/* * BPF JIT compiler for ARM64 * * Copyright (C) 2014-2015 Zi Shen Lim * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #define pr_fmt(fmt) "bpf_jit: " fmt #include #include #include #include #include #include #include #include "bpf_jit.h" int bpf_jit_enable __read_mostly; #define TMP_REG_1 (MAX_BPF_REG + 0) #define TMP_REG_2 (MAX_BPF_REG + 1) /* Map BPF registers to A64 registers */ static const int bpf2a64[] = { /* return value from in-kernel function, and exit value from eBPF */ [BPF_REG_0] = A64_R(7), /* arguments from eBPF program to in-kernel function */ [BPF_REG_1] = A64_R(0), [BPF_REG_2] = A64_R(1), [BPF_REG_3] = A64_R(2), [BPF_REG_4] = A64_R(3), [BPF_REG_5] = A64_R(4), /* callee saved registers that in-kernel function will preserve */ [BPF_REG_6] = A64_R(19), [BPF_REG_7] = A64_R(20), [BPF_REG_8] = A64_R(21), [BPF_REG_9] = A64_R(22), /* read-only frame pointer to access stack */ [BPF_REG_FP] = A64_R(25), /* temporary register for internal BPF JIT */ [TMP_REG_1] = A64_R(23), [TMP_REG_2] = A64_R(24), }; struct jit_ctx { const struct bpf_prog *prog; int idx; int tmp_used; int epilogue_offset; int *offset; u32 *image; }; static inline void emit(const u32 insn, struct jit_ctx *ctx) { if (ctx->image != NULL) ctx->image[ctx->idx] = cpu_to_le32(insn); ctx->idx++; } static inline void emit_a64_mov_i64(const int reg, const u64 val, struct jit_ctx *ctx) { u64 tmp = val; int shift = 0; emit(A64_MOVZ(1, reg, tmp & 0xffff, shift), ctx); tmp >>= 16; shift += 16; while (tmp) { if (tmp & 0xffff) emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx); tmp >>= 16; shift += 16; } } static inline void emit_a64_mov_i(const int is64, const int reg, const s32 val, struct jit_ctx *ctx) { u16 hi = val >> 16; u16 lo = val & 0xffff; if (hi & 0x8000) { if (hi == 0xffff) { emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx); } else { emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx); emit(A64_MOVK(is64, reg, lo, 0), ctx); } } else { emit(A64_MOVZ(is64, reg, lo, 0), ctx); if (hi) emit(A64_MOVK(is64, reg, hi, 16), ctx); } } static inline int bpf2a64_offset(int bpf_to, int bpf_from, const struct jit_ctx *ctx) { int to = ctx->offset[bpf_to]; /* -1 to account for the Branch instruction */ int from = ctx->offset[bpf_from] - 1; return to - from; } static void jit_fill_hole(void *area, unsigned int size) { u32 *ptr; /* We are guaranteed to have aligned memory. */ for (ptr = area; size >= sizeof(u32); size -= sizeof(u32)) *ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT); } static inline int epilogue_offset(const struct jit_ctx *ctx) { int to = ctx->epilogue_offset; int from = ctx->idx; return to - from; } /* Stack must be multiples of 16B */ #define STACK_ALIGN(sz) (((sz) + 15) & ~15) static void build_prologue(struct jit_ctx *ctx) { const u8 r6 = bpf2a64[BPF_REG_6]; const u8 r7 = bpf2a64[BPF_REG_7]; const u8 r8 = bpf2a64[BPF_REG_8]; const u8 r9 = bpf2a64[BPF_REG_9]; const u8 fp = bpf2a64[BPF_REG_FP]; const u8 ra = bpf2a64[BPF_REG_A]; const u8 rx = bpf2a64[BPF_REG_X]; const u8 tmp1 = bpf2a64[TMP_REG_1]; const u8 tmp2 = bpf2a64[TMP_REG_2]; int stack_size = MAX_BPF_STACK; stack_size += 4; /* extra for skb_copy_bits buffer */ stack_size = STACK_ALIGN(stack_size); /* * BPF prog stack layout * * high * original A64_SP => 0:+-----+ BPF prologue * |FP/LR| * current A64_FP => -16:+-----+ * | ... | callee saved registers * +-----+ * | | x25/x26 * BPF fp register => -80:+-----+ * | | * | ... | BPF prog stack * | | * | | * current A64_SP => +-----+ * | | * | ... | Function call stack * | | * +-----+ * low * */ /* Save FP and LR registers to stay align with ARM64 AAPCS */ emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx); emit(A64_MOV(1, A64_FP, A64_SP), ctx); /* Save callee-saved register */ emit(A64_PUSH(r6, r7, A64_SP), ctx); emit(A64_PUSH(r8, r9, A64_SP), ctx); if (ctx->tmp_used) emit(A64_PUSH(tmp1, tmp2, A64_SP), ctx); /* Save fp (x25) and x26. SP requires 16 bytes alignment */ emit(A64_PUSH(fp, A64_R(26), A64_SP), ctx); /* Set up BPF prog stack base register (x25) */ emit(A64_MOV(1, fp, A64_SP), ctx); /* Set up function call stack */ emit(A64_SUB_I(1, A64_SP, A64_SP, stack_size), ctx); /* Clear registers A and X */ emit_a64_mov_i64(ra, 0, ctx); emit_a64_mov_i64(rx, 0, ctx); } static void build_epilogue(struct jit_ctx *ctx) { const u8 r0 = bpf2a64[BPF_REG_0]; const u8 r6 = bpf2a64[BPF_REG_6]; const u8 r7 = bpf2a64[BPF_REG_7]; const u8 r8 = bpf2a64[BPF_REG_8]; const u8 r9 = bpf2a64[BPF_REG_9]; const u8 fp = bpf2a64[BPF_REG_FP]; const u8 tmp1 = bpf2a64[TMP_REG_1]; const u8 tmp2 = bpf2a64[TMP_REG_2]; int stack_size = MAX_BPF_STACK; stack_size += 4; /* extra for skb_copy_bits buffer */ stack_size = STACK_ALIGN(stack_size); /* We're done with BPF stack */ emit(A64_ADD_I(1, A64_SP, A64_SP, stack_size), ctx); /* Restore fs (x25) and x26 */ emit(A64_POP(fp, A64_R(26), A64_SP), ctx); /* Restore callee-saved register */ if (ctx->tmp_used) emit(A64_POP(tmp1, tmp2, A64_SP), ctx); emit(A64_POP(r8, r9, A64_SP), ctx); emit(A64_POP(r6, r7, A64_SP), ctx); /* Restore FP/LR registers */ emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx); /* Set return value */ emit(A64_MOV(1, A64_R(0), r0), ctx); emit(A64_RET(A64_LR), ctx); } /* JITs an eBPF instruction. * Returns: * 0 - successfully JITed an 8-byte eBPF instruction. * >0 - successfully JITed a 16-byte eBPF instruction. * <0 - failed to JIT. */ static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) { const u8 code = insn->code; const u8 dst = bpf2a64[insn->dst_reg]; const u8 src = bpf2a64[insn->src_reg]; const u8 tmp = bpf2a64[TMP_REG_1]; const u8 tmp2 = bpf2a64[TMP_REG_2]; const s16 off = insn->off; const s32 imm = insn->imm; const int i = insn - ctx->prog->insnsi; const bool is64 = BPF_CLASS(code) == BPF_ALU64; u8 jmp_cond; s32 jmp_offset; #define check_imm(bits, imm) do { \ if ((((imm) > 0) && ((imm) >> (bits))) || \ (((imm) < 0) && (~(imm) >> (bits)))) { \ pr_info("[%2d] imm=%d(0x%x) out of range\n", \ i, imm, imm); \ return -EINVAL; \ } \ } while (0) #define check_imm19(imm) check_imm(19, imm) #define check_imm26(imm) check_imm(26, imm) switch (code) { /* dst = src */ case BPF_ALU | BPF_MOV | BPF_X: case BPF_ALU64 | BPF_MOV | BPF_X: emit(A64_MOV(is64, dst, src), ctx); break; /* dst = dst OP src */ case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU64 | BPF_ADD | BPF_X: emit(A64_ADD(is64, dst, dst, src), ctx); break; case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU64 | BPF_SUB | BPF_X: emit(A64_SUB(is64, dst, dst, src), ctx); break; case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU64 | BPF_AND | BPF_X: emit(A64_AND(is64, dst, dst, src), ctx); break; case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU64 | BPF_OR | BPF_X: emit(A64_ORR(is64, dst, dst, src), ctx); break; case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU64 | BPF_XOR | BPF_X: emit(A64_EOR(is64, dst, dst, src), ctx); break; case BPF_ALU | BPF_MUL | BPF_X: case BPF_ALU64 | BPF_MUL | BPF_X: emit(A64_MUL(is64, dst, dst, src), ctx); break; case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU64 | BPF_DIV | BPF_X: case BPF_ALU | BPF_MOD | BPF_X: case BPF_ALU64 | BPF_MOD | BPF_X: { const u8 r0 = bpf2a64[BPF_REG_0]; /* if (src == 0) return 0 */ jmp_offset = 3; /* skip ahead to else path */ check_imm19(jmp_offset); emit(A64_CBNZ(is64, src, jmp_offset), ctx); emit(A64_MOVZ(1, r0, 0, 0), ctx); jmp_offset = epilogue_offset(ctx); check_imm26(jmp_offset); emit(A64_B(jmp_offset), ctx); /* else */ switch (BPF_OP(code)) { case BPF_DIV: emit(A64_UDIV(is64, dst, dst, src), ctx); break; case BPF_MOD: ctx->tmp_used = 1; emit(A64_UDIV(is64, tmp, dst, src), ctx); emit(A64_MUL(is64, tmp, tmp, src), ctx); emit(A64_SUB(is64, dst, dst, tmp), ctx); break; } break; } case BPF_ALU | BPF_LSH | BPF_X: case BPF_ALU64 | BPF_LSH | BPF_X: emit(A64_LSLV(is64, dst, dst, src), ctx); break; case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU64 | BPF_RSH | BPF_X: emit(A64_LSRV(is64, dst, dst, src), ctx); break; case BPF_ALU | BPF_ARSH | BPF_X: case BPF_ALU64 | BPF_ARSH | BPF_X: emit(A64_ASRV(is64, dst, dst, src), ctx); break; /* dst = -dst */ case BPF_ALU | BPF_NEG: case BPF_ALU64 | BPF_NEG: emit(A64_NEG(is64, dst, dst), ctx); break; /* dst = BSWAP##imm(dst) */ case BPF_ALU | BPF_END | BPF_FROM_LE: case BPF_ALU | BPF_END | BPF_FROM_BE: #ifdef CONFIG_CPU_BIG_ENDIAN if (BPF_SRC(code) == BPF_FROM_BE) goto emit_bswap_uxt; #else /* !CONFIG_CPU_BIG_ENDIAN */ if (BPF_SRC(code) == BPF_FROM_LE) goto emit_bswap_uxt; #endif switch (imm) { case 16: emit(A64_REV16(is64, dst, dst), ctx); /* zero-extend 16 bits into 64 bits */ emit(A64_UXTH(is64, dst, dst), ctx); break; case 32: emit(A64_REV32(is64, dst, dst), ctx); /* upper 32 bits already cleared */ break; case 64: emit(A64_REV64(dst, dst), ctx); break; } break; emit_bswap_uxt: switch (imm) { case 16: /* zero-extend 16 bits into 64 bits */ emit(A64_UXTH(is64, dst, dst), ctx); break; case 32: /* zero-extend 32 bits into 64 bits */ emit(A64_UXTW(is64, dst, dst), ctx); break; case 64: /* nop */ break; } break; /* dst = imm */ case BPF_ALU | BPF_MOV | BPF_K: case BPF_ALU64 | BPF_MOV | BPF_K: emit_a64_mov_i(is64, dst, imm, ctx); break; /* dst = dst OP imm */ case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU64 | BPF_ADD | BPF_K: ctx->tmp_used = 1; emit_a64_mov_i(is64, tmp, imm, ctx); emit(A64_ADD(is64, dst, dst, tmp), ctx); break; case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU64 | BPF_SUB | BPF_K: ctx->tmp_used = 1; emit_a64_mov_i(is64, tmp, imm, ctx); emit(A64_SUB(is64, dst, dst, tmp), ctx); break; case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU64 | BPF_AND | BPF_K: ctx->tmp_used = 1; emit_a64_mov_i(is64, tmp, imm, ctx); emit(A64_AND(is64, dst, dst, tmp), ctx); break; case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU64 | BPF_OR | BPF_K: ctx->tmp_used = 1; emit_a64_mov_i(is64, tmp, imm, ctx); emit(A64_ORR(is64, dst, dst, tmp), ctx); break; case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU64 | BPF_XOR | BPF_K: ctx->tmp_used = 1; emit_a64_mov_i(is64, tmp, imm, ctx); emit(A64_EOR(is64, dst, dst, tmp), ctx); break; case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU64 | BPF_MUL | BPF_K: ctx->tmp_used = 1; emit_a64_mov_i(is64, tmp, imm, ctx); emit(A64_MUL(is64, dst, dst, tmp), ctx); break; case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU64 | BPF_DIV | BPF_K: ctx->tmp_used = 1; emit_a64_mov_i(is64, tmp, imm, ctx); emit(A64_UDIV(is64, dst, dst, tmp), ctx); break; case BPF_ALU | BPF_MOD | BPF_K: case BPF_ALU64 | BPF_MOD | BPF_K: ctx->tmp_used = 1; emit_a64_mov_i(is64, tmp2, imm, ctx); emit(A64_UDIV(is64, tmp, dst, tmp2), ctx); emit(A64_MUL(is64, tmp, tmp, tmp2), ctx); emit(A64_SUB(is64, dst, dst, tmp), ctx); break; case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU64 | BPF_LSH | BPF_K: emit(A64_LSL(is64, dst, dst, imm), ctx); break; case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU64 | BPF_RSH | BPF_K: emit(A64_LSR(is64, dst, dst, imm), ctx); break; case BPF_ALU | BPF_ARSH | BPF_K: case BPF_ALU64 | BPF_ARSH | BPF_K: emit(A64_ASR(is64, dst, dst, imm), ctx); break; /* JUMP off */ case BPF_JMP | BPF_JA: jmp_offset = bpf2a64_offset(i + off, i, ctx); check_imm26(jmp_offset); emit(A64_B(jmp_offset), ctx); break; /* IF (dst COND src) JUMP off */ case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JNE | BPF_X: case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP | BPF_JSGE | BPF_X: emit(A64_CMP(1, dst, src), ctx); emit_cond_jmp: jmp_offset = bpf2a64_offset(i + off, i, ctx); check_imm19(jmp_offset); switch (BPF_OP(code)) { case BPF_JEQ: jmp_cond = A64_COND_EQ; break; case BPF_JGT: jmp_cond = A64_COND_HI; break; case BPF_JGE: jmp_cond = A64_COND_CS; break; case BPF_JNE: jmp_cond = A64_COND_NE; break; case BPF_JSGT: jmp_cond = A64_COND_GT; break; case BPF_JSGE: jmp_cond = A64_COND_GE; break; default: return -EFAULT; } emit(A64_B_(jmp_cond, jmp_offset), ctx); break; case BPF_JMP | BPF_JSET | BPF_X: emit(A64_TST(1, dst, src), ctx); goto emit_cond_jmp; /* IF (dst COND imm) JUMP off */ case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_K: ctx->tmp_used = 1; emit_a64_mov_i(1, tmp, imm, ctx); emit(A64_CMP(1, dst, tmp), ctx); goto emit_cond_jmp; case BPF_JMP | BPF_JSET | BPF_K: ctx->tmp_used = 1; emit_a64_mov_i(1, tmp, imm, ctx); emit(A64_TST(1, dst, tmp), ctx); goto emit_cond_jmp; /* function call */ case BPF_JMP | BPF_CALL: { const u8 r0 = bpf2a64[BPF_REG_0]; const u64 func = (u64)__bpf_call_base + imm; ctx->tmp_used = 