/* * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define FIX_PTR(x) __asm__ __volatile__(";" : "+r"(x)) int running_on_hw = 1; /* vs. on ISS */ /* Part of U-boot ABI: see head.S */ int __initdata uboot_tag; char __initdata *uboot_arg; const struct machine_desc *machine_desc; struct task_struct *_current_task[NR_CPUS]; /* For stack switching */ struct cpuinfo_arc cpuinfo_arc700[NR_CPUS]; static void read_arc_build_cfg_regs(void) { struct bcr_perip uncached_space; struct cpuinfo_arc *cpu = &cpuinfo_arc700[smp_processor_id()]; FIX_PTR(cpu); READ_BCR(AUX_IDENTITY, cpu->core); cpu->timers = read_aux_reg(ARC_REG_TIMERS_BCR); cpu->vec_base = read_aux_reg(AUX_INTR_VEC_BASE); READ_BCR(ARC_REG_D_UNCACH_BCR, uncached_space); cpu->uncached_base = uncached_space.start << 24; cpu->extn.mul = read_aux_reg(ARC_REG_MUL_BCR); cpu->extn.swap = read_aux_reg(ARC_REG_SWAP_BCR); cpu->extn.norm = read_aux_reg(ARC_REG_NORM_BCR); cpu->extn.minmax = read_aux_reg(ARC_REG_MIXMAX_BCR); cpu->extn.barrel = read_aux_reg(ARC_REG_BARREL_BCR); READ_BCR(ARC_REG_MAC_BCR, cpu->extn_mac_mul); cpu->extn.ext_arith = read_aux_reg(ARC_REG_EXTARITH_BCR); cpu->extn.crc = read_aux_reg(ARC_REG_CRC_BCR); /* Note that we read the CCM BCRs independent of kernel config * This is to catch the cases where user doesn't know that * CCMs are present in hardware build */ { struct bcr_iccm iccm; struct bcr_dccm dccm; struct bcr_dccm_base dccm_base; unsigned int bcr_32bit_val; bcr_32bit_val = read_aux_reg(ARC_REG_ICCM_BCR); if (bcr_32bit_val) { iccm = *((struct bcr_iccm *)&bcr_32bit_val); cpu->iccm.base_addr = iccm.base << 16; cpu->iccm.sz = 0x2000 << (iccm.sz - 1); } bcr_32bit_val = read_aux_reg(ARC_REG_DCCM_BCR); if (bcr_32bit_val) { dccm = *((struct bcr_dccm *)&bcr_32bit_val); cpu->dccm.sz = 0x800 << (dccm.sz); READ_BCR(ARC_REG_DCCMBASE_BCR, dccm_base); cpu->dccm.base_addr = dccm_base.addr << 8; } } READ_BCR(ARC_REG_XY_MEM_BCR, cpu->extn_xymem); read_decode_mmu_bcr(); read_decode_cache_bcr(); READ_BCR(ARC_REG_FP_BCR, cpu->fp); READ_BCR(ARC_REG_DPFP_BCR, cpu->dpfp); } static const struct cpuinfo_data arc_cpu_tbl[] = { { {0x10, "ARCTangent A5"}, 0x1F}, { {0x20, "ARC 600" }, 0x2F}, { {0x30, "ARC 700" }, 0x33}, { {0x34, "ARC 700 R4.10"}, 0x34}, { {0x00, NULL } } }; static char *arc_cpu_mumbojumbo(int cpu_id, char *buf, int len) { int n = 0; struct cpuinfo_arc *cpu = &cpuinfo_arc700[cpu_id]; struct bcr_identity *core = &cpu->core; const struct cpuinfo_data *tbl; int be = 0; #ifdef CONFIG_CPU_BIG_ENDIAN be = 1; #endif FIX_PTR(cpu); n += scnprintf(buf + n, len - n, "\nARC IDENTITY\t: Family [%#02x]" " Cpu-id [%#02x] Chip-id [%#4x]\n", core->family, core->cpu_id, core->chip_id); for (tbl = &arc_cpu_tbl[0]; tbl->info.id != 0; tbl++) { if ((core->family >= tbl->info.id) && (core->family <= tbl->up_range)) { n += scnprintf(buf + n, len - n, "processor\t: %s %s\n", tbl->info.str, be ? "[Big Endian]" : ""); break; } } if (tbl->info.id == 0) n += scnprintf(buf + n, len - n, "UNKNOWN ARC Processor\n"); n += scnprintf(buf + n, len - n, "CPU speed\t: %u.%02u Mhz\n", (unsigned int)(arc_get_core_freq() / 1000000), (unsigned int)(arc_get_core_freq() / 10000) % 100); n += scnprintf(buf + n, len - n, "Timers\t\t: %s %s\n", (cpu->timers & 0x200) ? "TIMER1" : "", (cpu->timers & 0x100) ? "TIMER0" : ""); n += scnprintf(buf + n, len - n, "Vect Tbl Base\t: %#x\n", cpu->vec_base); n += scnprintf(buf + n, len - n, "UNCACHED Base\t: %#x\n", cpu->uncached_base); return buf; } static const struct id_to_str mul_type_nm[] = { { 0x0, "N/A"}, { 0x1, "32x32 (spl Result Reg)" }, { 0x2, "32x32 (ANY Result Reg)" } }; static const struct id_to_str mac_mul_nm[] = { {0x0, "N/A"}, {0x1, "N/A"}, {0x2, "Dual 16 x 16"}, {0x3, "N/A"}, {0x4, "32x16"}, {0x5, "N/A"}, {0x6, "Dual 