summaryrefslogtreecommitdiffstats
path: root/net/sched/Makefile
Commit message (Collapse)AuthorAgeFilesLines
* net: sched: add ipset ematchFlorian Westphal2012-07-121-0/+1
| | | | | | | | | | | | | | Can be used to match packets against netfilter ip sets created via ipset(8). skb->sk_iif is used as 'incoming interface', skb->dev is 'outgoing interface'. Since ipset is usually called from netfilter, the ematch initializes a fake xt_action_param, pulls the ip header into the linear area and also sets skb->data to the IP header (otherwise matching Layer 4 set types doesn't work). Tested-by: Mr Dash Four <mr.dash.four@googlemail.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: em_canid: Ematch rule to match CAN frames according to their identifiersRostislav Lisovy2012-07-041-0/+1
| | | | | | | | | | | This ematch makes it possible to classify CAN frames (AF_CAN) according to their identifiers. This functionality can not be easily achieved with existing classifiers, such as u32, because CAN identifier is always stored in native endianness, whereas u32 expects Network byte order. Signed-off-by: Rostislav Lisovy <lisovy@gmail.com> Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net> Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
* fq_codel: Fair Queue Codel AQMEric Dumazet2012-05-121-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fair Queue Codel packet scheduler Principles : - Packets are classified (internal classifier or external) on flows. - This is a Stochastic model (as we use a hash, several flows might be hashed on same slot) - Each flow has a CoDel managed queue. - Flows are linked onto two (Round Robin) lists, so that new flows have priority on old ones. - For a given flow, packets are not reordered (CoDel uses a FIFO) - head drops only. - ECN capability is on by default. - Very low memory footprint (64 bytes per flow) tc qdisc ... fq_codel [ limit PACKETS ] [ flows number ] [ target TIME ] [ interval TIME ] [ noecn ] [ quantum BYTES ] defaults : 1024 flows, 10240 packets limit, quantum : device MTU target : 5ms (CoDel default) interval : 100ms (CoDel default) Impressive results on load : class htb 1:1 root leaf 10: prio 0 quantum 1514 rate 200000Kbit ceil 200000Kbit burst 1475b/8 mpu 0b overhead 0b cburst 1475b/8 mpu 0b overhead 0b level 0 Sent 43304920109 bytes 33063109 pkt (dropped 0, overlimits 0 requeues 0) rate 201691Kbit 28595pps backlog 0b 312p requeues 0 lended: 33063109 borrowed: 0 giants: 0 tokens: -912 ctokens: -912 class fq_codel 10:1735 parent 10: (dropped 1292, overlimits 0 requeues 0) backlog 15140b 10p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 7.1ms class fq_codel 10:4524 parent 10: (dropped 1291, overlimits 0 requeues 0) backlog 16654b 11p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 7.1ms class fq_codel 10:4e74 parent 10: (dropped 1290, overlimits 0 requeues 0) backlog 6056b 4p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 6.4ms dropping drop_next 92.0ms class fq_codel 10:628a parent 10: (dropped 1289, overlimits 0 requeues 0) backlog 7570b 5p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 5.4ms dropping drop_next 90.9ms class fq_codel 10:a4b3 parent 10: (dropped 302, overlimits 0 requeues 0) backlog 16654b 11p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 7.1ms class fq_codel 10:c3c2 parent 10: (dropped 1284, overlimits 0 requeues 0) backlog 13626b 9p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 5.9ms class fq_codel 10:d331 parent 10: (dropped 299, overlimits 0 requeues 0) backlog 15140b 10p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 7.0ms class fq_codel 10:d526 parent 10: (dropped 12160, overlimits 0 requeues 0) backlog 35870b 211p requeues 0 deficit 1508 count 12160 lastcount 1 ldelay 15.3ms dropping drop_next 247us class fq_codel 10:e2c6 parent 10: (dropped 1288, overlimits 0 requeues 0) backlog 15140b 10p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 7.1ms class fq_codel 10:eab5 parent 10: (dropped 1285, overlimits 0 requeues 0) backlog 16654b 11p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 