summaryrefslogtreecommitdiffstats
path: root/kernel/cpuset.c
Commit message (Collapse)AuthorAgeFilesLines
* kernel, cpuset: remove exception for __GFP_THISNODEDavid Rientjes2015-04-141-13/+5
| | | | | | | | | | | | | | | | | | | | Nothing calls __cpuset_node_allowed() with __GFP_THISNODE set anymore, so remove the obscure comment about it and its special-case exception. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Pravin Shelar <pshelar@nicira.com> Cc: Jarno Rajahalme <jrajahalme@nicira.com> Cc: Li Zefan <lizefan@huawei.com> Cc: Greg Thelen <gthelen@google.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* cpusets, isolcpus: exclude isolcpus from load balancing in cpusetsRik van Riel2015-03-191-2/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Ensure that cpus specified with the isolcpus= boot commandline option stay outside of the load balancing in the kernel scheduler. Operations like load balancing can introduce unwanted latencies, which is exactly what the isolcpus= commandline is there to prevent. Previously, simply creating a new cpuset, without even touching the cpuset.cpus field inside the new cpuset, would undo the effects of isolcpus=, by creating a scheduler domain spanning the whole system, and setting up load balancing inside that domain. The cpuset root cpuset.cpus file is read-only, so there was not even a way to undo that effect. This does not impact the majority of cpusets users, since isolcpus= is a fairly specialized feature used for realtime purposes. Cc: Peter Zijlstra <peterz@infradead.org> Cc: Clark Williams <williams@redhat.com> Cc: Li Zefan <lizefan@huawei.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Luiz Capitulino <lcapitulino@redhat.com> Cc: Mike Galbraith <umgwanakikbuti@gmail.com> Cc: cgroups@vger.kernel.org Signed-off-by: Rik van Riel <riel@redhat.com> Tested-by: David Rientjes <rientjes@google.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Zefan Li <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
* cpuset: Fix cpuset sched_relax_domain_levelJason Low2015-03-021-3/+0
| | | | | | | | | | | | | | | | | | | | | The cpuset.sched_relax_domain_level can control how far we do immediate load balancing on a system. However, it was found on recent kernels that echo'ing a value into cpuset.sched_relax_domain_level did not reduce any immediate load balancing. The reason this occurred was because the update_domain_attr_tree() traversal did not update for the "top_cpuset". This resulted in nothing being changed when modifying the sched_relax_domain_level parameter. This patch is able to address that problem by having update_domain_attr_tree() allow updates for the root in the cpuset traversal. Fixes: fc560a26acce ("cpuset: replace cpuset->stack_list with cpuset_for_each_descendant_pre()") Cc: <stable@vger.kernel.org> # 3.9+ Signed-off-by: Jason Low <jason.low2@hp.com> Signed-off-by: Zefan Li <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org> Tested-by: Serge Hallyn <serge.hallyn@canonical.com>
* cpuset: fix a warning when clearing configured masks in old hierarchyZefan Li2015-03-021-2/+2
| | | | | | | | | | | | | | | | | | | | | | | When we clear cpuset.cpus, cpuset.effective_cpus won't be cleared: # mount -t cgroup -o cpuset xxx /mnt # mkdir /mnt/tmp # echo 0 > /mnt/tmp/cpuset.cpus # echo > /mnt/tmp/cpuset.cpus # cat cpuset.cpus # cat cpuset.effective_cpus 0-15 And a kernel warning in update_cpumasks_hier() is triggered: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 4028 at kernel/cpuset.c:894 update_cpumasks_hier+0x471/0x650() Cc: <stable@vger.kernel.org> # 3.17+ Signed-off-by: Zefan Li <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org> Tested-by: Serge Hallyn <serge.hallyn@canonical.com>
* cpuset: initialize effective masks when clone_children is enabledZefan Li2015-03-021-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | If clone_children is enabled, effective masks won't be initialized due to the bug: # mount -t cgroup -o cpuset xxx /mnt # echo 1 > cgroup.clone_children # mkdir /mnt/tmp # cat /mnt/tmp/ # cat cpuset.effective_cpus # cat cpuset.cpus 0-15 And then this cpuset won't constrain the tasks in it. Either the bug or the fix has no effect on unified hierarchy, as there's no clone_chidren flag there any more. Reported-by: Christian Brauner <christianvanbrauner@gmail.com> Reported-by: Serge Hallyn <serge.hallyn@ubuntu.com> Cc: <stable@vger.kernel.org> # 3.17+ Signed-off-by: Zefan Li <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org> Tested-by: Serge Hallyn <serge.hallyn@canonical.com>
* cpuset: use %*pb[l] to print bitmaps including cpumasks and nodemasksTejun Heo2015-02-131-33/+9
| | | | | | | | | | | | | | | printk and friends can now format bitmaps using '%*pb[l]'. cpumask and nodemask also provide cpumask_pr_args() and nodemask_pr_args() respectively which can be used to generate the two printf arguments necessary to format the specified cpu/nodemask. * kernel/cpuset.c::cpuset_print_task_mems_allowed() used a static buffer which is protected by a dedicated spinlock. Removed. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* kernel/cpuset.c: Mark cpuset_init_current_mems_allowed as __initRasmus Villemoes2015-02-121-1/+1
| | | | | | | | | | | | | | | | | | | | | | | The only caller of cpuset_init_current_mems_allowed is the __init annotated build_all_zonelists_init, so we can also make the former __init. Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Vishnu Pratap Singh <vishnu.ps@samsung.com> Cc: Pintu Kumar <pintu.k@samsung.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Li Zefan <lizefan@huawei.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'for-3.19' of ↵Linus Torvalds2014-12-111-105/+57
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup update from Tejun Heo: "cpuset got simplified a bit. cgroup core got a fix on unified hierarchy and grew some effective css related interfaces which will be used for blkio support for writeback IO traffic which is currently being worked on" * 'for-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: implement cgroup_get_e_css() cgroup: add cgroup_subsys->css_e_css_changed() cgroup: add cgroup_subsys->css_released() cgroup: fix the async css offline wait logic in cgroup_subtree_control_write() cgroup: restructure child_subsys_mask handling in cgroup_subtree_control_write() cgroup: separate out cgroup_calc_child_subsys_mask() from cgroup_refresh_child_subsys_mask() cpuset: lock vs unlock typo cpuset: simplify cpuset_node_allowed API cpuset: convert callback_mutex to a spinlock
