summaryrefslogtreecommitdiffstats
path: root/mm/slub.c
Commit message (Collapse)AuthorAgeFilesLines
* Kobject: convert mm/slub.c to use kobject_init/add_ng()Greg Kroah-Hartman2008-01-241-5/+4
| | | | | | | | | This converts the code to use the new kobject functions, cleaning up the logic in doing so. Cc: Christoph Lameter <clameter@sgi.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
* kobject: convert kernel_kset to be a kobjectGreg Kroah-Hartman2008-01-241-2/+1
| | | | | | | | | | | | kernel_kset does not need to be a kset, but a much simpler kobject now that we have kobj_attributes. We also rename kernel_kset to kernel_kobj to catch all users of this symbol with a build error instead of an easy-to-ignore build warning. Cc: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
* kset: move /sys/slab to /sys/kernel/slabGreg Kroah-Hartman2008-01-241-1/+2
| | | | | | | | | | /sys/kernel is where these things should go. Also updated the documentation and tool that used this directory. Cc: Kay Sievers <kay.sievers@vrfy.org> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
* kset: convert slub to use kset_createGreg Kroah-Hartman2008-01-241-8/+7
| | | | | | | | | Dynamically create the kset instead of declaring it statically. Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
* kobject: remove struct kobj_type from struct ksetGreg Kroah-Hartman2008-01-241-2/+3
| | | | | | | | | | | | | | | | | We don't need a "default" ktype for a kset. We should set this explicitly every time for each kset. This change is needed so that we can make ksets dynamic, and cleans up one of the odd, undocumented assumption that the kset/kobject/ktype model has. This patch is based on a lot of help from Kay Sievers. Nasty bug in the block code was found by Dave Young <hidave.darkstar@gmail.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Cc: Dave Young <hidave.darkstar@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
* Unify /proc/slabinfo configurationLinus Torvalds2008-01-021-2/+9
| | | | | | | | | | | | Both SLUB and SLAB really did almost exactly the same thing for /proc/slabinfo setup, using duplicate code and per-allocator #ifdef's. This just creates a common CONFIG_SLABINFO that is enabled by both SLUB and SLAB, and shares all the setup code. Maybe SLOB will want this some day too. Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slub: provide /proc/slabinfoPekka J Enberg2008-01-011-13/+92
| | | | | | | | | | | | | This adds a read-only /proc/slabinfo file on SLUB, that makes slabtop work. [ mingo@elte.hu: build fix. ] Cc: Andi Kleen <andi@firstfloor.org> Cc: Christoph Lameter <clameter@sgi.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: Improve hackbench speedChristoph Lameter2007-12-211-2/+2
| | | | | | | | | | | Increase the mininum number of partial slabs to keep around and put partial slabs to the end of the partial queue so that they can add more objects. Signed-off-by: Christoph Lameter <clameter@sgi.com> Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi> Acked-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: remove useless masking of GFP_ZEROChristoph Lameter2007-12-171-3/+0
| | | | | | | | | | | | | | Remove a recently added useless masking of GFP_ZERO. GFP_ZERO is already masked out in new_slab() (See how it calls allocate_slab). No need to do it twice. This reverts the SLUB parts of 7fd272550bd43cc1d7289ef0ab2fa50de137e767. Cc: Matt Mackall <mpm@selenic.com> Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Avoid double memclear() in SLOB/SLUBLinus Torvalds2007-12-091-0/+3
| | | | | | | | | | Both slob and slub react to __GFP_ZERO by clearing the allocation, which means that passing the GFP_ZERO bit down to the page allocator is just wasteful and pointless. Acked-by: Matt Mackall <mpm@selenic.com> Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB's ksize() fails for size > 2048Vegard Nossum2007-12-051-1/+5
| | | | | | | | | | | | | | I can't pass memory allocated by kmalloc() to ksize() if it is allocated by SLUB allocator and size is larger than (I guess) PAGE_SIZE / 2. The error of ksize() seems to be that it does not check if the allocation was made by SLUB or the page allocator. Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi> Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Christoph Lameter <clameter@sgi.com>, Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: killed the unused "end" variableDenis Cheng2007-11-121-2/+0
| | | | | | | Since the macro "for_each_object" introduced, the "end" variable becomes unused anymore. Signed-off-by: Denis Cheng <crquan@gmail.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: Fix memory leak by not reusing cpu_slabChristoph Lameter2007-11-051-19/+1