5.9ms class fq_codel 10:f220 parent 10: (dropped 1289, overlimits 0 requeues 0) backlog 15140b 10p requeues 0 deficit 1514 count 1 lastcount 1 ldelay 7.1ms qdisc htb 1: root refcnt 6 r2q 10 default 1 direct_packets_stat 0 ver 3.17 Sent 43331086547 bytes 33092812 pkt (dropped 0, overlimits 66063544 requeues 71) rate 201697Kbit 28602pps backlog 0b 260p requeues 71 qdisc fq_codel 10: parent 1:1 limit 10240p flows 65536 target 5.0ms interval 100.0ms ecn Sent 43331086547 bytes 33092812 pkt (dropped 949359, overlimits 0 requeues 0) rate 201697Kbit 28602pps backlog 189352b 260p requeues 0 maxpacket 1514 drop_overlimit 0 new_flow_count 5582 ecn_mark 125593 new_flows_len 0 old_flows_len 11 PING 172.30.42.18 (172.30.42.18) 56(84) bytes of data. 64 bytes from 172.30.42.18: icmp_req=1 ttl=64 time=0.227 ms 64 bytes from 172.30.42.18: icmp_req=2 ttl=64 time=0.165 ms 64 bytes from 172.30.42.18: icmp_req=3 ttl=64 time=0.166 ms 64 bytes from 172.30.42.18: icmp_req=4 ttl=64 time=0.151 ms 64 bytes from 172.30.42.18: icmp_req=5 ttl=64 time=0.164 ms 64 bytes from 172.30.42.18: icmp_req=6 ttl=64 time=0.172 ms 64 bytes from 172.30.42.18: icmp_req=7 ttl=64 time=0.175 ms 64 bytes from 172.30.42.18: icmp_req=8 ttl=64 time=0.183 ms 64 bytes from 172.30.42.18: icmp_req=9 ttl=64 time=0.158 ms 64 bytes from 172.30.42.18: icmp_req=10 ttl=64 time=0.200 ms 10 packets transmitted, 10 received, 0% packet loss, time 8999ms rtt min/avg/max/mdev = 0.151/0.176/0.227/0.022 ms Much better than SFQ because of priority given to new flows, and fast path dirtying less cache lines. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* codel: Controlled Delay AQMEric Dumazet2012-05-101-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | An implementation of CoDel AQM, from Kathleen Nichols and Van Jacobson. http://queue.acm.org/detail.cfm?id=2209336 This AQM main input is no longer queue size in bytes or packets, but the delay packets stay in (FIFO) queue. As we don't have infinite memory, we still can drop packets in enqueue() in case of massive load, but mean of CoDel is to drop packets in dequeue(), using a control law based on two simple parameters : target : target sojourn time (default 5ms) interval : width of moving time window (default 100ms) Based on initial work from Dave Taht. Refactored to help future codel inclusion as a plugin for other linux qdisc (FQ_CODEL, ...), like RED. include/net/codel.h contains codel algorithm as close as possible than Kathleen reference. net/sched/sch_codel.c contains the linux qdisc specific glue. Separate structures permit a memory efficient implementation of fq_codel (to be sent as a separate work) : Each flow has its own struct codel_vars. timestamps are taken at enqueue() time with 1024 ns precision, allowing a range of 2199 seconds in queue, and 100Gb links support. iproute2 uses usec as base unit. Selected packets are dropped, unless ECN is enabled and packets can get ECN mark instead. Tested from 2Mb to 10Gb speeds with no particular problems, on ixgbe and tg3 drivers (BQL enabled). Usage: tc qdisc ... codel [ limit PACKETS ] [ target TIME ] [ interval TIME ] [ ecn ] qdisc codel 10: parent 1:1 limit 2000p target 3.0ms interval 60.0ms ecn Sent 13347099587 bytes 8815805 pkt (dropped 0, overlimits 0 requeues 0) rate 202365Kbit 16708pps backlog 113550b 75p requeues 0 count 116 lastcount 98 ldelay 4.3ms dropping drop_next 816us maxpacket 1514 ecn_mark 84399 drop_overlimit 0 CoDel must be seen as a base module, and should be used keeping in mind there is still a FIFO queue. So a typical setup will probably need a hierarchy of several qdiscs and packet classifiers to be able to meet whatever constraints a user might have. One possible example would be to use fq_codel, which combines Fair Queueing and CoDel, in replacement of sfq / sfq_red. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Dave Taht <dave.taht@bufferbloat.net> Cc: Kathleen Nichols <nichols@pollere.com> Cc: Van Jacobson <van@pollere.net> Cc: Tom Herbert <therbert@google.com> Cc: Matt Mathis <mattmathis@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net/sched: sch_plug - Queue traffic until an explicit release commandShriram Rajagopalan2012-02-071-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The qdisc supports two operations - plug and unplug. When the qdisc receives a plug command via netlink request, packets arriving henceforth are buffered until a corresponding unplug command is received. Depending on the type of unplug command, the queue can be unplugged indefinitely or selectively. This qdisc can be used to implement output buffering, an essential functionality required for consistent recovery in checkpoint based fault-tolerance systems. Output buffering enables speculative execution by allowing generated network traffic to be rolled back. It is used to provide network protection for Xen Guests in the Remus high availability project, available as part of Xen. This module is generic enough to be used by any other system that wishes to add speculative execution and output buffering to its applications. This module was originally available in the linux 2.6.32 PV-OPS tree, used as dom0 for Xen. For more information, please refer to http://nss.cs.ubc.ca/remus/ and http://wiki.xensource.com/xenwiki/Remus Changes in V3: * Removed debug output (printk) on queue overflow * Added TCQ_PLUG_RELEASE_INDEFINITE - that allows the user to use this qdisc, for simple plug/unplug operations. * Use of packet counts instead of pointers to keep track of the buffers in the queue. Signed-off-by: Shriram Rajagopalan <rshriram@cs.ubc.ca> Signed-off-by: Brendan Cully <brendan@cs.ubc.ca> [author of the code in the linux 2.6.32 pvops tree] Signed-off-by: David S. Miller <davem@davemloft.net>
* pkt_sched: QFQ - quick fair queue schedulerstephen hemminger2011-04-041-0/+1
| | | | | | | | | | | This is an implementation of the Quick Fair Queue scheduler developed by Fabio Checconi. The same algorithm is already implemented in ipfw in FreeBSD. Fabio had an earlier version developed on Linux, I just cleaned it up. Thanks to Eric Dumazet for testing this under load. Signed-off-by: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net_sched: SFB flow schedulerEric Dumazet2011-02-231-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is the Stochastic Fair Blue scheduler, based on work from : W. Feng, D. Kandlur, D. Saha, K. Shin. Blue: A New Class of Active Queue Management Algorithms. U. Michigan CSE-TR-387-99, April 1999. http://www.thefengs.com/wuchang/blue/CSE-TR-387-99.pdf This implementation is based on work done by Juliusz Chroboczek General SFB algorithm can be found in figure 14, page 15: B[l][n] : L x N array of bins (L levels, N bins per level) enqueue() Calculate hash function values h{0}, h{1}, .. h{L-1} Update bins at each level for i = 0 to L - 1 if (B[i][h{i}].qlen > bin_size) B[i][h{i}].p_mark += p_increment; else if (B[i][h{i}].qlen == 0) B[i][h{i}].p_mark -= p_decrement; p_min = min(B[0][h{0}].p_mark ... B[L-1][h{L-1}].p_mark); if (p_min == 1.0) ratelimit(); else mark/drop with probabilty p_min; I did the adaptation of Juliusz code to meet current kernel standards, and various changes to address previous comments : http://thread.gmane.org/gmane.linux.network/90225 http://thread.gmane.org/gmane.linux.network/90375 Default flow classifier is the rxhash introduced by RPS in 2.6.35, but we can use an external flow classifier if wanted. tc qdisc add dev $DEV parent 1:11 handle 11: \ est 0.5sec 2sec sfb limit 128 tc filter add dev $DEV protocol ip parent 11: handle 3 \ flow hash keys dst divisor 1024 Notes: 1) SFB default child qdisc is pfifo_fast. It can be changed by another qdisc but a child qdisc MUST not drop a packet previously queued. This is because SFB needs to handle a dequeued packet in order to maintain its virtual queue states. pfifo_head_drop or CHOKe should not be used. 2) ECN is enabled by default, unlike RED/CHOKe/GRED With help from Patrick McHardy & Andi Kleen Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> CC: Juliusz Chroboczek <Juliusz.Chroboczek@pps.jussieu.fr> CC: Stephen Hemminger <shemminger@vyatta.com> CC: Patrick McHardy <kaber@trash.net> CC: Andi Kleen <andi@firstfloor.org> CC: John W. Linville <linville@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* sched: CHOKe flow schedulerstephen hemminger2011-02-021-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | CHOKe ("CHOose and Kill" or "CHOose and Keep") is an alternative packet scheduler based on the Random Exponential Drop (RED) algorithm. The core idea is: For every packet arrival: Calculate Qave if (Qave < minth) Queue the new packet else Select randomly a packet from the queue if (both packets from same flow) then Drop both the packets else if (Qave > maxth) Drop packet else Admit packet with proability p (same as RED) See also: Rong Pan, Balaji Prabhakar, Konstantinos Psounis, "CHOKe: a stateless active queue management scheme for approximating fair bandwidth allocation", Proceeding of INFOCOM'2000, March 2000. Help from: Eric Dumazet <eric.dumazet@gmail.com> Patrick McHardy <kaber@trash.net> Signed-off-by: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net_sched: implement a root container qdisc sch_mqprioJohn Fastabend2011-01-191-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This implements a mqprio queueing discipline that by default creates a pfifo_fast qdisc per tx queue and provides the needed configuration interface. Using the mqprio qdisc the number of tcs currently in use along with the range of queues alloted to each class can be configured. By default skbs are mapped to traffic classes using the skb priority. This mapping is configurable. Configurable parameters, struct tc_mqprio_qopt { __u8 num_tc; __u8 prio_tc_map[TC_BITMASK + 1]; __u8 hw; __u16 count[TC_MAX_QUEUE]; __u16 offset[TC_MAX_QUEUE]; }; Here the count/offset pairing give the queue alignment and the prio_tc_map gives the mapping from skb->priority to tc. The hw bit determines if the hardware should configure the count and offset values. If the hardware bit is set then the operation will fail if the hardware does not implement the ndo_setup_tc operation. This is to avoid undetermined states where the hardware may or may not control the queue mapping. Also minimal bounds checking is done on the count/offset to verify a queue does not exceed num_tx_queues and that queue ranges do not overlap. Otherwise it is left to user policy or hardware configuration to create useful mappings. It is expected that hardware QOS schemes can be implemented by creating appropriate mappings of queues in ndo_tc_setup(). One expected use case is drivers will use the ndo_setup_tc to map queue ranges onto 802.1Q traffic classes. This provides a generic mechanism to map network traffic onto these traffic classes and removes the need for lower layer drivers to know specifics about traffic types. Signed-off-by: John Fastabend <john.r.fastabend@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net/sched: add ACT_CSUM action to update packets checksumsGrégoire Baron2010-08-201-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | net/sched: add ACT_CSUM action to update packets checksums ACT_CSUM can be called just after ACT_PEDIT in order to re-compute some altered checksums in IPv4 and IPv6 packets. The following checksums are supported by this patch: - IPv4: IPv4 header, ICMP, IGMP, TCP, UDP & UDPLite - IPv6: ICMPv6, TCP, UDP & UDPLite It's possible to request in the same action to update different kind of checksums, if the packets flow mix TCP, UDP and UDPLite, ... An example of usage is done in the associated iproute2 patch. Version 3 changes: - remove useless goto instructions - improve IPv6 hop options decoding Version 2 changes: - coding style correction - remove useless arguments of some functions - use stack in tcf_csum_dump() - add tcf_csum_skb_nextlayer() to factor code Signed-off-by: Gregoire Baron <baronchon@n7mm.org> Acked-by: jamal <hadi@cyberus.ca> Signed-off-by: David S. Miller <davem@davemloft.net>
* net_sched: add classful multiqueue dummy schedulerDavid S. Miller2009-09-061-1/+1