16x16 and 32x16"} }; static char *arc_extn_mumbojumbo(int cpu_id, char *buf, int len) { int n = 0; struct cpuinfo_arc *cpu = &cpuinfo_arc700[cpu_id]; FIX_PTR(cpu); #define IS_AVAIL1(var, str) ((var) ? str : "") #define IS_AVAIL2(var, str) ((var == 0x2) ? str : "") #define IS_USED(cfg) (IS_ENABLED(cfg) ? "(in-use)" : "(not used)") n += scnprintf(buf + n, len - n, "Extn [700-Base]\t: %s %s %s %s %s %s\n", IS_AVAIL2(cpu->extn.norm, "norm,"), IS_AVAIL2(cpu->extn.barrel, "barrel-shift,"), IS_AVAIL1(cpu->extn.swap, "swap,"), IS_AVAIL2(cpu->extn.minmax, "minmax,"), IS_AVAIL1(cpu->extn.crc, "crc,"), IS_AVAIL2(cpu->extn.ext_arith, "ext-arith")); n += scnprintf(buf + n, len - n, "Extn [700-MPY]\t: %s", mul_type_nm[cpu->extn.mul].str); n += scnprintf(buf + n, len - n, " MAC MPY: %s\n", mac_mul_nm[cpu->extn_mac_mul.type].str); if (cpu->core.family == 0x34) { n += scnprintf(buf + n, len - n, "Extn [700-4.10]\t: LLOCK/SCOND %s, SWAPE %s, RTSC %s\n", IS_USED(CONFIG_ARC_HAS_LLSC), IS_USED(CONFIG_ARC_HAS_SWAPE), IS_USED(CONFIG_ARC_HAS_RTSC)); } n += scnprintf(buf + n, len - n, "Extn [CCM]\t: %s", !(cpu->dccm.sz || cpu->iccm.sz) ? "N/A" : ""); if (cpu->dccm.sz) n += scnprintf(buf + n, len - n, "DCCM: @ %x, %d KB ", cpu->dccm.base_addr, TO_KB(cpu->dccm.sz)); if (cpu->iccm.sz) n += scnprintf(buf + n, len - n, "ICCM: @ %x, %d KB", cpu->iccm.base_addr, TO_KB(cpu->iccm.sz)); n += scnprintf(buf + n, len - n, "\nExtn [FPU]\t: %s", !(cpu->fp.ver || cpu->dpfp.ver) ? "N/A" : ""); if (cpu->fp.ver) n += scnprintf(buf + n, len - n, "SP [v%d] %s", cpu->fp.ver, cpu->fp.fast ? "(fast)" : ""); if (cpu->dpfp.ver) n += scnprintf(buf + n, len - n, "DP [v%d] %s", cpu->dpfp.ver, cpu->dpfp.fast ? "(fast)" : ""); n += scnprintf(buf + n, len - n, "\n"); n += scnprintf(buf + n, len - n, "OS ABI [v3]\t: no-legacy-syscalls\n"); return buf; } static void arc_chk_ccms(void) { #if defined(CONFIG_ARC_HAS_DCCM) || defined(CONFIG_ARC_HAS_ICCM) struct cpuinfo_arc *cpu = &cpuinfo_arc700[smp_processor_id()]; #ifdef CONFIG_ARC_HAS_DCCM /* * DCCM can be arbit placed in hardware. * Make sure it's placement/sz matches what Linux is built with */ if ((unsigned int)__arc_dccm_base != cpu->dccm.base_addr) panic("Linux built with incorrect DCCM Base address\n"); if (CONFIG_ARC_DCCM_SZ != cpu->dccm.sz) panic("Linux built with incorrect DCCM Size\n"); #endif #ifdef CONFIG_ARC_HAS_ICCM if (CONFIG_ARC_ICCM_SZ != cpu->iccm.sz) panic("Linux built with incorrect ICCM Size\n"); #endif #endif } /* * Ensure that FP hardware and kernel config match * -If hardware contains DPFP, kernel needs to save/restore FPU state * across context switches * -If hardware lacks DPFP, but kernel configured to save FPU state then * kernel trying to access non-existant DPFP regs will crash * * We only check for Dbl precision Floating Point, because only DPFP * hardware has dedicated regs which need to be saved/restored on ctx-sw * (Single Precision uses core regs), thus kernel is kind of oblivious to it */ static void arc_chk_fpu(void) { struct cpuinfo_arc *cpu = &cpuinfo_arc700[smp_processor_id()]; if (cpu->dpfp.ver) { #ifndef CONFIG_ARC_FPU_SAVE_RESTORE pr_warn("DPFP support broken in this kernel...