| | | | | | | | | | | | | | | | | | Fix the memory leak that may occur when we attempt to reuse a cpu_slab that was allocated while we reenabled interrupts in order to be able to grow a slab cache. The per cpu freelist may contain objects and in that situation we may overwrite the per cpu freelist pointer loosing objects. This only occurs if we find that the concurrently allocated slab fits our allocation needs. If we simply always deactivate the slab then the freelist will be properly reintegrated and the memory leak will go away. Signed-off-by: Christoph Lameter <clameter@sgi.com> Acked-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* missing atomic_read_long() in slub.cAl Viro2007-10-291-1/+1
| | | | | | | nr_slabs is atomic_long_t, not atomic_t Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* memory hotplug: make kmem_cache_node for SLUB on memory online avoid panicYasunori Goto2007-10-221-0/+118
| | | | | | | | | | | | | | | | | | | | | | Fix a panic due to access NULL pointer of kmem_cache_node at discard_slab() after memory online. When memory online is called, kmem_cache_nodes are created for all SLUBs for new node whose memory are available. slab_mem_going_online_callback() is called to make kmem_cache_node() in callback of memory online event. If it (or other callbacks) fails, then slab_mem_offline_callback() is called for rollback. In memory offline, slab_mem_going_offline_callback() is called to shrink all slub cache, then slab_mem_offline_callback() is called later. [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: locking fix] [akpm@linux-foundation.org: build fix] Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Slab API: remove useless ctor parameter and reorder parametersChristoph Lameter2007-10-171-6/+6
| | | | | | | | | | | | | | | | | | | | | Slab constructors currently have a flags parameter that is never used. And the order of the arguments is opposite to other slab functions. The object pointer is placed before the kmem_cache pointer. Convert ctor(void *object, struct kmem_cache *s, unsigned long flags) to ctor(struct kmem_cache *s, void *object) throughout the kernel [akpm@linux-foundation.org: coupla fixes] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: simplify IRQ off handlingChristoph Lameter2007-10-171-11/+7
| | | | | | | | | | Move irq handling out of new slab into __slab_alloc. That is useful for Mathieu's cmpxchg_local patchset and also allows us to remove the crude local_irq_off in early_kmem_cache_alloc(). Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slub: list_locations() can use GFP_TEMPORARYAndrew Morton2007-10-161-1/+1
| | | | | | | | | It's a short-lived allocation. Cc: Christoph Lameter <clameter@sgi.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: Optimize cacheline use for zeroingChristoph Lameter2007-10-161-2/+12
| | | | | | | | | | | | | | | | | | We touch a cacheline in the kmem_cache structure for zeroing to get the size. However, the hot paths in slab_alloc and slab_free do not reference any other fields in kmem_cache, so we may have to just bring in the cacheline for this one access. Add a new field to kmem_cache_cpu that contains the object size. That cacheline must already be used in the hotpaths. So we save one cacheline on every slab_alloc if we zero. We need to update the kmem_cache_cpu object size if an aliasing operation changes the objsize of an non debug slab. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: Place kmem_cache_cpu structures in a NUMA aware wayChristoph Lameter2007-10-161-14/+154
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The kmem_cache_cpu structures introduced are currently an array placed in the kmem_cache struct. Meaning the kmem_cache_cpu structures are overwhelmingly on the wrong node for systems with a higher amount of nodes. These are performance critical structures since the per node information has to be touched for every alloc and free in a slab. In order to place the kmem_cache_cpu structure optimally we put an array of pointers to kmem_cache_cpu structs in kmem_cache (similar to SLAB). However, the kmem_cache_cpu structures can now be allocated in a more intelligent way. We would like to put per cpu structures for the same cpu but different slab caches in cachelines together to save space and decrease the cache footprint. However, the slab allocators itself control only allocations per node. We set up a simple per cpu array for every processor with 100 per cpu structures which is usually enough to get them all set up right. If we run out then we fall back to kmalloc_node. This also solves the bootstrap problem since we do not have to use slab allocator functions early in boot to get memory for the small per cpu structures. Pro: - NUMA aware placement improves memory performance - All global structures in struct kmem_cache become readonly - Dense packing of per cpu structures reduces cacheline footprint in SMP and NUMA. - Potential avoidance of exclusive cacheline fetches on the free and alloc hotpath since multiple kmem_cache_cpu structures are in one cacheline. This is particularly important for the kmalloc array. Cons: - Additional reference to one read only cacheline (per cpu array of pointers to kmem_cache_cpu) in both slab_alloc() and slab_free(). [akinobu.mita@gmail.com: fix cpu hotplug offline/online path] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: "Pekka Enberg" <penberg@cs.helsinki.fi> Cc: Akinobu Mita <akinobu.mita@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: Avoid touching page struct when freeing to per cpu slabChristoph Lameter2007-10-161-5/+9