| | | | | | | | | | | | | | | | | | | This patch adds a classful dummy scheduler which can be used as root qdisc for multiqueue devices and exposes each device queue as a child class. This allows to address queues individually and graft them similar to regular classes. Additionally it presents an accumulated view of the statistics of all real root qdiscs in the dummy root. Two new callbacks are added to the qdisc_ops and qdisc_class_ops: - cl_ops->select_queue selects the tx queue number for new child classes. - qdisc_ops->attach() overrides root qdisc device grafting to attach non-shared qdiscs to the queues. Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
* pkt_sched: add DRR schedulerPatrick McHardy2008-11-201-0/+1
| | | | | | | | | | | | Add classful DRR scheduler as a more flexible replacement for SFQ. The main difference to the algorithm described in "Efficient Fair Queueing using Deficit Round Robin" is that this implementation doesn't drop packets from the longest queue on overrun because its classful and limits are handled by each individual child qdisc. Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
* pkt_sched: Control group classifierThomas Graf2008-11-071-0/+1
| | | | | | | | | | | | | | | | | | | | The classifier should cover the most common use case and will work without any special configuration. The principle of the classifier is to directly access the task_struct via get_current(). In order for this to work, classification requests from softirqs must be ignored. This is not a problem because the vast majority of packets in softirq context are not assigned to a task anyway. For this to work, a mechanism is needed to trace softirq context. This repost goes back to the method of relying on the number of nested bh disable calls for the sake of not adding too much complexity and the option to come up with something more reliable if actually needed. Signed-off-by: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
* pkt_action: add new action skbeditAlexander Duyck2008-09-121-0/+1
| | | | | | | | | This new action will have the ability to change the priority and/or queue_mapping fields on an sk_buff. Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* pkt_sched: Add multiqueue scheduler supportAlexander Duyck2008-09-121-0/+1
| | | | | | | | | | | | | | | This patch is intended to add a qdisc to support the new tx multiqueue architecture by providing a band for each hardware queue. By doing this it is possible to support a different qdisc per physical hardware queue. This qdisc uses the skb->queue_mapping to select which band to place the traffic onto. It then uses a round robin w/ a check to see if the subqueue is stopped to determine which band to dequeue the packet from. Signed-off-by: Alexander Duyck <alexander.h.duyck@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [NET_SCHED]: Add flow classifierPatrick McHardy2008-01-311-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add new "flow" classifier, which is meant to extend the SFQ hashing capabilities without hard-coding new hash functions and also allows deterministic mappings of keys to classes, replacing some out of tree iptables patches like IPCLASSIFY (maps IPs to classes), IPMARK (maps IPs to marks, with fw filters to classes), ... Some examples: - Classic SFQ hash: tc filter add ... flow hash \ keys src,dst,proto,proto-src,proto-dst divisor 1024 - Classic SFQ hash, but using information from conntrack to work properly in combination with NAT: tc filter add ... flow hash \ keys nfct-src,nfct-dst,proto,nfct-proto-src,nfct-proto-dst divisor 1024 - Map destination IPs of 192.168.0.0/24 to classids 1-257: tc filter add ... flow map \ key dst addend -192.168.0.0 divisor 256 - alternatively: tc filter add ... flow map \ key dst and 0xff - similar, but reverse ordered: tc filter add ... flow map \ key dst and 0xff xor 0xff Perturbation is currently not supported because we can't reliable kill the timer on destruction. Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