| * cpuset: lock vs unlock typoDan Carpenter2014-10-271-1/+1
| | | | | | | | | | | | | | | | | | This will deadlock instead of unlocking. Fixes: f73eae8d8384 ('cpuset: simplify cpuset_node_allowed API') Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * cpuset: simplify cpuset_node_allowed APIVladimir Davydov2014-10-271-53/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Current cpuset API for checking if a zone/node is allowed to allocate from looks rather awkward. We have hardwall and softwall versions of cpuset_node_allowed with the softwall version doing literally the same as the hardwall version if __GFP_HARDWALL is passed to it in gfp flags. If it isn't, the softwall version may check the given node against the enclosing hardwall cpuset, which it needs to take the callback lock to do. Such a distinction was introduced by commit 02a0e53d8227 ("cpuset: rework cpuset_zone_allowed api"). Before, we had the only version with the __GFP_HARDWALL flag determining its behavior. The purpose of the commit was to avoid sleep-in-atomic bugs when someone would mistakenly call the function without the __GFP_HARDWALL flag for an atomic allocation. The suffixes introduced were intended to make the callers think before using the function. However, since the callback lock was converted from mutex to spinlock by the previous patch, the softwall check function cannot sleep, and these precautions are no longer necessary. So let's simplify the API back to the single check. Suggested-by: David Rientjes <rientjes@google.com> Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Zefan Li <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * cpuset: convert callback_mutex to a spinlockVladimir Davydov2014-10-271-52/+55
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The callback_mutex is only used to synchronize reads/updates of cpusets' flags and cpu/node masks. These operations should always proceed fast so there's no reason why we can't use a spinlock instead of the mutex. Converting the callback_mutex into a spinlock will let us call cpuset_zone_allowed_softwall from atomic context. This, in turn, makes it possible to simplify the code by merging the hardwall and asoftwall checks into the same function, which is the business of the next patch. Suggested-by: Zefan Li <lizefan@huawei.com> Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Zefan Li <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
* | sched/deadline: Ensure that updates to exclusive cpusets don't break ACJuri Lelli2014-10-281-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | How we deal with updates to exclusive cpusets is currently broken. As an example, suppose we have an exclusive cpuset composed of two cpus: A[cpu0,cpu1]. We can assign SCHED_DEADLINE task to it up to the allowed bandwidth. If we want now to modify cpusetA's cpumask, we have to check that removing a cpu's amount of bandwidth doesn't break AC guarantees. This thing isn't checked in the current code. This patch fixes the problem above, denying an update if the new cpumask won't have enough bandwidth for SCHED_DEADLINE tasks that are currently active. Signed-off-by: Juri Lelli <juri.lelli@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Li Zefan <lizefan@huawei.com> Cc: cgroups@vger.kernel.org Link: http://lkml.kernel.org/r/5433E6AF.5080105@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* | sched/deadline: Fix bandwidth check/update when migrating tasks between ↵Juri Lelli2014-10-281-11/+2
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | exclusive cpusets Exclusive cpusets are the only way users can restrict SCHED_DEADLINE tasks affinity (performing what is commonly called clustered scheduling). Unfortunately, such thing is currently broken for two reasons: - No check is performed when the user tries to attach a task to an exlusive cpuset (recall that exclusive cpusets have an associated maximum allowed bandwidth). - Bandwidths of source and destination cpusets are not correctly updated after a task is migrated between them. This patch fixes both things at once, as they are opposite faces of the same coin. The check is performed in cpuset_can_attach(), as there aren't any points of failure after that function. The updated is split in two halves. We first reserve bandwidth in the destination cpuset, after we pass the check in cpuset_can_attach(). And we then release bandwidth from the source cpuset when the task's affinity is actually changed. Even if there can be time windows when sched_setattr() may erroneously fail in the source cpuset, we are fine with it, as we can't perfom an atomic update of both cpusets at once. Reported-by: Daniel Wagner <daniel.wagner@bmw-carit.de> Reported-by: Vincent Legout <vincent@legout.info> Signed-off-by: Juri Lelli <juri.lelli@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dario Faggioli <raistlin@linux.it> Cc: Michael Trimarchi <michael@amarulasolutions.com> Cc: Fabio Checconi <fchecconi@gmail.com> Cc: michael@amarulasolutions.com Cc: luca.abeni@unitn.it Cc: Li Zefan <lizefan@huawei.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: cgroups@vger.kernel.org Link: http://lkml.kernel.org/r/1411118561-26323-3-git-send-email-juri.lelli@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* Merge branch 'for-3.18' of ↵Linus Torvalds2014-10-101-12/+3
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: "Nothing too interesting. Just a handful of cleanup patches" * 'for-3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: Revert "cgroup: remove redundant variable in cgroup_mount()" cgroup: remove redundant variable in cgroup_mount() cgroup: fix missing unlock in cgroup_release_agent() cgroup: remove CGRP_RELEASABLE flag perf/cgroup: Remove perf_put_cgroup() cgroup: remove redundant check in cgroup_ino() cpuset: simplify proc_cpuset_show() cgroup: simplify proc_cgroup_show() cgroup: use a per-cgroup work for release agent cgroup: remove bogus comments cgroup: remove redundant code in cgroup_rmdir() cgroup: remove some useless forward declarations cgroup: fix a typo in comment.
