| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
| |
sysfs_get_idlestate_count() returns an unsigned int. Returning -ENODEV
is not the right thing to do here, and in any case is handled the same
way as if there are no states found.
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Acked-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
|
|
|
| |
Link: https://bugzilla.kernel.org/show_bug.cgi?id=80621
Reported-by: David Binderman <dcb314@hotmail.com>
Signed-off-by: Andrey Utkin <andrey.krieger.utkin@gmail.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
idlestates in sysfs are counted from 0.
This fixes a wrong error message.
Current behavior on a machine with 4 sleep states is:
cpupower idle-set -e 4
Idlestate 4 enabled on CPU 0
-----Wrong---------------------
cpupower idle-set -e 5
Idlestate enabling not supported by kernel
-----Must and now will be -----
cpupower idle-set -e 5
Idlestate 6 not available on CPU 0
-------------------------------
cpupower idle-set -e 6
Idlestate 6 not available on CPU 0
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Latest kernel allows to disable C-states via:
/sys/devices/system/cpu/cpuX/cpuidle/stateY/disable
This patch provides lower level sysfs access functions to make use of
this interface. A later patch will implement the higher level stuff.
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
|
|
|
|
|
| |
Use unsigned int as the data type for some variables related to CPU
idle states which allows the code to be simplified slightly.
[rjw: Changelog]
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
|
| |
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If an MSR based monitor is run in parallel this is not needed. This is the
default case on all/most Intel machines.
But when only sysfs info is read via cpupower monitor -m Idle_Stats (typically
the case for non root users) or when other monitors are PCI based (AMD),
Idle_Stats, read from sysfs can be totally bogus:
cpupower monitor -m Idle_Stats
PKG |CORE|CPU | POLL | C1-N | C3-N | C6-N
0| 0| 0| 0.00| 0.00| 0.24| 99.81
0| 0| 32| 0.00| 0.00| 0.00| 100.7
...
0| 17| 20| 0.00| 0.00| 0.00| 173.1
0| 17| 52| 0.00| 0.00| 0.07| 173.0
0| 18| 68| 0.00| 0.00| 0.00| 0.00
0| 18| 76| 0.00| 0.00| 0.00| 0.00
...
With the -c option all cores are woken up and the kernel
did update cpuidle statistics before reading out sysfs.
This causes some overhead. Therefore avoid if possible, use
if needed:
cpupower monitor -c -m Idle_Stats
PKG |CORE|CPU | POLL | C1-N | C3-N | C6-N
0| 0| 0| 0.00| 0.00| 0.00| 100.2
0| 0| 32| 0.00| 0.00| 0.00| 100.2
...
0| 8| 8| 0.00| 0.00| 0.00| 99.82
0| 8| 40| 0.00| 0.00| 0.00| 99.81
0| 9| 24| 0.00| 0.00| 0.00| 100.3
0| 9| 56| 0.00| 0.00| 0.00| 100.2
0| 16| 4| 0.00| 0.00| 0.00| 99.75
0| 16| 36| 0.00| 0.00| 0.00| 99.38
...
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The pkgs member of cpupower_topology is being used as the number of
cpu packages. As the comment in get_cpu_topology notes, the package ids
are not guaranteed to be contiguous. So, simply setting pkgs to the value
of the highest physical_package_id doesn't actually provide a count of
the number of cpu packages. Instead, calculate pkgs by setting it to
the number of distinct physical_packge_id values which is pretty easy
to do after the core_info structs are sorted. Calculating pkgs this
way also has the nice benefit of getting rid of a sign comparison warning
that GCC 4.6 was reporting.
Signed-off-by: Palmer Cox <p@lmercox.com>
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The cpu_info member of cpupower_topology was being declared as an unnamed
structure. This member was then being malloced using the size of the
parent cpupower_topology * the number of cpus. This works
because cpu_info is smaller than cpupower_topology. However, there is
no guarantee that will always be the case. Making cpu_info its own
top level structure (named cpuid_core_info) allows for mallocing the actual
size of this structure. This also lets us get rid of a redefinition of
the structure in topology.c with slightly different field names.
Signed-off-by: Palmer Cox <p@lmercox.com>
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix a variety of issues with sysfs_topology_read_file:
* The return value of sysfs_topology_read_file function was not properly
being checked for failure.
* The function was reading int valued sysfs variables and then returning
their value. So, even if a function was trying to check the return value
of this function, a caller would not be able to tell an failure code apart
from reading a negative value. This also conflicted with the comment on the
function which said that a return value of 0 indicated success.
* The function was parsing int valued sysfs values with strtoul instead of
strtol.
* The function was non-static even though it was only used in the
file it was declared in.
