG_HAVE_HW_BREAKPOINT int ret; struct thread_struct *thread = &(task->thread); struct perf_event *bp; struct perf_event_attr attr; #endif /* CONFIG_HAVE_HW_BREAKPOINT */ #ifndef CONFIG_PPC_ADV_DEBUG_REGS struct arch_hw_breakpoint hw_brk; #endif /* For ppc64 we support one DABR and no IABR's at the moment (ppc64). * For embedded processors we support one DAC and no IAC's at the * moment. */ if (addr > 0) return -EINVAL; /* The bottom 3 bits in dabr are flags */ if ((data & ~0x7UL) >= TASK_SIZE) return -EIO; #ifndef CONFIG_PPC_ADV_DEBUG_REGS /* For processors using DABR (i.e. 970), the bottom 3 bits are flags. * It was assumed, on previous implementations, that 3 bits were * passed together with the data address, fitting the design of the * DABR register, as follows: * * bit 0: Read flag * bit 1: Write flag * bit 2: Breakpoint translation * * Thus, we use them here as so. */ /* Ensure breakpoint translation bit is set */ if (data && !(data & HW_BRK_TYPE_TRANSLATE)) return -EIO; hw_brk.address = data & (~HW_BRK_TYPE_DABR); hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL; hw_brk.len = 8; #ifdef CONFIG_HAVE_HW_BREAKPOINT bp = thread->ptrace_bps[0]; if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) { if (bp) { unregister_hw_breakpoint(bp); thread->ptrace_bps[0] = NULL; } return 0; } if (bp) { attr = bp->attr; attr.bp_addr = hw_brk.address; arch_bp_generic_fields(hw_brk.type, &attr.bp_type); /* Enable breakpoint */ attr.disabled = false; ret = modify_user_hw_breakpoint(bp, &attr); if (ret) { return ret; } thread->ptrace_bps[0] = bp; thread->hw_brk = hw_brk; return 0; } /* Create a new breakpoint request if one doesn't exist already */ hw_breakpoint_init(&attr); attr.bp_addr = hw_brk.address; arch_bp_generic_fields(hw_brk.type, &attr.bp_type); thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr, ptrace_triggered, NULL, task); if (IS_ERR(bp)) { thread->ptrace_bps[0] = NULL; return PTR_ERR(bp); } #endif /* CONFIG_HAVE_HW_BREAKPOINT */ task->thread.hw_brk = hw_brk; #else /* CONFIG_PPC_ADV_DEBUG_REGS */ /* As described above, it was assumed 3 bits were passed with the data * address, but we will assume only the mode bits will be passed * as to not cause alignment restrictions for DAC-based processors. */ /* DAC's hold the whole address without any mode flags */ task->thread.debug.dac1 = data & ~0x3UL; if (task->thread.debug.dac1 == 0) { dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W); if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0, task->thread.debug.dbcr1)) { task->thread.regs->msr &= ~MSR_DE; task->thread.debug.dbcr0 &= ~DBCR0_IDM; } return 0; } /* Read or Write bits must be set */ if (!(data & 0x3UL)) return -EINVAL; /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0 register */ task->thread.debug.dbcr0 |= DBCR0_IDM; /* Check for write and read flags and set DBCR0 accordingly */ dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W); if (data & 0x1UL) dbcr_dac(task) |= DBCR_DAC1R; if (data & 0x2UL) dbcr_dac(task) |= DBCR_DAC1W; task->thread.regs->msr |= MSR_DE; #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ return 0; } /* * Called by kernel/ptrace.c when detaching.. * * Make sure single step bits etc are not set. */ void ptrace_disable(struct task_struct *child) { /* make sure the single step bit is not set. */ user_disable_single_step(child); } #ifdef CONFIG_PPC_ADV_DEBUG_REGS static long set_instruction_bp(struct task_struct *child, struct ppc_hw_breakpoint *bp_info) { int slot; int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0); int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0); int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0); int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0); if (dbcr_iac_range(child) & DBCR_IAC12MODE) slot2_in_use = 1; if (dbcr_iac_range(child) & DBCR_IAC34MODE) slot4_in_use = 1; if (bp_info->addr >= TASK_SIZE) return -EIO; if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) { /* Make sure range is valid. */ if (bp_info->addr2 >= TASK_SIZE) return -EIO; /* We need a pair