| * cpuset: simplify proc_cpuset_show()Zefan Li2014-09-181-12/+3
| | | | | | | | | | | | | | Use the ONE macro instead of REG, and we can simplify proc_cpuset_show(). Signed-off-by: Zefan Li <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
* | cpuset: PF_SPREAD_PAGE and PF_SPREAD_SLAB should be atomic flagsZefan Li2014-09-241-4/+5
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When we change cpuset.memory_spread_{page,slab}, cpuset will flip PF_SPREAD_{PAGE,SLAB} bit of tsk->flags for each task in that cpuset. This should be done using atomic bitops, but currently we don't, which is broken. Tetsuo reported a hard-to-reproduce kernel crash on RHEL6, which happened when one thread tried to clear PF_USED_MATH while at the same time another thread tried to flip PF_SPREAD_PAGE/PF_SPREAD_SLAB. They both operate on the same task. Here's the full report: https://lkml.org/lkml/2014/9/19/230 To fix this, we make PF_SPREAD_PAGE and PF_SPREAD_SLAB atomic flags. v4: - updated mm/slab.c. (Fengguang Wu) - updated Documentation. Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: Kees Cook <keescook@chromium.org> Fixes: 950592f7b991 ("cpusets: update tasks' page/slab spread flags in time") Cc: <stable@vger.kernel.org> # 2.6.31+ Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Zefan Li <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
* Merge branch 'for-3.17' of ↵Linus Torvalds2014-08-041-194/+306
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup changes from Tejun Heo: "Mostly changes to get the v2 interface ready. The core features are mostly ready now and I think it's reasonable to expect to drop the devel mask in one or two devel cycles at least for a subset of controllers. - cgroup added a controller dependency mechanism so that block cgroup can depend on memory cgroup. This will be used to finally support IO provisioning on the writeback traffic, which is currently being implemented. - The v2 interface now uses a separate table so that the interface files for the new interface are explicitly declared in one place. Each controller will explicitly review and add the files for the new interface. - cpuset is getting ready for the hierarchical behavior which is in the similar style with other controllers so that an ancestor's configuration change doesn't change the descendants' configurations irreversibly and processes aren't silently migrated when a CPU or node goes down. All the changes are to the new interface and no behavior changed for the multiple hierarchies" * 'for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (29 commits) cpuset: fix the WARN_ON() in update_nodemasks_hier() cgroup: initialize cgrp_dfl_root_inhibit_ss_mask from !->dfl_files test cgroup: make CFTYPE_ONLY_ON_DFL and CFTYPE_NO_ internal to cgroup core cgroup: distinguish the default and legacy hierarchies when handling cftypes cgroup: replace cgroup_add_cftypes() with cgroup_add_legacy_cftypes() cgroup: rename cgroup_subsys->base_cftypes to ->legacy_cftypes cgroup: split cgroup_base_files[] into cgroup_{dfl|legacy}_base_files[] cpuset: export effective masks to userspace cpuset: allow writing offlined masks to cpuset.cpus/mems cpuset: enable onlined cpu/node in effective masks cpuset: refactor cpuset_hotplug_update_tasks() cpuset: make cs->{cpus, mems}_allowed as user-configured masks cpuset: apply cs->effective_{cpus,mems} cpuset: initialize top_cpuset's configured masks at mount cpuset: use effective cpumask to build sched domains cpuset: inherit ancestor's masks if effective_{cpus, mems} becomes empty cpuset: update cs->effective_{cpus, mems} when config changes cpuset: update cpuset->effective_{cpus,mems} at hotplug cpuset: add cs->effective_cpus and cs->effective_mems cgroup: clean up sane_behavior handling ...
| * cpuset: fix the WARN_ON() in update_nodemasks_hier()Li Zefan2014-07-301-1/+1
| | | | | | | | | | | | | | | | | | The WARN_ON() is used to check if we break the legal hierarchy, on which the effective mems should be equal to configured mems. Reported-by: Mike Qiu <qiudayu@linux.vnet.ibm.com> Tested-by: Mike Qiu <qiudayu@linux.vnet.ibm.com> Signed-off-by: Li Zefan <lizefan@huawei.com>
| * cgroup: rename cgroup_subsys->base_cftypes to ->legacy_cftypesTejun Heo2014-07-151-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, cgroup_subsys->base_cftypes is used for both the unified default hierarchy and legacy ones and subsystems can mark each file with either CFTYPE_ONLY_ON_DFL or CFTYPE_INSANE if it has to appear only on one of them. This is quite hairy and error-prone. Also, we may end up exposing interface files to the default hierarchy without thinking it through. cgroup_subsys will grow two separate cftype arrays and apply each only on the hierarchies of the matching type. This will allow organizing cftypes in a lot clearer way and encourage subsystems to scrutinize the interface which is being exposed in the new default hierarchy. In preparation, this patch renames cgroup_subsys->base_cftypes to cgroup_subsys->legacy_cftypes. This patch is pure rename. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Neil Horman <nhorman@tuxdriver.com> Acked-by: Li Zefan <lizefan@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Aristeu Rozanski <aris@redhat.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
| * cpuset: export effective masks to userspaceLi Zefan2014-07-091-0/+20
| | | | | | | | | | | | | | | | | | | | | | | | cpuset.cpus and cpuset.mems are the configured masks, and we need to export effective masks to userspace, so users know the real cpus_allowed and mems_allowed that apply to the tasks in a cpuset. v2: - export those masks unconditionally, suggested by Tejun. Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * cpuset: allow writing offlined masks to cpuset.cpus/memsLi Zefan2014-07-091-3/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As the configured masks won't be limited by its parent, and the top cpuset's masks won't change when hotplug happens, it's natural to allow writing offlined masks to the configured masks. If on default hierarchy: # echo 0 > /sys/devices/system/cpu/cpu1/online # mkdir /cpuset/sub # echo 1 > /cpuset/sub/cpuset.cpus # cat /cpuset/sub/cpuset.cpus 1 If on legacy hierarchy: # echo 0 > /sys/devices/system/cpu/cpu1/online # mkdir /cpuset/sub # echo 1 > /cpuset/sub/cpuset.cpus -bash: echo: write error: Invalid argument Note the checks don't need to be gated by cgroup_on_dfl, because we've initialized top_cpuset.{cpus,mems}_allowed accordingly in cpuset_bind(). Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * cpuset: enable onlined cpu/node in effective masksLi Zefan2014-07-091-29/+36