1; emit_a64_mov_i64(tmp, func, ctx); emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx); emit(A64_MOV(1, A64_FP, A64_SP), ctx); emit(A64_BLR(tmp), ctx); emit(A64_MOV(1, r0, A64_R(0)), ctx); emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx); break; } /* function return */ case BPF_JMP | BPF_EXIT: /* Optimization: when last instruction is EXIT, simply fallthrough to epilogue. */ if (i == ctx->prog->len - 1) break; jmp_offset = epilogue_offset(ctx); check_imm26(jmp_offset); emit(A64_B(jmp_offset), ctx); break; /* dst = imm64 */ case BPF_LD | BPF_IMM | BPF_DW: { const struct bpf_insn insn1 = insn[1]; u64 imm64; if (insn1.code != 0 || insn1.src_reg != 0 || insn1.dst_reg != 0 || insn1.off != 0) { /* Note: verifier in BPF core must catch invalid * instructions. */ pr_err_once("Invalid BPF_LD_IMM64 instruction\n"); return -EINVAL; } imm64 = (u64)insn1.imm << 32 | (u32)imm; emit_a64_mov_i64(dst, imm64, ctx); return 1; } /* LDX: dst = *(size *)(src + off) */ case BPF_LDX | BPF_MEM | BPF_W: case BPF_LDX | BPF_MEM | BPF_H: case BPF_LDX | BPF_MEM | BPF_B: case BPF_LDX | BPF_MEM | BPF_DW: ctx->tmp_used = 1; emit_a64_mov_i(1, tmp, off, ctx); switch (BPF_SIZE(code)) { case BPF_W: emit(A64_LDR32(dst, src, tmp), ctx); break; case BPF_H: emit(A64_LDRH(dst, src, tmp), ctx); break; case BPF_B: emit(A64_LDRB(dst, src, tmp), ctx); break; case BPF_DW: emit(A64_LDR64(dst, src, tmp), ctx); break; } break; /* ST: *(size *)(dst + off) = imm */ case BPF_ST | BPF_MEM | BPF_W: case BPF_ST | BPF_MEM | BPF_H: case BPF_ST | BPF_MEM | BPF_B: case BPF_ST | BPF_MEM | BPF_DW: goto notyet; /* STX: *(size *)(dst + off) = src */ case BPF_STX | BPF_MEM | BPF_W: case BPF_STX | BPF_MEM | BPF_H: case BPF_STX | BPF_MEM | BPF_B: case BPF_STX | BPF_MEM | BPF_DW: ctx->tmp_used = 1; emit_a64_mov_i(1, tmp, off, ctx); switch (BPF_SIZE(code)) { case BPF_W: emit(A64_STR32(src, dst, tmp), ctx); break; case BPF_H: emit(A64_STRH(src, dst, tmp), ctx); break; case BPF_B: emit(A64_STRB(src, dst, tmp), ctx); break; case BPF_DW: emit(A64_STR64(src, dst, tmp), ctx); break; } break; /* STX XADD: lock *(u32 *)(dst + off) += src */ case BPF_STX | BPF_XADD | BPF_W: /* STX XADD: lock *(u64 *)(dst + off) += src */ case BPF_STX | BPF_XADD | BPF_DW: goto notyet; /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */ case BPF_LD | BPF_ABS | BPF_W: case BPF_LD | BPF_ABS | BPF_H: case BPF_LD | BPF_ABS | BPF_B: /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */ case BPF_LD | BPF_IND | BPF_W: case BPF_LD | BPF_IND | BPF_H: case BPF_LD | BPF_IND | BPF_B: { const u8 r0 = bpf2a64[BPF_REG_0]; /* r0 = return value */ const u8 r6 = bpf2a64[BPF_REG_6]; /* r6 = pointer to sk_buff */ const u8 fp = bpf2a64[BPF_REG_FP]; const u8 r1 = bpf2a64[BPF_REG_1]; /* r1: struct sk_buff *skb */ const u8 r2 = bpf2a64[BPF_REG_2]; /* r2: int k */ const u8 r3 = bpf2a64[BPF_REG_3]; /* r3: unsigned int size */ const u8 r4 = bpf2a64[BPF_REG_4]; /* r4: void *buffer */ const u8 r5 = bpf2a64[BPF_REG_5]; /* r5: void *(*func)(...) */ int size; emit(A64_MOV(1, r1, r6), ctx); emit_a64_mov_i(0, r2, imm, ctx); if (BPF_MODE(code) == BPF_IND) emit(A64_ADD(0, r2, r2, src), ctx); switch (BPF_SIZE(code)) { case BPF_W: size = 