| | | | | | | | | | Set c->node to -1 if we allocate from a debug slab instead for SlabDebug which requires access the page struct cacheline. Signed-off-by: Christoph Lameter <clameter@sgi.com> Tested-by: Alexey Dobriyan <adobriyan@sw.ru> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: Move page->offset to kmem_cache_cpu->offsetChristoph Lameter2007-10-161-41/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | We need the offset from the page struct during slab_alloc and slab_free. In both cases we also reference the cacheline of the kmem_cache_cpu structure. We can therefore move the offset field into the kmem_cache_cpu structure freeing up 16 bits in the page struct. Moving the offset allows an allocation from slab_alloc() without touching the page struct in the hot path. The only thing left in slab_free() that touches the page struct cacheline for per cpu freeing is the checking of SlabDebug(page). The next patch deals with that. Use the available 16 bits to broaden page->inuse. More than 64k objects per slab become possible and we can get rid of the checks for that limitation. No need anymore to shrink the order of slabs if we boot with 2M sized slabs (slub_min_order=9). No need anymore to switch off the offset calculation for very large slabs since the field in the kmem_cache_cpu structure is 32 bits and so the offset field can now handle slab sizes of up to 8GB. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: Do not use page->mappingChristoph Lameter2007-10-161-2/+0
| | | | | | | | | | | | | | After moving the lockless_freelist to kmem_cache_cpu we no longer need page->lockless_freelist. Restructure the use of the struct page fields in such a way that we never touch the mapping field. This is turn allows us to remove the special casing of SLUB when determining the mapping of a page (needed for corner cases of virtual caches machines that need to flush caches of processors mapping a page). Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: Avoid page struct cacheline bouncing due to remote frees to cpu slabChristoph Lameter2007-10-161-74/+116
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A remote free may access the same page struct that also contains the lockless freelist for the cpu slab. If objects have a short lifetime and are freed by a different processor then remote frees back to the slab from which we are currently allocating are frequent. The cacheline with the page struct needs to be repeately acquired in exclusive mode by both the allocating thread and the freeing thread. If this is frequent enough then performance will suffer because of cacheline bouncing. This patchset puts the lockless_freelist pointer in its own cacheline. In order to make that happen we introduce a per cpu structure called kmem_cache_cpu. Instead of keeping an array of pointers to page structs we now keep an array to a per cpu structure that--among other things--contains the pointer to the lockless freelist. The freeing thread can then keep possession of exclusive access to the page struct cacheline while the allocating thread keeps its exclusive access to the cacheline containing the per cpu structure. This works as long as the allocating cpu is able to service its request from the lockless freelist. If the lockless freelist runs empty then the allocating thread needs to acquire exclusive access to the cacheline with the page struct lock the slab. The allocating thread will then check if new objects were freed to the per cpu slab. If so it will keep the slab as the cpu slab and continue with the recently remote freed objects. So the allocating thread can take a series of just freed remote pages and dish them out again. Ideally allocations could be just recycling objects in the same slab this way which will lead to an ideal allocation / remote free pattern. The number of objects that can be handled in this way is limited by the capacity of one slab. Increasing slab size via slub_min_objects/ slub_max_order may increase the number of objects and therefore performance. If the allocating thread runs out of objects and finds that no objects were