Signed-off-by: Palmer Cox <p@lmercox.com>
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
|
|
|
|
|
|
| |
Fix minor warnings reported with GCC 4.6:
* The sysfs_write_file function is unused - remove it.
* The pr_mon_len in the print_header function is unsed - remove it.
Signed-off-by: Palmer Cox <p@lmercox.com>
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It's been broken forever (i.e. it's not scheduling in a power
aware fashion), as reported by Suresh and others sending
patches, and nobody cares enough to fix it properly ...
so remove it to make space free for something better.
There's various problems with the code as it stands today, first
and foremost the user interface which is bound to topology
levels and has multiple values per level. This results in a
state explosion which the administrator or distro needs to
master and almost nobody does.
Furthermore large configuration state spaces aren't good, it
means the thing doesn't just work right because it's either
under so many impossibe to meet constraints, or even if
there's an achievable state workloads have to be aware of
it precisely and can never meet it for dynamic workloads.
So pushing this kind of decision to user-space was a bad idea
even with a single knob - it's exponentially worse with knobs
on every node of the topology.
There is a proposal to replace the user interface with a single
3 state knob:
sched_balance_policy := { performance, power, auto }
where 'auto' would be the preferred default which looks at things
like Battery/AC mode and possible cpufreq state or whatever the hw
exposes to show us power use expectations - but there's been no
progress on it in the past many months.
Aside from that, the actual implementation of the various knobs
is known to be broken. There have been sporadic attempts at
fixing things but these always stop short of reaching a mergable
state.
Therefore this wholesale removal with the hopes of spurring
people who care to come forward once again and work on a
coherent replacement.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1326104915.2442.53.camel@twins
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
|
|
| |
Signed-off-by: Thomas Renninger <trenn@suse.de>
Tested-by: Dave Jones <davej@redhat.com>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
AMD's BKDG (Bios and Kernel Developers Guide) talks in the CPU spec of their
CPU families about PCI registers defined by "device" (slot) and func(tion).
Assuming that CPU specific configuration PCI devices are always on domain
and bus zero a pci_slot_func_init() func which gets the slot and func of
the desired PCI device passed looks like the most convenient way.
This also obsoletes the PCI device id maintenance.
Signed-off-by: Thomas Renninger <trenn@suse.de>
CC: Andreas Herrmann <herrmann.der.user@googlemail.com>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
|
|
|
|
|
|
| |
Loosely based on a patch for cpufrequtils, submittted by
Sergey Dryabzhinsky <sergey.dryabzhinsky@gmail.com> and
signed-off-by: Matt Turner <mattst88@gmail.com>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before, checking for offlined CPUs was done dirty and
it was checked whether topology parsing returned -1 values.
But this is a valid case on a Xen (and possibly other) kernels.
Do proper online/offline checking, also take CONFIG_HOTPLUG_CPU
option into account (no /sys/devices/../cpuX/online file).
Signed-off-by: Thomas Renninger <trenn@suse.de>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
IA32-Intel Devel guide Volume 3A - 14.3.2.1
-------------------------------------------
...
Opportunistic processor performance operation can be disabled by setting bit 38 of
IA32_MISC_ENABLES. This mechanism is intended for BIOS only. If
IA32_MISC_ENABLES[38] is set, CPUID.06H:EAX[1] will return 0.
Better detect things via cpuid, this cleans up the code a bit
and the MSR parts were not working correctly anyway.
Signed-off-by: Thomas Renninger <trenn@suse.de>
CC: lenb@kernel.org
CC: linux@dominikbrodowski.net
CC: cpufreq@vger.kernel.org
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds the last piece missing from turbostat (if called with -v).
It shows on Intel machines supporting Turbo Boost how many cores
have to be active/idle to enter which boost mode (frequency).
Whether the HW really enters these boost modes can be verified via
./cpupower monitor.
Signed-off-by: Thomas Renninger <trenn@suse.de>
CC: lenb@kernel.org
CC: linux@dominikbrodowski.net
CC: cpufreq@vger.kernel.org
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
|
|
| |
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|
|
CPU power consumption vs performance tuning is no longer
limited to CPU frequency switching anymore: deep sleep states,
traditional dynamic frequency scaling and hidden turbo/boost
frequencies are tied close together and depend on each other.
The first two exist on different architectures like PPC, Itanium and
ARM, the latter (so far) only on X86. On X86 the APU (CPU+GPU) will
only run most efficiently if CPU and GPU has proper power management
in place.
Users and Developers want to have *one* tool to get an overview what
their system supports and to monitor and debug CPU power management
in detail. The tool should compile and work on as many architectures
as possible.
Once this tool stabilizes a bit, it is intended to replace the
Intel-specific tools in tools/power/x86
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
|