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Firstly offline cpu1: # echo 0-1 > cpuset.cpus # echo 0 > /sys/devices/system/cpu/cpu1/online # cat cpuset.cpus 0-1 # cat cpuset.effective_cpus 0 Then online it: # echo 1 > /sys/devices/system/cpu/cpu1/online # cat cpuset.cpus 0-1 # cat cpuset.effective_cpus 0-1 And cpuset will bring it back to the effective mask. The implementation is quite straightforward. Instead of calculating the offlined cpus/mems and do updates, we just set the new effective_mask to online_mask & congifured_mask. This is a behavior change for default hierarchy, so legacy hierarchy won't be affected. v2: - make refactoring of cpuset_hotplug_update_tasks() as seperate patch, suggested by Tejun. - make hotplug_update_tasks_insane() use @new_cpus and @new_mems as hotplug_update_tasks_sane() does. Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * cpuset: refactor cpuset_hotplug_update_tasks()Li Zefan2014-07-091-55/+66
| | | | | | | | | | | | | | | | We mix the handling for both default hierarchy and legacy hierarchy in the same function, and it's quite messy, so split into two functions. Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * cpuset: make cs->{cpus, mems}_allowed as user-configured masksLi Zefan2014-07-091-6/+29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now we've used effective cpumasks to enforce hierarchical manner, we can use cs->{cpus,mems}_allowed as configured masks. Configured masks can be changed by writing cpuset.cpus and cpuset.mems only. The new behaviors are: - They won't be changed by hotplug anymore. - They won't be limited by its parent's masks. This ia a behavior change, but won't take effect unless mount with sane_behavior. v2: - Add comments to explain the differences between configured masks and effective masks. Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * cpuset: apply cs->effective_{cpus,mems}Li Zefan2014-07-091-69/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now we can use cs->effective_{cpus,mems} as effective masks. It's used whenever: - we update tasks' cpus_allowed/mems_allowed, - we want to retrieve tasks_cs(tsk)'s cpus_allowed/mems_allowed. They actually replace effective_{cpu,node}mask_cpuset(). effective_mask == configured_mask & parent effective_mask except when the reault is empty, in which case it inherits parent effective_mask. The result equals the mask computed from effective_{cpu,node}mask_cpuset(). This won't affect the original legacy hierarchy, because in this case we make sure the effective masks are always the same with user-configured masks. Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * cpuset: initialize top_cpuset's configured masks at mountLi Zefan2014-07-091-9/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We now have to support different behaviors for default hierachy and legacy hiearchy, top_cpuset's configured masks need to be initialized accordingly. Suppose we've offlined cpu1. On default hierarchy: # mount -t cgroup -o __DEVEL__sane_behavior xxx /cpuset # cat /cpuset/cpuset.cpus 0-15 On legacy hierarchy: # mount -t cgroup xxx /cpuset # cat /cpuset/cpuset.cpus 0,2-15 Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * cpuset: use effective cpumask to build sched domainsLi Zefan2014-07-091-11/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We're going to have separate user-configured masks and effective ones. Eventually configured masks can only be changed by writing cpuset.cpus and cpuset.mems, and they won't be restricted by parent cpuset. While effective masks reflect cpu/memory hotplug and hierachical restriction, and these are the real masks that apply to the tasks in the cpuset. We calculate effective mask this way: - top cpuset's effective_mask == online_mask, otherwise - cpuset's effective_mask == configured_mask & parent effective_mask, if the result is empty, it inherits parent effective mask. Those behavior changes are for default hierarchy only. For legacy hierarchy, effective_mask and configured_mask are the same, so we won't break old interfaces. We should partition sched domains according to effective_cpus, which is the real cpulist that takes effects on tasks in the cpuset. This won't introduce behavior change. v2: - Add a comment for the call of rebuild_sched_domains(), suggested by Tejun. Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * cpuset: inherit ancestor's masks if effective_{cpus, mems} becomes emptyLi Zefan2014-07-091-0/+22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We're going to have separate user-configured masks and effective ones. Eventually configured masks can only be changed by writing cpuset.cpus and cpuset.mems, and they won't be restricted by parent cpuset. While effective masks reflect cpu/memory hotplug and hierachical restriction, and these are the real masks that apply to the tasks in the cpuset. We calculate effective mask this way: - top cpuset's effective_mask == online_mask, otherwise - cpuset's effective_mask == configured_mask & parent effective_mask, if the result is empty, it inherits parent effective mask. Those behavior changes are for default hierarchy only. For legacy hierarchy, effective_mask and configured_mask are the same, so we won't break old interfaces. To make cs->effective_{cpus,mems} to be effective masks, we need to - update the effective masks at hotplug - update the effective masks at config change - take on ancestor's mask when the effective mask is empty The last item is done here. This won't introduce behavior change. Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * cpuset: update cs->effective_{cpus, mems} when config changesLi Zefan2014-07-091-34/+54