4; break; case BPF_H: size = 2; break; case BPF_B: size = 1; break; default: return -EINVAL; } emit_a64_mov_i64(r3, size, ctx); emit(A64_ADD_I(1, r4, fp, MAX_BPF_STACK), ctx); emit_a64_mov_i64(r5, (unsigned long)bpf_load_pointer, ctx); emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx); emit(A64_MOV(1, A64_FP, A64_SP), ctx); emit(A64_BLR(r5), ctx); emit(A64_MOV(1, r0, A64_R(0)), ctx); emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx); jmp_offset = epilogue_offset(ctx); check_imm19(jmp_offset); emit(A64_CBZ(1, r0, jmp_offset), ctx); emit(A64_MOV(1, r5, r0), ctx); switch (BPF_SIZE(code)) { case BPF_W: emit(A64_LDR32(r0, r5, A64_ZR), ctx); #ifndef CONFIG_CPU_BIG_ENDIAN emit(A64_REV32(0, r0, r0), ctx); #endif break; case BPF_H: emit(A64_LDRH(r0, r5, A64_ZR), ctx); #ifndef CONFIG_CPU_BIG_ENDIAN emit(A64_REV16(0, r0, r0), ctx); #endif break; case BPF_B: emit(A64_LDRB(r0, r5, A64_ZR), ctx); break; } break; } notyet: pr_info_once("*** NOT YET: opcode %02x ***\n", code); return -EFAULT; default: pr_err_once("unknown opcode %02x\n", code); return -EINVAL; } return 0; } static int build_body(struct jit_ctx *ctx) { const struct bpf_prog *prog = ctx->prog; int i; for (i = 0; i < prog->len; i++) { const struct bpf_insn *insn = &prog->insnsi[i]; int ret; ret = build_insn(insn, ctx); if (ctx->image == NULL) ctx->offset[i] = ctx->idx; if (ret > 0) { i++; continue; } if (ret) return ret; } return 0; } static inline void bpf_flush_icache(void *start, void *end) { flush_icache_range((unsigned long)start, (unsigned long)end); } void bpf_jit_compile(struct bpf_prog *prog) { /* Nothing to do here. We support Internal BPF. */ } void bpf_int_jit_compile(struct bpf_prog *prog) { struct bpf_binary_header *header; struct jit_ctx ctx; int image_size; u8 *image_ptr; if (!bpf_jit_enable) return; if (!prog || !prog->len) return; memset(&ctx, 0, sizeof(ctx)); ctx.prog = prog; ctx.offset = kcalloc(prog->len, sizeof(int), GFP_KERNEL); if (ctx.offset == NULL) return; /* 1. Initial fake pass to compute ctx->idx. */ /* Fake pass to fill in ctx->offset and ctx->tmp_used. */ if (build_body(&ctx)) goto out; build_prologue(&ctx); ctx.epilogue_offset = ctx.idx; build_epilogue(&ctx); /* Now we know the actual image size. */ image_size = sizeof(u32) * ctx.idx; header = bpf_jit_binary_alloc(image_size, &image_ptr, sizeof(u32), jit_fill_hole); if (header == NULL) goto out; /* 2. Now, the actual pass. */ ctx.image = (u32 *)image_ptr; ctx.idx = 0; build_prologue(&ctx); if (build_body(&ctx)) { bpf_jit_binary_free(header); goto out; } build_epilogue(&ctx); /* And we're done. */ if (bpf_jit_enable > 1) bpf_jit_dump(prog->len, image_size, 2, ctx.image); bpf_flush_icache(header, ctx.image + ctx.idx); set_memory_ro((unsigned long)header, header->pages); prog->bpf_func = (void *)ctx.image; prog->jited = 1; out: kfree(ctx.offset); } void bpf_jit_free(struct bpf_prog *prog) { unsigned long addr = (unsigned long)prog->bpf_func & PAGE_MASK; struct bpf_binary_header *header = (void *)addr; if (!prog->jited) goto free_filter; set_memory_rw(addr, header->pages); bpf_jit_binary_free(header); free_filter: bpf_prog_unlock_free(prog); }