put back by the remote processor then it will retrieve a new slab (from the partial lists or from the page allocator) and start with a whole new set of objects while the remote thread may still be freeing objects to the old cpu slab. This may then repeat until the new slab is also exhausted. If remote freeing has freed objects in the earlier slab then that earlier slab will now be on the partial freelist and the allocating thread will pick that slab next for allocation. So the loop is extended. However, both threads need to take the list_lock to make the swizzling via the partial list happen. It is likely that this kind of scheme will keep the objects being passed around to a small set that can be kept in the cpu caches leading to increased performance. More code cleanups become possible: - Instead of passing a cpu we can now pass a kmem_cache_cpu structure around. Allows reducing the number of parameters to various functions. - Can define a new node_match() function for NUMA to encapsulate locality checks. Effect on allocations: Cachelines touched before this patch: Write: page cache struct and first cacheline of object Cachelines touched after this patch: Write: kmem_cache_cpu cacheline and first cacheline of object Read: page cache struct (but see later patch that avoids touching that cacheline) The handling when the lockless alloc list runs empty gets to be a bit more complicated since another cacheline has now to be written to. But that is halfway out of the hot path. Effect on freeing: Cachelines touched before this patch: Write: page_struct and first cacheline of object Cachelines touched after this patch depending on how we free: Write(to cpu_slab): kmem_cache_cpu struct and first cacheline of object Write(to other): page struct and first cacheline of object Read(to cpu_slab): page struct to id slab etc. (but see later patch that avoids touching the page struct on free) Read(to other): cpu local kmem_cache_cpu struct to verify its not the cpu slab. Summary: Pro: - Distinct cachelines so that concurrent remote frees and local allocs on a cpuslab can occur without cacheline bouncing. - Avoids potential bouncing cachelines because of neighboring per cpu pointer updates in kmem_cache's cpu_slab structure since it now grows to a cacheline (Therefore remove the comment that talks about that concern). Cons: - Freeing objects now requires the reading of one additional cacheline. That can be mitigated for some cases by the following patches but its not possible to completely eliminate these references. - Memory usage grows slightly. The size of each per cpu object is blown up from one word (pointing to the page_struct) to one cacheline with various data. So this is NR_CPUS*NR_SLABS*L1_BYTES more memory use. Lets say NR_SLABS is 100 and a cache line size of 128 then we have just increased SLAB metadata requirements by 12.8k per cpu. (Another later patch reduces these requirements) Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Group short-lived and reclaimable kernel allocationsMel Gorman2007-10-161-0/+3
| | | | | | | | | | | | | | | | | | This patch marks a number of allocations that are either short-lived such as network buffers or are reclaimable such as inode allocations. When something like updatedb is called, long-lived and unmovable kernel allocations tend to be spread throughout the address space which increases fragmentation. This patch groups these allocations together as much as possible by adding a new MIGRATE_TYPE. The MIGRATE_RECLAIMABLE type is for allocations that can be reclaimed on demand, but not moved. i.e. they can be migrated by deleting them and re-reading the information from elsewhere. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andy Whitcroft <apw@shadowen.org> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Categorize GFP flagsChristoph Lameter2007-10-161-2/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The function of GFP_LEVEL_MASK seems to be unclear. In order to clear up the mystery we get rid of it and replace GFP_LEVEL_MASK with 3 sets of GFP flags: GFP_RECLAIM_MASK Flags used to control page allocator reclaim behavior. GFP_CONSTRAINT_MASK Flags used to limit where allocations can occur. GFP_SLAB_BUG_MASK Flags that the slab allocator BUG()s on. These replace the uses of GFP_LEVEL mask in the slab allocators and in vmalloc.c. The use of the flags not included in these sets may occur as a result of a slab allocation standing in for a page allocation when constructing scatter gather lists. Extraneous flags are cleared and not passed through to the page allocator. __GFP_MOVABLE/RECLAIMABLE, __GFP_COLD and __GFP_COMP will now be ignored if passed to a slab allocator. Change the allocation of allocator meta data in SLAB and vmalloc to not pass through flags listed in GFP_CONSTRAINT_MASK. SLAB