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We're going to have separate user-configured masks and effective ones. Eventually configured masks can only be changed by writing cpuset.cpus and cpuset.mems, and they won't be restricted by parent cpuset. While effective masks reflect cpu/memory hotplug and hierachical restriction, and these are the real masks that apply to the tasks in the cpuset. We calculate effective mask this way: - top cpuset's effective_mask == online_mask, otherwise - cpuset's effective_mask == configured_mask & parent effective_mask, if the result is empty, it inherits parent effective mask. Those behavior changes are for default hierarchy only. For legacy hierarchy, effective_mask and configured_mask are the same, so we won't break old interfaces. To make cs->effective_{cpus,mems} to be effective masks, we need to - update the effective masks at hotplug - update the effective masks at config change - take on ancestor's mask when the effective mask is empty The second item is done here. We don't need to treat root_cs specially in update_cpumasks_hier(). This won't introduce behavior change. v3: - add a WARN_ON() to check if effective masks are the same with configured masks on legacy hierarchy. - pass trialcs->cpus_allowed to update_cpumasks_hier() and add a comment for it. Similar change for update_nodemasks_hier(). Suggested by Tejun. v2: - revise the comment in update_{cpu,node}masks_hier(), suggested by Tejun. - fix to use @cp instead of @cs in these two functions. Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * cpuset: update cpuset->effective_{cpus,mems} at hotplugLi Zefan2014-07-091-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We're going to have separate user-configured masks and effective ones. Eventually configured masks can only be changed by writing cpuset.cpus and cpuset.mems, and they won't be restricted by parent cpuset. While effective masks reflect cpu/memory hotplug and hierachical restriction, and these are the real masks that apply to the tasks in the cpuset. We calculate effective mask this way: - top cpuset's effective_mask == online_mask, otherwise - cpuset's effective_mask == configured_mask & parent effective_mask, if the result is empty, it inherits parent effective mask. Those behavior changes are for default hierarchy only. For legacy hierarchy, effective_mask and configured_mask are the same, so we won't break old interfaces. To make cs->effective_{cpus,mems} to be effective masks, we need to - update the effective masks at hotplug - update the effective masks at config change - take on ancestor's mask when the effective mask is empty The first item is done here. This won't introduce behavior change. Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * cpuset: add cs->effective_cpus and cs->effective_memsLi Zefan2014-07-091-11/+48
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We're going to have separate user-configured masks and effective ones. Eventually configured masks can only be changed by writing cpuset.cpus and cpuset.mems, and they won't be restricted by parent cpuset. While effective masks reflect cpu/memory hotplug and hierachical restriction, and these are the real masks that apply to the tasks in the cpuset. We calculate effective mask this way: - top cpuset's effective_mask == online_mask, otherwise - cpuset's effective_mask == configured_mask & parent effective_mask, if the result is empty, it inherits parent effective mask. Those behavior changes are for default hierarchy only. For legacy hierachy, effective_mask and configured_mask are the same, so we won't break old interfaces. This patch adds the effective masks to struct cpuset and initializes them. The effective masks of the top cpuset is the same with configured masks, and a child cpuset inherits its parent's effective masks. This won't introduce behavior change. v2: - s/real_{mems,cpus}_allowed/effective_{mems,cpus}, suggested by Tejun. - don't init effective masks in cpuset_css_online() if !cgroup_on_dfl. Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * cgroup: remove sane_behavior support on non-default hierarchiesTejun Heo2014-07-091-18/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | sane_behavior has been used as a development vehicle for the default unified hierarchy. Now that the default hierarchy is in place, the flag became redundant and confusing as its usage is allowed on all hierarchies. There are gonna be either the default hierarchy or legacy ones. Let's make that clear by removing sane_behavior support on non-default hierarchies. This patch replaces cgroup_sane_behavior() with cgroup_on_dfl(). The comment on top of CGRP_ROOT_SANE_BEHAVIOR is moved to on top of cgroup_on_dfl() with sane_behavior specific part dropped. On the default and legacy hierarchies w/o sane_behavior, this shouldn't cause any behavior differences. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Vivek Goyal <vgoyal@redhat.com> Acked-by: Li Zefan <lizefan@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz>
* | cpuset: break kernfs active protection in cpuset_write_resmask()Tejun Heo2014-07-011-0/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Writing to either "cpuset.cpus" or "cpuset.mems" file flushes cpuset_hotplug_work so that cpu or memory hotunplug doesn't end up migrating tasks off a cpuset after new resources are added to it. As cpuset_hotplug_work calls into cgroup core via cgroup_transfer_tasks(), this flushing adds the dependency to cgroup core locking from cpuset_write_resmak(). This used to be okay because cgroup interface files were protected by a different mutex; however, 8353da1f91f1 ("cgroup: remove cgroup_tree_mutex") simplified the cgroup core locking and this dependency became a deadlock hazard - cgroup file removal performed under cgroup core lock tries to drain on-going file operation which is trying to flush cpuset_hotplug_work blocked on the same cgroup core lock. The locking simplification was done because kernfs added an a lot easier way to deal with circular dependencies involving kernfs active protection. Let's use the same strategy in cpuset and break active protection in cpuset_write_resmask(). While it isn't the prettiest, this is a very rare, likely unique, situation which also goes away on the unified hierarchy. The commands to trigger the deadlock warning without the patch and the lockdep output follow. localhost:/ # mount -t cgroup -o cpuset xxx /cpuset localhost:/ # mkdir /cpuset/tmp localhost:/ # echo 1 > /cpuset/tmp/cpuset.cpus localhost:/ # echo 0 > cpuset/tmp/cpuset.mems localhost:/ # echo $$ > /cpuset/tmp/tasks localhost:/ # echo 0 > /sys/devices/system/cpu/cpu1/online ====================================================== [ INFO: possible circular locking dependency detected ] 3.16.0-rc1-0.1-default+ #7 Not tainted ------------------------------------------------------- kworker/1:0/32649 is trying to acquire lock: (cgroup_mutex){+.+.+.}, at: [<ffffffff8110e3d7>] cgroup_transfer_tasks+0x37/0x150 but task is already holding lock: (cpuset_hotplug_work){+.+...}, at: [<ffffffff81085412>] process_one_work+0x192/0x520 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (cpuset_hotplug_work){+.+...}: ... -> #1 (s_active#175){++++.+}: ... -> #0 (cgroup_mutex){+.+.+.