of IAC regsisters */ if ((!slot1_in_use) && (!slot2_in_use)) { slot = 1; child->thread.debug.iac1 = bp_info->addr; child->thread.debug.iac2 = bp_info->addr2; child->thread.debug.dbcr0 |= DBCR0_IAC1; if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE) dbcr_iac_range(child) |= DBCR_IAC12X; else dbcr_iac_range(child) |= DBCR_IAC12I; #if CONFIG_PPC_ADV_DEBUG_IACS > 2 } else if ((!slot3_in_use) && (!slot4_in_use)) { slot = 3; child->thread.debug.iac3 = bp_info->addr; child->thread.debug.iac4 = bp_info->addr2; child->thread.debug.dbcr0 |= DBCR0_IAC3; if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE) dbcr_iac_range(child) |= DBCR_IAC34X; else dbcr_iac_range(child) |= DBCR_IAC34I; #endif } else return -ENOSPC; } else { /* We only need one. If possible leave a pair free in * case a range is needed later */ if (!slot1_in_use) { /* * Don't use iac1 if iac1-iac2 are free and either * iac3 or iac4 (but not both) are free */ if (slot2_in_use || (slot3_in_use == slot4_in_use)) { slot = 1; child->thread.debug.iac1 = bp_info->addr; child->thread.debug.dbcr0 |= DBCR0_IAC1; goto out; } } if (!slot2_in_use) { slot = 2; child->thread.debug.iac2 = bp_info->addr; child->thread.debug.dbcr0 |= DBCR0_IAC2; #if CONFIG_PPC_ADV_DEBUG_IACS > 2 } else if (!slot3_in_use) { slot = 3; child->thread.debug.iac3 = bp_info->addr; child->thread.debug.dbcr0 |= DBCR0_IAC3; } else if (!slot4_in_use) { slot = 4; child->thread.debug.iac4 = bp_info->addr; child->thread.debug.dbcr0 |= DBCR0_IAC4; #endif } else return -ENOSPC; } out: child->thread.debug.dbcr0 |= DBCR0_IDM; child->thread.regs->msr |= MSR_DE; return slot; } static int del_instruction_bp(struct task_struct *child, int slot) { switch (slot) { case 1: if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0) return -ENOENT; if (dbcr_iac_range(child) & DBCR_IAC12MODE) { /* address range - clear slots 1 & 2 */ child->thread.debug.iac2 = 0; dbcr_iac_range(child) &= ~DBCR_IAC12MODE; } child->thread.debug.iac1 = 0; child->thread.debug.dbcr0 &= ~DBCR0_IAC1; break; case 2: if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0) return -ENOENT; if (dbcr_iac_range(child) & DBCR_IAC12MODE) /* used in a range */ return -EINVAL; child->thread.debug.iac2 = 0; child->thread.debug.dbcr0 &= ~DBCR0_IAC2; break; #if CONFIG_PPC_ADV_DEBUG_IACS > 2 case 3: if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0) return -ENOENT; if (dbcr_iac_range(child) & DBCR_IAC34MODE) { /* address range - clear slots 3 & 4 */ child->thread.debug.iac4 = 0; dbcr_iac_range(child) &= ~DBCR_IAC34MODE; } child->thread.debug.iac3 = 0; child->thread.debug.dbcr0 &= ~DBCR0_IAC3; break; case 4: if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0) return -ENOENT; if (dbcr_iac_range(child) & DBCR_IAC34MODE) /* Used in a range */ return -EINVAL; child->thread.debug.iac4 = 0; child->thread.debug.dbcr0 &= ~DBCR0_IAC4; break; #endif default: return -EINVAL; } return 0; } static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info) { int byte_enable = (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT) & 0xf; int condition_mode = bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE; int slot; if (byte_enable && (condition_mode == 0)) return -EINVAL; if (bp_info->addr >= TASK_SIZE) return -EIO; if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) { slot = 1; if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ) dbcr_dac(child) |= DBCR_DAC1R; if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE) dbcr_dac(child) |= DBCR_DAC1W; child->thread.debug.dac1 = (unsigned long)bp_info->addr; #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 if (byte_enable) { child->thread.debug.dvc1 = (unsigned long)bp_info->condition_value; child->thread.debug.dbcr2 |= ((byte_enable << DBCR2_DVC1BE_SHIFT) | (condition_mode << DBCR2_DVC1M_SHIFT)); } #endif #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE } else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) { /* Both dac1 and dac2 are part of a range */ return -ENOSPC; #endif } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) { slot = 2; if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ) dbcr_dac(child) |= DBCR_DAC2R; if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE) dbcr_dac(child) |= DBCR_DAC2W; child->thread.debug.dac2 = (unsigned long)bp_info->addr; #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 if (byte_enable) { child->thread.debug.dvc2 = (unsigned long)bp_info->condition_value; child->thread.debug.dbcr2 |= ((byte_enable << DBCR2_DVC2BE_SHIFT) | (condition_mode << DBCR2_DVC2M_SHIFT)); } #endif } else return -ENOSPC; child->thread.debug.dbcr0 |= DBCR0_IDM; child->thread.regs->msr |= MSR_DE; return slot + 4; } static int del_dac(struct task_struct *child, int slot) { if (slot == 1) { if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) return -ENOENT; child->thread.debug.dac1 = 0; dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W); #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) { child->thread.debug.dac2 = 0; child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE; } child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE); #endif #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 child->thread.debug.dvc1 = 0; #endif } else if (slot == 2) { if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) return -ENOENT; #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) /* Part of a range */ return -EINVAL; child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE); #endif #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 child->thread.debug.dvc2 = 0; #endif child->thread.debug.dac2 = 0; dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W); } else return -EINVAL; return 0; } #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE static int set_dac_range(struct task_struct *child, struct ppc_hw_breakpoint *bp_info) { int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK; /* We don't allow range watchpoints to be used with DVC */ if (bp_info->condition_mode) return -EINVAL; /* * Best effort to verify the address range. The user/supervisor bits * prevent trapping in kernel space, but let's fail on an obvious bad * range. The simple test on the mask is not fool-proof, and any * exclusive range will spill over into kernel space. */ if (bp_info->addr >= TASK_SIZE) return -EIO; if (mode == PPC_BREAKPOINT_MODE_MASK) { /* * dac2 is a bitmask. Don't allow a mask that makes a * kernel space address from a valid dac1 value */ if (~((unsigned long)bp_info->addr2) >= TASK_SIZE) return -EIO; } else { /* * For range breakpoints, addr2 must also be a valid address */ if (bp_info->addr2 >= TASK_SIZE) return -EIO; } if (child->thread.debug.dbcr0 & (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W)) return -ENOSPC; if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ) child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM); if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE) child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM); child->thread.debug.dac1 = bp_info->addr; child->thread.debug.dac2 = bp_info->addr2; if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE) child->thread.debug.dbcr2 |= DBCR2_DAC12M; else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE) child->thread.debug.dbcr2 |= DBCR2_DAC12MX; else /* PPC_BREAKPOINT_MODE_MASK */ child->thread.debug.dbcr2 |= DBCR2_DAC12MM; child->thread.regs->msr |= MSR_DE; return 5; } #endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */ static long ppc_set_hwdebug(struct task_struct *child, struct ppc_hw_breakpoint *bp_info) { #ifdef CONFIG_HAVE_HW_BREAKPOINT int len = 0; struct thread_struct *thread = &(child->thread); struct perf_event *bp; struct perf_event_attr attr; #endif /* CONFIG_HAVE_HW_BREAKPOINT */ #ifndef CONFIG_PPC_ADV_DEBUG_REGS struct arch_hw_breakpoint brk; #endif if (bp_info->version != 1) return -ENOTSUPP; #ifdef CONFIG_PPC_ADV_DEBUG_REGS /* * Check for invalid flags and combinations */ if ((bp_info->trigger_type == 0) || (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE | PPC_BREAKPOINT_TRIGGER_RW)) || (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) || (bp_info->condition_mode & ~(PPC_BREAKPOINT_CONDITION_MODE | PPC_BREAKPOINT_CONDITION_BE_ALL))) return -EINVAL; #if CONFIG_PPC_ADV_DEBUG_DVCS == 0 if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE) return -EINVAL; #endif if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) { if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) || (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)) return -EINVAL; return set_instruction_bp(child, bp_info); } if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT) return set_dac(child, bp_info); #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE return set_dac_range(child, bp_info); #else return -EINVAL; #endif #else /* !CONFIG_PPC_ADV_DEBUG_DVCS */ /* * We only support one data breakpoint */ if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 || (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 || bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE) return -EINVAL; if ((unsigned long)bp_info->addr >= TASK_SIZE) return -EIO; brk.address = bp_info->addr & ~7UL; brk.type = HW_BRK_TYPE_TRANSLATE; brk.len = 8; if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ) brk.type |= HW_BRK_TYPE_READ; if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE) brk.type |= HW_BRK_TYPE_WRITE; #ifdef CONFIG_HAVE_HW_BREAKPOINT /* * Check if the request is for 'range' breakpoints. We can * support it if range < 8 bytes. */ if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE) len = bp_info->addr2 - bp_info->addr; else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT) len = 1; else return -EINVAL; bp = thread->ptrace_bps[0]; if (bp) return -ENOSPC; /* Create a new breakpoint request if one doesn't exist already */ hw_breakpoint_init(&attr); attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN; attr.bp_len = len; arch_bp_generic_fields(brk.type, &attr.bp_type); thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr, ptrace_triggered, NULL, child); if (IS_ERR(bp)) { thread->ptrace_bps[0] = NULL; return PTR_ERR(bp); } return 1; #endif /* CONFIG_HAVE_HW_BREAKPOINT */ if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) return -EINVAL; if (child->thread.hw_brk.address) return -ENOSPC; child->thread.hw_brk = brk; return 1; #endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */ } static long ppc_del_hwdebug(struct task_struct *child, long data) { #ifdef CONFIG_HAVE_HW_BREAKPOINT int ret = 0; struct thread_struct *thread = &(child->thread); struct perf_event *bp; #endif /* CONFIG_HAVE_HW_BREAKPOINT */ #ifdef CONFIG_PPC_ADV_DEBUG_REGS int rc; if (data <= 4) rc = del_instruction_bp(child, (int)data); else rc = del_dac(child, (int)data - 4); if (!rc) { if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0, child->thread.debug.dbcr1)) { child->thread.debug.dbcr0 &= ~DBCR0_IDM; child->thread.regs->msr &= ~MSR_DE; } } return rc; #else if (data != 1) return -EINVAL; #ifdef CONFIG_HAVE_HW_BREAKPOINT bp = thread->ptrace_bps[0]; if (bp) { unregister_hw_breakpoint(bp); thread->ptrace_bps[0] = NULL; } else ret = -ENOENT; return ret; #else /* CONFIG_HAVE_HW_BREAKPOINT */ if (child->thread.hw_brk.address == 0) return -ENOENT; child->thread.hw_brk.address = 0; child->thread.hw_brk.type = 0; #endif /* CONFIG_HAVE_HW_BREAKPOINT */ return 0; #endif } long arch_ptrace(struct task_struct *child, long request, unsigned long addr, unsigned long data) { int ret = -EPERM; void __user *datavp = (void __user *) data; unsigned long __user *datalp = datavp; switch (request) { /* read the word at location addr in the USER area. */ case PTRACE_PEEKUSR: { unsigned long index, tmp; ret = -EIO; /* convert to index and check */ #ifdef CONFIG_PPC32 index = addr >> 2; if ((addr & 3) || (index > PT_FPSCR) || (child->thread.regs == NULL)) #else index = addr >> 3; if ((addr & 7) || (index > PT_FPSCR)) #endif break; CHECK_FULL_REGS(child->thread.regs); if (index < PT_FPR0) { ret = ptrace_get_reg(child, (int) index, &tmp); if (ret) break; } else { unsigned int fpidx = index - PT_FPR0; flush_fp_to_thread(child); if (fpidx < (PT_FPSCR - PT_FPR0)) memcpy(&tmp, &child->thread.TS_FPR(fpidx), sizeof(long)); else tmp = child->thread.fp_state.fpscr; } ret = put_user(tmp, datalp); break; } /* write the word at location addr in the USER area */ case PTRACE_POKEUSR: { unsigned long index; ret = -EIO; /* convert to index and check */ #ifdef CONFIG_PPC32 index = addr >> 2; if ((addr & 3) || (index > PT_FPSCR) || (child->thread.regs == NULL)) #else index = addr >> 3; if ((addr & 7) || (index > PT_FPSCR)) #endif break; CHECK_FULL_REGS(child->thread.regs); if (index < PT_FPR0) { ret = ptrace_put_reg(child, index, data); } else { unsigned int fpidx = index - PT_FPR0; flush_fp_to_thread(child); if (fpidx < (PT_FPSCR - PT_FPR0)) memcpy(&child->thread.TS_FPR(fpidx), &data, sizeof(long)); else child->thread.fp_state.fpscr = data; ret = 0; } break; } case PPC_PTRACE_GETHWDBGINFO: { struct ppc_debug_info dbginfo; dbginfo.version = 1; #ifdef CONFIG_PPC_ADV_DEBUG_REGS dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS; dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS; dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS; dbginfo.data_bp_alignment = 4; dbginfo.sizeof_condition = 4; dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE | PPC_DEBUG_FEATURE_INSN_BP_MASK; #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_RANGE | PPC_DEBUG_FEATURE_DATA_BP_MASK; #endif #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ dbginfo.num_instruction_bps = 0; dbginfo.num_data_bps = 1; dbginfo.num_condition_regs = 0; #ifdef CONFIG_PPC64 dbginfo.data_bp_alignment = 8; #else dbginfo.data_bp_alignment = 4; #endif dbginfo.sizeof_condition = 0; #ifdef CONFIG_HAVE_HW_BREAKPOINT dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE; if (cpu_has_feature(CPU_FTR_DAWR)) dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR; #else dbginfo.features = 0; #endif /* CONFIG_HAVE_HW_BREAKPOINT */ #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ if (!access_ok(VERIFY_WRITE, datavp, sizeof(struct ppc_debug_info))) return -EFAULT; ret = __copy_to_user(datavp, &dbginfo, sizeof(struct ppc_debug_info)) ? -EFAULT : 0; break; } case PPC_PTRACE_SETHWDEBUG: { struct ppc_hw_breakpoint bp_info; if (!access_ok(VERIFY_READ, datavp, sizeof(struct ppc_hw_breakpoint))) return -EFAULT; ret = __copy_from_user(&bp_info, datavp, sizeof(struct ppc_hw_breakpoint)) ? -EFAULT : 0; if (!ret) ret = ppc_set_hwdebug(child, &bp_info); break; } case PPC_PTRACE_DELHWDEBUG: { ret = ppc_del_hwdebug(child, data); break; } case PTRACE_GET_DEBUGREG: { #ifndef CONFIG_PPC_ADV_DEBUG_REGS unsigned long dabr_fake; #endif ret = -EINVAL; /* We only support one DABR and no IABRS at the moment */ if (addr > 0) break; #ifdef CONFIG_PPC_ADV_DEBUG_REGS ret = put_user(child->thread.debug.dac1, datalp); #else dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) | (child->thread.hw_brk.type & HW_BRK_TYPE_DABR)); ret = put_user(dabr_fake, datalp); #endif break; } case PTRACE_SET_DEBUGREG: ret = ptrace_set_debugreg(child, addr, data); break; #ifdef CONFIG_PPC64 case PTRACE_GETREGS64: #endif case PTRACE_GETREGS: /* Get all pt_regs from the child. */ return copy_regset_to_user(child, &user_ppc_native_view, REGSET_GPR, 0, sizeof(struct pt_regs), datavp); #ifdef CONFIG_PPC64 case PTRACE_SETREGS64: #endif case PTRACE_SETREGS: /* Set all gp regs in the child. */ return copy_regset_from_user(child, &user_ppc_native_view, REGSET_GPR, 0, sizeof(struct pt_regs), datavp); case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */ return copy_regset_to_user(child, &user_ppc_native_view, REGSET_FPR, 0, sizeof(elf_fpregset_t), datavp); case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */ return copy_regset_from_user(child, &user_ppc_native_view, REGSET_FPR, 0, sizeof(elf_fpregset_t), datavp); #ifdef CONFIG_ALTIVEC case PTRACE_GETVRREGS: return copy_regset_to_user(child, &user_ppc_native_view, REGSET_VMX, 0, (33 * sizeof(vector128) + sizeof(u32)), datavp); case PTRACE_SETVRREGS: return copy_regset_from_user(child, &user_ppc_native_view, REGSET_VMX, 0, (33 * sizeof(vector128) + sizeof(u32)), datavp); #endif #ifdef CONFIG_VSX case PTRACE_GETVSRREGS: return copy_regset_to_user(child, &user_ppc_native_view, REGSET_VSX, 0, 32 * sizeof(double), datavp); case PTRACE_SETVSRREGS: return copy_regset_from_user(child, &user_ppc_native_view, REGSET_VSX, 0, 32 * sizeof(double), datavp); #endif #ifdef CONFIG_SPE case PTRACE_GETEVRREGS: /* Get the child spe register state. */ return copy_regset_to_user(child, &user_ppc_native_view, REGSET_SPE, 0, 35 * sizeof(u32), datavp); case PTRACE_SETEVRREGS: /* Set the child spe register state. */ return copy_regset_from_user(child, &user_ppc_native_view, REGSET_SPE, 0, 35 * sizeof(u32), datavp); #endif default: ret = ptrace_request(child, request, addr, data); break; } return ret; } #ifdef CONFIG_SECCOMP static int do_seccomp(struct pt_regs *regs) { if (!test_thread_flag(TIF_SECCOMP)) return 0; /* * The ABI we present to seccomp tracers is that r3 contains * the syscall return value and orig_gpr3 contains the first * syscall parameter. This is different to the ptrace ABI where * both r3 and orig_gpr3 contain the first syscall parameter. */ regs->gpr[3] = -ENOSYS; /* * We use the __ version here because we have already checked * TIF_SECCOMP. If this fails, there is nothing left to do, we * have already loaded -ENOSYS into r3, or seccomp has put * something else in r3 (via SECCOMP_RET_ERRNO/TRACE). */ if (__secure_computing(NULL)) return -1; /* * The syscall was allowed by seccomp, restore the register * state to what audit expects. * Note that we use orig_gpr3, which means a seccomp tracer can * modify the first syscall parameter (in orig_gpr3) and also * allow the syscall to proceed. */ regs->gpr[3] = regs->orig_gpr3; return 0; } #else static inline int do_seccomp(struct pt_regs *regs) { return 0; } #endif /* CONFIG_SECCOMP */ /** * do_syscall_trace_enter() - Do syscall tracing on kernel entry. * @regs: the pt_regs of the task to trace (current) * * Performs various types of tracing on syscall entry. This includes seccomp, * ptrace, syscall tracepoints and audit. * * The pt_regs are potentially visible to userspace via ptrace, so their * contents is ABI. * * One or more of the tracers may modify the contents of pt_regs, in particular * to modify arguments or even the syscall number itself. * * It's also possible that a tracer can choose to reject the system call. In * that case this function will return an illegal syscall number, and will put * an appropriate return value in regs->r3. * * Return: the (possibly changed) syscall number. */ long do_syscall_trace_enter(struct pt_regs *regs) { user_exit(); /* * The tracer may decide to abort the syscall, if so tracehook * will return !0. Note that the tracer may also just change * regs->gpr[0] to an invalid syscall number, that is handled * below on the exit path. */ if (test_thread_flag(TIF_SYSCALL_TRACE) && tracehook_report_syscall_entry(regs)) goto skip; /* Run seccomp after ptrace; allow it to set gpr[3]. */ if (do_seccomp(regs)) return -1; /* Avoid trace and audit when syscall is invalid. */ if (regs->gpr[0] >= NR_syscalls) goto skip; if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT))) trace_sys_enter(regs, regs->gpr[0]); #ifdef CONFIG_PPC64 if (!is_32bit_task()) audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4], regs->gpr[5], regs->gpr[6]); else #endif audit_syscall_entry(regs->gpr[0], regs->gpr[3] & 0xffffffff, regs->gpr[4] & 0xffffffff, regs->gpr[5] & 0xffffffff, regs->gpr[6] & 0xffffffff); /* Return the possibly modified but valid syscall number */ return regs->gpr[0]; skip: /* * If we are aborting explicitly, or if the syscall number is * now invalid, set the return value to -ENOSYS. */ regs->gpr[3] = -ENOSYS; return -1; } void do_syscall_trace_leave(struct pt_regs *regs) { int step; audit_syscall_exit(regs); if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT))) trace_sys_exit(regs, regs->result); step = test_thread_flag(TIF_SINGLESTEP); if (step || test_thread_flag(TIF_SYSCALL_TRACE)) tracehook_report_syscall_exit(regs, step); user_enter(); }