already removes the __GFP_THISNODE flag for such allocations. Generalize that to also cover vmalloc. The use of GFP_CONSTRAINT_MASK also includes __GFP_HARDWALL. The impact of allocator metadata placement on access latency to the cachelines of the object itself is minimal since metadata is only referenced on alloc and free. The attempt is still made to place the meta data optimally but we consistently allow fallback both in SLAB and vmalloc (SLUB does not need to allocate metadata like that). Allocator metadata may serve multiple in kernel users and thus should not be subject to the limitations arising from a single allocation context. [akpm@linux-foundation.org: fix fallback_alloc()] Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Memoryless nodes: SLUB supportChristoph Lameter2007-10-161-8/+8
| | | | | | | | | | | | | | | | | Simply switch all for_each_online_node to for_each_node_state(NORMAL_MEMORY). That way SLUB only operates on nodes with regular memory. Any allocation attempt on a memoryless node or a node with just highmem will fall whereupon SLUB will fetch memory from a nearby node (depending on how memory policies and cpuset describe fallback). Signed-off-by: Christoph Lameter <clameter@sgi.com> Tested-by: Lee Schermerhorn <lee.schermerhorn@hp.com> Acked-by: Bob Picco <bob.picco@hp.com> Cc: Nishanth Aravamudan <nacc@us.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mel@skynet.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Slab allocators: fail if ksize is called with a NULL parameterChristoph Lameter2007-10-161-1/+2
| | | | | | | | | | | | | | | | A NULL pointer means that the object was not allocated. One cannot determine the size of an object that has not been allocated. Currently we return 0 but we really should BUG() on attempts to determine the size of something nonexistent. krealloc() interprets NULL to mean a zero sized object. Handle that separately in krealloc(). Signed-off-by: Christoph Lameter <clameter@sgi.com> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Matt Mackall <mpm@selenic.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* {slub, slob}: use unlikely() for kfree(ZERO_OR_NULL_PTR) checkSatyam Sharma2007-10-161-4/+4
| | | | | | | | | | | | | Considering kfree(NULL) would normally occur only in error paths and kfree(ZERO_SIZE_PTR) is uncommon as well, so let's use unlikely() for the condition check in SLUB's and SLOB's kfree() to optimize for the common case. SLAB has this already. Signed-off-by: Satyam Sharma <satyam@infradead.org> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: direct pass through of page size or higher kmalloc requestsChristoph Lameter2007-10-161-25/+38
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This gets rid of all kmalloc caches larger than page size. A kmalloc request larger than PAGE_SIZE > 2 is going to be passed through to the page allocator. This works both inline where we will call __get_free_pages instead of kmem_cache_alloc and in __kmalloc. kfree is modified to check if the object is in a slab page. If not then the page is freed via the page allocator instead. Roughly similar to what SLOB does. Advantages: - Reduces memory overhead for kmalloc array - Large kmalloc operations are faster since they do not need to pass through the slab allocator to get to the page allocator. - Performance increase of 10%-20% on alloc and 50% on free for PAGE_SIZEd allocations. SLUB must call page allocator for each alloc anyways since the higher order pages which that allowed avoiding the page alloc calls are not available in a reliable way anymore. So we are basically removing useless slab allocator overhead. - Large kmallocs yields page aligned object which is what SLAB did. Bad things like using page sized kmalloc allocations to stand in for page allocate allocs can be transparently handled and are not distinguishable from page allocator uses. - Checking for too large objects can be removed since it is done by the page allocator. Drawbacks: - No accounting for large kmalloc slab allocations anymore - No debugging of large kmalloc slab allocations. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slub.c:early_kmem_cache_node_alloc() shouldn't be __initAdrian Bunk2007-10-161-2/+2
| | | | | | | | | | WARNING: mm/built-in.o(.text+0x24bd3): Section mismatch: reference to .init.text:early_kmem_cache_node_alloc (between 'init_kmem_cache_nodes' and 'calculate_sizes') ... Signed-off-by: Adrian Bunk <bunk@stusta.de> Acked-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: accurately compare debug flags during slab cache mergeChristoph Lameter2007-09-111-15/+23