}: ... other info that might help us debug this: Chain exists of: cgroup_mutex --> s_active#175 --> cpuset_hotplug_work Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(cpuset_hotplug_work); lock(s_active#175); lock(cpuset_hotplug_work); lock(cgroup_mutex); *** DEADLOCK *** 2 locks held by kworker/1:0/32649: #0: ("events"){.+.+.+}, at: [<ffffffff81085412>] process_one_work+0x192/0x520 #1: (cpuset_hotplug_work){+.+...}, at: [<ffffffff81085412>] process_one_work+0x192/0x520 stack backtrace: CPU: 1 PID: 32649 Comm: kworker/1:0 Not tainted 3.16.0-rc1-0.1-default+ #7 ... Call Trace: [<ffffffff815a5f78>] dump_stack+0x72/0x8a [<ffffffff810c263f>] print_circular_bug+0x10f/0x120 [<ffffffff810c481e>] check_prev_add+0x43e/0x4b0 [<ffffffff810c4ee6>] validate_chain+0x656/0x7c0 [<ffffffff810c53d2>] __lock_acquire+0x382/0x660 [<ffffffff810c57a9>] lock_acquire+0xf9/0x170 [<ffffffff815aa13f>] mutex_lock_nested+0x6f/0x380 [<ffffffff8110e3d7>] cgroup_transfer_tasks+0x37/0x150 [<ffffffff811129c0>] hotplug_update_tasks_insane+0x110/0x1d0 [<ffffffff81112bbd>] cpuset_hotplug_update_tasks+0x13d/0x180 [<ffffffff811148ec>] cpuset_hotplug_workfn+0x18c/0x630 [<ffffffff810854d4>] process_one_work+0x254/0x520 [<ffffffff810875dd>] worker_thread+0x13d/0x3d0 [<ffffffff8108e0c8>] kthread+0xf8/0x100 [<ffffffff815acaec>] ret_from_fork+0x7c/0xb0 Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Li Zefan <lizefan@huawei.com> Tested-by: Li Zefan <lizefan@huawei.com>
* | cpuset,mempolicy: fix sleeping function called from invalid contextGu Zheng2014-06-251-1/+7
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When runing with the kernel(3.15-rc7+), the follow bug occurs: [ 9969.258987] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:586 [ 9969.359906] in_atomic(): 1, irqs_disabled(): 0, pid: 160655, name: python [ 9969.441175] INFO: lockdep is turned off. [ 9969.488184] CPU: 26 PID: 160655 Comm: python Tainted: G A 3.15.0-rc7+ #85 [ 9969.581032] Hardware name: FUJITSU-SV PRIMEQUEST 1800E/SB, BIOS PRIMEQUEST 1000 Series BIOS Version 1.39 11/16/2012 [ 9969.706052] ffffffff81a20e60 ffff8803e941fbd0 ffffffff8162f523 ffff8803e941fd18 [ 9969.795323] ffff8803e941fbe0 ffffffff8109995a ffff8803e941fc58 ffffffff81633e6c [ 9969.884710] ffffffff811ba5dc ffff880405c6b480 ffff88041fdd90a0 0000000000002000 [ 9969.974071] Call Trace: [ 9970.003403] [<ffffffff8162f523>] dump_stack+0x4d/0x66 [ 9970.065074] [<ffffffff8109995a>] __might_sleep+0xfa/0x130 [ 9970.130743] [<ffffffff81633e6c>] mutex_lock_nested+0x3c/0x4f0 [ 9970.200638] [<ffffffff811ba5dc>] ? kmem_cache_alloc+0x1bc/0x210 [ 9970.272610] [<ffffffff81105807>] cpuset_mems_allowed+0x27/0x140 [ 9970.344584] [<ffffffff811b1303>] ? __mpol_dup+0x63/0x150 [ 9970.409282] [<ffffffff811b1385>] __mpol_dup+0xe5/0x150 [ 9970.471897] [<ffffffff811b1303>] ? __mpol_dup+0x63/0x150 [ 9970.536585] [<ffffffff81068c86>] ? copy_process.part.23+0x606/0x1d40 [ 9970.613763] [<ffffffff810bf28d>] ? trace_hardirqs_on+0xd/0x10 [ 9970.683660] [<ffffffff810ddddf>] ? monotonic_to_bootbased+0x2f/0x50 [ 9970.759795] [<ffffffff81068cf0>] copy_process.part.23+0x670/0x1d40 [ 9970.834885] [<ffffffff8106a598>] do_fork+0xd8/0x380 [ 9970.894375] [<ffffffff81110e4c>] ? __audit_syscall_entry+0x9c/0xf0 [ 9970.969470] [<ffffffff8106a8c6>] SyS_clone+0x16/0x20 [ 9971.030011] [<ffffffff81642009>] stub_clone+0x69/0x90 [ 9971.091573] [<ffffffff81641c29>] ? system_call_fastpath+0x16/0x1b The cause is that cpuset_mems_allowed() try to take mutex_lock(&callback_mutex) under the rcu_read_lock(which was hold in __mpol_dup()). And in cpuset_mems_allowed(), the access to cpuset is under rcu_read_lock, so in __mpol_dup, we can reduce the rcu_read_lock protection region to protect the access to cpuset only in current_cpuset_is_being_rebound(). So that we can avoid this bug. This patch is a temporary solution that just addresses the bug mentioned above, can not fix the long-standing issue about cpuset.mems rebinding on fork(): "When the forker's task_struct is duplicated (which includes ->mems_allowed) and it races with an update to cpuset_being_rebound in update_tasks_nodemask() then the task's mems_allowed doesn't get updated. And the child task's mems_allowed can be wrong if the cpuset's nodemask changes before the child has been added to the cgroup's tasklist." Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com> Acked-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org> Cc: stable <stable@vger.kernel.org>
* Merge branch 'for-3.16' of ↵Linus Torvalds2014-06-091-23/+23
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: "A lot of activities on cgroup side. Heavy restructuring including locking simplification took place to improve the code base and enable implementation of the unified hierarchy, which currently exists behind a __DEVEL__ mount option. The core support is mostly complete but individual controllers need further work. To explain the design and rationales of the the unified hierarchy Documentation/cgroups/unified-hierarchy.txt is added. Another notable change is css (cgroup_subsys_state - what each controller uses to identify and interact with a cgroup) iteration update. This is part of continuing updates on css object lifetime and visibility. cgroup started with reference count draining on removal way back and is now reaching a point where csses behave and are iterated like normal refcnted objects albeit with some complexities to allow distinguishing the state where they're being deleted. The css iteration update isn't taken advantage of yet but is planned to be used to simplify memcg significantly" * 'for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (77 commits) cgroup: disallow disabled controllers on the default hierarchy cgroup: don't destroy the default root cgroup: disallow debug controller on the default hierarchy cgroup: clean up MAINTAINERS entries cgroup: implement css_tryget() device_cgroup: use css_has_online_children() instead of has_children() cgroup: convert cgroup_has_live_children() into css_has_online_children() cgroup: use CSS_ONLINE instead of CGRP_DEAD cgroup: iterate cgroup_subsys_states directly cgroup: introduce CSS_RELEASED and reduce css iteration fallback window cgroup: move cgroup->serial_nr into cgroup_subsys_state cgroup: link all cgroup_subsys_states in their sibling lists cgroup: move cgroup->sibling and ->children into cgroup_subsys_state cgroup: remove cgroup->parent device_cgroup: remove direct access to cgroup->children memcg: update memcg_has_children() to use css_next_child() memcg: remove tasks/children test from mem_cgroup_force_empty() cgroup: remove css_parent() cgroup: skip refcnting on normal root csses and cgrp_dfl_root self css cgroup: use cgroup->self.refcnt for cgroup refcnting ...