* [PKT_SCHED]: Add stateless NATHerbert Xu2007-10-101-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Stateless NAT is useful in controlled environments where restrictions are placed on through traffic such that we don't need connection tracking to correctly NAT protocol-specific data. In particular, this is of interest when the number of flows or the number of addresses being NATed is large, or if connection tracking information has to be replicated and where it is not practical to do so. Previously we had stateless NAT functionality which was integrated into the IPv4 routing subsystem. This was a great solution as long as the NAT worked on a subnet to subnet basis such that the number of NAT rules was relatively small. The reason is that for SNAT the routing based system had to perform a linear scan through the rules. If the number of rules is large then major renovations would have take place in the routing subsystem to make this practical. For the time being, the least intrusive way of achieving this is to use the u32 classifier written by Alexey Kuznetsov along with the actions infrastructure implemented by Jamal Hadi Salim. The following patch is an attempt at this problem by creating a new nat action that can be invoked from u32 hash tables which would allow large number of stateless NAT rules that can be used/updated in constant time. The actual NAT code is mostly based on the previous stateless NAT code written by Alexey. In future we might be able to utilise the protocol NAT code from netfilter to improve support for other protocols. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
* [NET_SCHED]: Kill CONFIG_NET_CLS_POLICEPatrick McHardy2007-07-151-1/+0
| | | | | | | | | | The NET_CLS_ACT option is now a full replacement for NET_CLS_POLICE, remove the old code. The config option will be kept around to select the equivalent NET_CLS_ACT options for a short time to allow easier upgrades. Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
* [NET]: Remove dead net/sched/Makefile entry for sch_hpfq.o.Robert P. J. Day2007-03-261-1/+0
| | | | | | | | Remove the worthless net/sched/Makefile entry for the non-existent source file sch_hpfq.c. Signed-off-by: Robert P. J. Day <rpjday@mindspring.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [PKT_SCHED]: Make sch_fifo.o available when CONFIG_NET_SCHED is not set.David Kimdon2006-12-021-1/+2
| | | | | | | | | | | | | | | Based on patch by Patrick McHardy. Add a new option, NET_SCH_FIFO, which provides a simple fifo qdisc without requiring CONFIG_NET_SCHED. The d80211 stack needs a generic fifo qdisc for WME. At present it uses net/d80211/fifo_qdisc.c which is functionally equivalent to sch_fifo.c. This patch will allow the d80211 stack to remove net/d80211/fifo_qdisc.c and use sch_fifo.c instead. Signed-off-by: David Kimdon <david.kimdon@devicescape.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* [PKT_SCHED]: Prefix tc actions with act_Patrick McHardy2006-01-091-7/+7
| | | | | | | Clean up the net/sched directory a bit by prefix all actions with act_. Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
* [PKT_SCHED]: Blackhole queueing disciplineThomas Graf2005-07-051-1/+1
| | | | | | | | | | | | Useful in combination with classful qdiscs to drop or temporary disable certain flows, e.g. one could block specific ds flows with dsmark. Unlike the noop qdisc it can be controlled by the user and statistic accounting is done. Signed-off-by: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
* [PKT_SCHED]: Packet classification based on textsearch (ematch)Thomas Graf2005-06-231-0/+1
| | | | | Signed-off-by: Thomas Graf <tgraf@suug.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
* [PKT_SCHED]: Introduce simple actions.Jamal Hadi Salim2005-04-241-5/+6
| | | | | | | | And provide an example simply action in order to demonstrate usage. Signed-off-by: Jamal Hadi Salim <hadi@cyberus.ca> Signed-off-by: David S. Miller <davem@davemloft.net>
* Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds2005-04-161-0/+41
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
OpenPOWER on IntegriCloud