| | | | | | | | | | | | | | | | | | | | | | | | This was posted on Aug 28 and fixes an issue that could cause troubles when slab caches >=128k are created. http://marc.info/?l=linux-mm&m=118798149918424&w=2 Currently we simply add the debug flags unconditional when checking for a matching slab. This creates issues for sysfs processing when slabs exist that are exempt from debugging due to their huge size or because only a subset of slabs was selected for debugging. We need to only add the flags if kmem_cache_open() would also add them. Create a function to calculate the flags that would be set if the cache would be opened and use that function to determine the flags before looking for a compatible slab. [akpm@linux-foundation.org: fixlets] Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Chuck Ebbert <cebbert@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* slub: do not fail if we cannot register a slab with sysfsChristoph Lameter2007-08-311-2/+6
| | | | | | | | | | | | Do not BUG() if we cannot register a slab with sysfs. Just print an error. The only consequence of not registering is that the slab cache is not visible via /sys/slab. A BUG() may not be visible that early during boot and we have had multiple issues here already. Signed-off-by: Christoph Lameter <clameter@sgi.com> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: do not fail on broken memory configurationsChristoph Lameter2007-08-221-1/+8
| | | | | | | | | | Print a big fat warning and do what is necessary to continue if a node is marked as up (meaning either node is online (upstream) or node has memory (Andrew's tree)) but allocations from the node do not succeed. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: use atomic_long_read for atomic_long variablesChristoph Lameter2007-08-221-3/+3
| | | | | | | | | SLUB is using atomic_read() for variables declared atomic_long_t. Switch to atomic_long_read(). Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: Fix dynamic dma kmalloc cache creationChristoph Lameter2007-08-091-14/+45
| | | | | | | | | | | | | | | | | | | | | | | | | | | | The dynamic dma kmalloc creation can run into trouble if a GFP_ATOMIC allocation is the first one performed for a certain size of dma kmalloc slab. - Move the adding of the slab to sysfs into a workqueue (sysfs does GFP_KERNEL allocations) - Do not call kmem_cache_destroy() (uses slub_lock) - Only acquire the slub_lock once and--if we cannot wait--do a trylock. This introduces a slight risk of the first kmalloc(x, GFP_DMA|GFP_ATOMIC) for a range of sizes failing due to another process holding the slub_lock. However, we only need to acquire the spinlock once in order to establish each power of two DMA kmalloc cache. The possible conflict is with the slub_lock taken during slab management actions (create / remove slab cache). It is rather typical that a driver will first fill its buffers using GFP_KERNEL allocations which will wait until the slub_lock can be acquired. Drivers will also create its slab caches first outside of an atomic context before starting to use atomic kmalloc from an interrupt context. If there are any failures then they will occur early after boot or when loading of multiple drivers concurrently. Drivers can already accomodate failures of GFP_ATOMIC for other reasons. Retries will then create the slab. Signed-off-by: Christoph Lameter <clameter@sgi.com>
* SLUB: Remove checks for MAX_PARTIAL from kmem_cache_shrinkChristoph Lameter2007-08-091-7/+2
| | | | | | | | | | | | | | | | The MAX_PARTIAL checks were supposed to be an optimization. However, slab shrinking is a manually triggered process either through running slabinfo or by the kernel calling kmem_cache_shrink. If one really wants to shrink a slab then all operations should be done regardless of the size of the partial list. This also fixes an issue that could surface if the number of partial slabs was initially above MAX_PARTIAL in kmem_cache_shrink and later drops below MAX_PARTIAL through the elimination of empty slabs on the partial list (rare). In that case a few slabs may be left off the partial list (and only be put back when they are empty). Signed-off-by: Christoph Lameter <clameter@sgi.com>
* slub: fix bug in slub debug supportPeter Zijlstra2007-07-301-1/+1
| | | | | | | We ClearSlabDebug() before the last SlabDebug() check. Clear it later. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Christoph Lameter <clameter@sgi.com>
* slub: add lock debugging checkPeter Zijlstra2007-07-301-0/+1
| | | | | | | | | | Ingo noticed that the SLUB code does include the lock debugging free check. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Ingo Molnar <mingo@elte.hu> Acked-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Christoph Lameter <clameter@sgi.com>
* mm: Remove slab destructors from kmem_cache_create().Paul Mundt2007-07-201-3/+1