| * cgroup: remove css_parent()Tejun Heo2014-05-161-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cgroup in general is moving towards using cgroup_subsys_state as the fundamental structural component and css_parent() was introduced to convert from using cgroup->parent to css->parent. It was quite some time ago and we're moving forward with making css more prominent. This patch drops the trivial wrapper css_parent() and let the users dereference css->parent. While at it, explicitly mark fields of css which are public and immutable. v2: New usage from device_cgroup.c converted. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Neil Horman <nhorman@tuxdriver.com> Acked-by: "David S. Miller" <davem@davemloft.net> Acked-by: Li Zefan <lizefan@huawei.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Johannes Weiner <hannes@cmpxchg.org>
| * cgroup: replace cftype->write_string() with cftype->write()Tejun Heo2014-05-131-7/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Convert all cftype->write_string() users to the new cftype->write() which maps directly to kernfs write operation and has full access to kernfs and cgroup contexts. The conversions are mostly mechanical. * @css and @cft are accessed using of_css() and of_cft() accessors respectively instead of being specified as arguments. * Should return @nbytes on success instead of 0. * @buf is not trimmed automatically. Trim if necessary. Note that blkcg and netprio don't need this as the parsers already handle whitespaces. cftype->write_string() has no user left after the conversions and removed. While at it, remove unnecessary local variable @p in cgroup_subtree_control_write() and stale comment about CGROUP_LOCAL_BUFFER_SIZE in cgroup_freezer.c. This patch doesn't introduce any visible behavior changes. v2: netprio was missing from conversion. Converted. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Aristeu Rozanski <arozansk@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Acked-by: Li Zefan <lizefan@huawei.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: "David S. Miller" <davem@davemloft.net>
| * cgroup: rename css_tryget*() to css_tryget_online*()Tejun Heo2014-05-131-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Unlike the more usual refcnting, what css_tryget() provides is the distinction between online and offline csses instead of protection against upping a refcnt which already reached zero. cgroup is planning to provide actual tryget which fails if the refcnt already reached zero. Let's rename the existing trygets so that they clearly indicate that they're onliness. I thought about keeping the existing names as-are and introducing new names for the planned actual tryget; however, given that each controller participates in the synchronization of the online state, it seems worthwhile to make it explicit that these functions are about on/offline state. Rename css_tryget() to css_tryget_online() and css_tryget_from_dir() to css_tryget_online_from_dir(). This is pure rename. v2: cgroup_freezer grew new usages of css_tryget(). Update accordingly. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Li Zefan <lizefan@huawei.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
| * kernel/cpuset.c: convert printk to pr_foo()Fabian Frederick2014-05-061-7/+4
| | | | | | | | | | | | | | Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Fabian Frederick <fabf@skynet.be> Acked-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * kernel/cpuset.c: kernel-doc fixesFabian Frederick2014-05-061-5/+6
| | | | | | | | | | | | | | | | | | This patch also converts seq_printf to seq_puts Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Fabian Frederick <fabf@skynet.be> Acked-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
* | mm: page_alloc: use jump labels to avoid checking number_of_cpusetsMel Gorman2014-06-041-10/+4
|/ | | | | | | | | | | | | | | | | | | | | If cpusets are not in use then we still check a global variable on every page allocation. Use jump labels to avoid the overhead. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.cz> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'akpm' (incoming from Andrew)Linus Torvalds2014-04-031-1/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Merge first patch-bomb from Andrew Morton: - Various misc bits - kmemleak fixes - small befs, codafs, cifs, efs, freexxfs, hfsplus, minixfs, reiserfs things - fanotify - I appear to have become SuperH maintainer - ocfs2 updates - direct-io tweaks - a bit of the MM queue - printk updates - MAINTAINERS maintenance - some backlight things - lib/ updates - checkpatch updates - the rtc queue - nilfs2 updates - Small Documentation/ updates * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (237 commits) Documentation/SubmittingPatches: remove references to patch-scripts Documentation/SubmittingPatches: update some dead URLs Documentation/filesystems/ntfs.txt: remove changelog reference Documentation/kmemleak.txt: updates fs/reiserfs/super.c: add __init to init_inodecache fs/reiserfs: move prototype declaration to header file fs/hfsplus/attributes.c: add __init to hfsplus_create_attr_tree_cache() fs/hfsplus/extents.c: fix concurrent acess of alloc_blocks fs/hfsplus/extents.c: remove unused variable in hfsplus_get_block nilfs2: update project's web site in nilfs2.txt nilfs2: update MAINTAINERS file entries fix nilfs2: verify metadata sizes read from disk nilfs2: add FITRIM ioctl support for nilfs2 nilfs2: add nilfs_sufile_trim_fs to trim clean segs nilfs2: implementation of NILFS_IOCTL_SET_SUINFO ioctl nilfs2: add nilfs_sufile_set_suinfo to update segment usage nilfs2: add struct nilfs_suinfo_update and flags nilfs2: update MAINTAINERS file entries fs/coda/inode.c: add __init to init_inodecache() BEFS: logging cleanup ...