\n"); #endif } else { #ifdef CONFIG_ARC_FPU_SAVE_RESTORE panic("H/w lacks DPFP support, apps won't work\n"); #endif } } /* * Initialize and setup the processor core * This is called by all the CPUs thus should not do special case stuff * such as only for boot CPU etc */ void setup_processor(void) { char str[512]; int cpu_id = smp_processor_id(); read_arc_build_cfg_regs(); arc_init_IRQ(); printk(arc_cpu_mumbojumbo(cpu_id, str, sizeof(str))); arc_mmu_init(); arc_cache_init(); arc_chk_ccms(); printk(arc_extn_mumbojumbo(cpu_id, str, sizeof(str))); printk(arc_platform_smp_cpuinfo()); arc_chk_fpu(); } static inline int is_kernel(unsigned long addr) { if (addr >= (unsigned long)_stext && addr <= (unsigned long)_end) return 1; return 0; } void __init setup_arch(char **cmdline_p) { /* make sure that uboot passed pointer to cmdline/dtb is valid */ if (uboot_tag && is_kernel((unsigned long)uboot_arg)) panic("Invalid uboot arg\n"); /* See if u-boot passed an external Device Tree blob */ machine_desc = setup_machine_fdt(uboot_arg); /* uboot_tag == 2 */ if (!machine_desc) { /* No, so try the embedded one */ machine_desc = setup_machine_fdt(__dtb_start); if (!machine_desc) panic("Embedded DT invalid\n"); /* * If we are here, it is established that @uboot_arg didn't * point to DT blob. Instead if u-boot says it is cmdline, * Appent to embedded DT cmdline. * setup_machine_fdt() would have populated @boot_command_line */ if (uboot_tag == 1) { /* Ensure a whitespace between the 2 cmdlines */ strlcat(boot_command_line, " ", COMMAND_LINE_SIZE); strlcat(boot_command_line, uboot_arg, COMMAND_LINE_SIZE); } } /* Save unparsed command line copy for /proc/cmdline */ *cmdline_p = boot_command_line; /* To force early parsing of things like mem=xxx */ parse_early_param(); /* Platform/board specific: e.g. early console registration */ if (machine_desc->init_early) machine_desc->init_early(); setup_processor(); smp_init_cpus(); setup_arch_memory(); /* copy flat DT out of .init and then unflatten it */ unflatten_and_copy_device_tree(); /* Can be issue if someone passes cmd line arg "ro" * But that is unlikely so keeping it as it is */ root_mountflags &= ~MS_RDONLY; #if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE) conswitchp = &dummy_con; #endif arc_unwind_init(); arc_unwind_setup(); } static int __init customize_machine(void) { /* Add platform devices */ if (machine_desc->init_machine) machine_desc->init_machine(); return 0; } arch_initcall(customize_machine); static int __init init_late_machine(void) { if (machine_desc->init_late) machine_desc->init_late(); return 0; } late_initcall(init_late_machine); /* * Get CPU information for use by the procfs. */ #define cpu_to_ptr(c) ((void *)(0xFFFF0000 | (unsigned int)(c))) #define ptr_to_cpu(p) (~0xFFFF0000UL & (unsigned int)(p)) static int show_cpuinfo(struct seq_file *m, void *v) { char *str; int cpu_id = ptr_to_cpu(v); str = (char *)__get_free_page(GFP_TEMPORARY); if (!str) goto done; seq_printf(m, arc_cpu_mumbojumbo(cpu_id, str, PAGE_SIZE)); seq_printf(m, "Bogo MIPS : \t%lu.%02lu\n", loops_per_jiffy / (500000 / HZ), (loops_per_jiffy / (5000 / HZ)) % 100); seq_printf(m, arc_mmu_mumbojumbo(cpu_id, str, PAGE_SIZE)); seq_printf(m, arc_cache_mumbojumbo(cpu_id, str, PAGE_SIZE)); seq_printf(m, arc_extn_mumbojumbo(cpu_id, str, PAGE_SIZE)); seq_printf(m, arc_platform_smp_cpuinfo()); free_page((unsigned long)str); done: seq_printf(m, "\n\n"); return 0; } static void *c_start(struct seq_file *m, loff_t *pos) { /* * Callback returns cpu-id to iterator for show routine, NULL to stop. * However since NULL is also a valid cpu-id (0), we use a round-about * way to pass it w/o having to kmalloc/free a 2 byte string. * Encode cpu-id as 0xFFcccc, which is decoded by show routine. */ return *pos < num_possible_cpus() ? cpu_to_ptr(*pos) : NULL; } static void *c_next(struct seq_file *m, void *v, loff_t *pos) { ++*pos; return c_start(m, pos); } static void c_stop(struct seq_file *m, void *v) { } const struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = show_cpuinfo }; static DEFINE_PER_CPU(struct cpu, cpu_topology); static int __init topology_init(void) { int cpu; for_each_present_cpu(cpu) register_cpu(&per_cpu(cpu_topology, cpu), cpu); return 0; } subsys_initcall(topology_init);