| | | | | | | | | | | | | | Slab destructors were no longer supported after Christoph's c59def9f222d44bb7e2f0a559f2906191a0862d7 change. They've been BUGs for both slab and slub, and slob never supported them either. This rips out support for the dtor pointer from kmem_cache_create() completely and fixes up every single callsite in the kernel (there were about 224, not including the slab allocator definitions themselves, or the documentation references). Signed-off-by: Paul Mundt <lethal@linux-sh.org>
* slub: fix ksize() for zero-sized pointersLinus Torvalds2007-07-191-1/+1
| | | | | | | | | | | | | The slab and slob allocators already did this right, but slub would call "get_object_page()" on the magic ZERO_SIZE_PTR, with all kinds of nasty end results. Noted by Ingo Molnar. Cc: Ingo Molnar <mingo@elte.hu> Cc: Christoph Lameter <clameter@sgi.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: Fix CONFIG_SLUB_DEBUG use for CONFIG_NUMAChristoph Lameter2007-07-171-0/+4
| | | | | | | | | | | | We currently cannot disable CONFIG_SLUB_DEBUG for CONFIG_NUMA. Now that embedded systems start to use NUMA we may need this. Put an #ifdef around places where NUMA only code uses fields only valid for CONFIG_SLUB_DEBUG. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: Move sysfs operations outside of slub_lockChristoph Lameter2007-07-171-13/+15
| | | | | | | | | | | | | | | Sysfs can do a gazillion things when called. Make sure that we do not call any sysfs functions while holding the slub_lock. Just protect the essentials: 1. The list of all slab caches 2. The kmalloc_dma array 3. The ref counters of the slabs. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: Do not allocate object bit array on stackChristoph Lameter2007-07-171-14/+25
| | | | | | | | | | | | | | The objects per slab increase with the current patches in mm since we allow up to order 3 allocs by default. More patches in mm actually allow to use 2M or higher sized slabs. For slab validation we need per object bitmaps in order to check a slab. We end up with up to 64k objects per slab resulting in a potential requirement of 8K stack space. That does not look good. Allocate the bit arrays via kmalloc. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Slab allocators: Cleanup zeroing allocationsChristoph Lameter2007-07-171-11/+0
| | | | | | | | | | | It becomes now easy to support the zeroing allocs with generic inline functions in slab.h. Provide inline definitions to allow the continued use of kzalloc, kmem_cache_zalloc etc but remove other definitions of zeroing functions from the slab allocators and util.c. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: Do not use length parameter in slab_alloc()Christoph Lameter2007-07-171-11/+9
| | | | | | | | | | We can get to the length of the object through the kmem_cache_structure. The additional parameter does no good and causes the compiler to generate bad code. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: Style fix up the loop to disable small slabsChristoph Lameter2007-07-171-1/+1
| | | | | | | | Do proper spacing and we only need to do this in steps of 8. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/slub.c: make code staticAdrian Bunk2007-07-171-3/+3
| | | | | | | Signed-off-by: Adrian Bunk <bunk@stusta.de> Cc: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: Simplify dma index -> size calculationChristoph Lameter2007-07-171-9/+1
| | | | | | | | | There is no need to caculate the dma slab size ourselves. We can simply lookup the size of the corresponding non dma slab. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* SLUB: faster more efficient slab determination for __kmallocChristoph Lameter2007-07-171-7/+64
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | kmalloc_index is a long series of comparisons. The attempt to replace kmalloc_index with something more efficient like ilog2 failed due to compiler issues with constant folding on gcc 3.3 / powerpc. kmalloc_index()'es long list of comparisons works fine for constant folding since all the comparisons are optimized away. However, SLUB also uses kmalloc_index to determine the slab to use for the __kmalloc_xxx functions. This leads to a large set of comparisons in get_slab(). The patch here allows to get rid of that list of comparisons in get_slab(): 1. If the requested size is larger than 192 then we can simply use fls to determine the slab index since all larger slabs are of the power of two type. 2. If the requested size is smaller then we cannot use fls since there are non power of two caches to be considered. However, the sizes are in a managable range. So we divide the size by 8. Then we have only 24 possibilities left and then we simply look up the kmalloc index in a table. Code size of slub.o decreases by more than 200 bytes through this patch. Signed-off-by: Christoph Lameter <clameter@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
OpenPOWER on IntegriCloud