| * mm: optimize put_mems_allowed() usageMel Gorman2014-04-031-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since put_mems_allowed() is strictly optional, its a seqcount retry, we don't need to evaluate the function if the allocation was in fact successful, saving a smp_rmb some loads and comparisons on some relative fast-paths. Since the naming, get/put_mems_allowed() does suggest a mandatory pairing, rename the interface, as suggested by Mel, to resemble the seqcount interface. This gives us: read_mems_allowed_begin() and read_mems_allowed_retry(), where it is important to note that the return value of the latter call is inverted from its previous incarnation. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | Merge branch 'for-3.15' of ↵Linus Torvalds2014-04-031-165/+97
|\ \ | |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup updates from Tejun Heo: "A lot updates for cgroup: - The biggest one is cgroup's conversion to kernfs. cgroup took after the long abandoned vfs-entangled sysfs implementation and made it even more convoluted over time. cgroup's internal objects were fused with vfs objects which also brought in vfs locking and object lifetime rules. Naturally, there are places where vfs rules don't fit and nasty hacks, such as credential switching or lock dance interleaving inode mutex and cgroup_mutex with object serial number comparison thrown in to decide whether the operation is actually necessary, needed to be employed. After conversion to kernfs, internal object lifetime and locking rules are mostly isolated from vfs interactions allowing shedding of several nasty hacks and overall simplification. This will also allow implmentation of operations which may affect multiple cgroups which weren't possible before as it would have required nesting i_mutexes. - Various simplifications including dropping of module support, easier cgroup name/path handling, simplified cgroup file type handling and task_cg_lists optimization. - Prepatory changes for the planned unified hierarchy, which is still a patchset away from being actually operational. The dummy hierarchy is updated to serve as the default unified hierarchy. Controllers which aren't claimed by other hierarchies are associated with it, which BTW was what the dummy hierarchy was for anyway. - Various fixes from Li and others. This pull request includes some patches to add missing slab.h to various subsystems. This was triggered xattr.h include removal from cgroup.h. cgroup.h indirectly got included a lot of files which brought in xattr.h which brought in slab.h. There are several merge commits - one to pull in kernfs updates necessary for converting cgroup (already in upstream through driver-core), others for interfering changes in the fixes branch" * 'for-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (74 commits) cgroup: remove useless argument from cgroup_exit() cgroup: fix spurious lockdep warning in cgroup_exit() cgroup: Use RCU_INIT_POINTER(x, NULL) in cgroup.c cgroup: break kernfs active_ref protection in cgroup directory operations cgroup: fix cgroup_taskset walking order cgroup: implement CFTYPE_ONLY_ON_DFL cgroup: make cgrp_dfl_root mountable cgroup: drop const from @buffer of cftype->write_string() cgroup: rename cgroup_dummy_root and related names cgroup: move ->subsys_mask from cgroupfs_root to cgroup cgroup: treat cgroup_dummy_root as an equivalent hierarchy during rebinding cgroup: remove NULL checks from [pr_cont_]cgroup_{name|path}() cgroup: use cgroup_setup_root() to initialize cgroup_dummy_root cgroup: reorganize cgroup bootstrapping cgroup: relocate setting of CGRP_DEAD cpuset: use rcu_read_lock() to protect task_cs() cgroup_freezer: document freezer_fork() subtleties cgroup: update cgroup_transfer_tasks() to either succeed or fail cgroup: drop task_lock() protection around task->cgroups cgroup: update how a newly forked task gets associated with css_set ...
| * cgroup: drop const from @buffer of cftype->write_string()Tejun Heo2014-03-191-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cftype->write_string() just passes on the writeable buffer from kernfs and there's no reason to add const restriction on the buffer. The only thing const achieves is unnecessarily complicating parsing of the buffer. Drop const from @buffer. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net> Cc: Daniel Borkmann <dborkman@redhat.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
| * cpuset: use rcu_read_lock() to protect task_cs()Li Zefan2014-03-031-11/+13
| | | | | | | | | | | | | | | | We no longer use task_lock() to protect tsk->cgroups. Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Li Zefan <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * cpuset: don't use cgroup_taskset_cur_css()Tejun Heo2014-02-131-3/+6
| | | | | | | | | | | | | | | | | | | | | | cgroup_taskset_cur_css() will be removed during the planned resturcturing of migration path. The only use of cgroup_taskset_cur_css() is finding out the old cgroup_subsys_state of the leader in cpuset_attach(). This usage can easily be removed by remembering the old value from cpuset_can_attach(). Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: drop @skip_css from cgroup_taskset_for_each()Tejun Heo2014-02-131-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If !NULL, @skip_css makes cgroup_taskset_for_each() skip the matching css. The intention of the interface is to make it easy to skip css's (cgroup_subsys_states) which already match the migration target; however, this is entirely unnecessary as migration taskset doesn't include tasks which are already in the target cgroup. Drop @skip_css from cgroup_taskset_for_each(). Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net> Cc: Daniel Borkmann <dborkman@redhat.com>
| * cpuset: use css_task_iter_start/next/end() instead of css_scan_tasks()Tejun Heo2014-02-131-128/+58
| | | | | | | | | | | | | | | | | | | | | | | | | | Now that css_task_iter_start/next_end() supports blocking while iterating, there's no reason to use css_scan_tasks() which is more cumbersome to use and scheduled to be removed. Convert all css_scan_tasks() usages in cpuset to css_task_iter_start/next/end(). This simplifies the code by removing heap allocation and callbacks. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: implement cgroup_has_tasks() and unexport cgroup_task_count()Tejun Heo2014-02-131-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cgroup_task_count() read-locks css_set_lock and walks all tasks to count them and then returns the result. The only thing all the users want is determining whether the cgroup is empty or not. This patch implements cgroup_has_tasks() which tests whether cgroup->cset_links is empty, replaces all cgroup_task_count() usages and unexports it. Note that the test isn't synchronized. This is the same as before. The test has always been racy. This will help planned css_set locking update. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
OpenPOWER on IntegriCloud