summaryrefslogtreecommitdiffstats
path: root/include/linux/compaction.h
Commit message (Collapse)AuthorAgeFilesLines
* mm: compaction: Abort async compaction if locks are contended or taking too longMel Gorman2012-08-211-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Jim Schutt reported a problem that pointed at compaction contending heavily on locks. The workload is straight-forward and in his own words; The systems in question have 24 SAS drives spread across 3 HBAs, running 24 Ceph OSD instances, one per drive. FWIW these servers are dual-socket Intel 5675 Xeons w/48 GB memory. I've got ~160 Ceph Linux clients doing dd simultaneously to a Ceph file system backed by 12 of these servers. Early in the test everything looks fine procs -------------------memory------------------ ---swap-- -----io---- --system-- -----cpu------- r b swpd free buff cache si so bi bo in cs us sy id wa st 31 15 0 287216 576 38606628 0 0 2 1158 2 14 1 3 95 0 0 27 15 0 225288 576 38583384 0 0 18 2222016 203357 134876 11 56 17 15 0 28 17 0 219256 576 38544736 0 0 11 2305932 203141 146296 11 49 23 17 0 6 18 0 215596 576 38552872 0 0 7 2363207 215264 166502 12 45 22 20 0 22 18 0 226984 576 38596404 0 0 3 2445741 223114 179527 12 43 23 22 0 and then it goes to pot procs -------------------memory------------------ ---swap-- -----io---- --system-- -----cpu------- r b swpd free buff cache si so bi bo in cs us sy id wa st 163 8 0 464308 576 36791368 0 0 11 22210 866 536 3 13 79 4 0 207 14 0 917752 576 36181928 0 0 712 1345376 134598 47367 7 90 1 2 0 123 12 0 685516 576 36296148 0 0 429 1386615 158494 60077 8 84 5 3 0 123 12 0 598572 576 36333728 0 0 1107 1233281 147542 62351 7 84 5 4 0 622 7 0 660768 576 36118264 0 0 557 1345548 151394 59353 7 85 4 3 0 223 11 0 283960 576 36463868 0 0 46 1107160 121846 33006 6 93 1 1 0 Note that system CPU usage is very high blocks being written out has dropped by 42%. He analysed this with perf and found perf record -g -a sleep 10 perf report --sort symbol --call-graph fractal,5 34.63% [k] _raw_spin_lock_irqsave | |--97.30%-- isolate_freepages | compaction_alloc | unmap_and_move | migrate_pages | compact_zone | compact_zone_order | try_to_compact_pages | __alloc_pages_direct_compact | __alloc_pages_slowpath | __alloc_pages_nodemask | alloc_pages_vma | do_huge_pmd_anonymous_page | handle_mm_fault | do_page_fault | page_fault | | | |--87.39%-- skb_copy_datagram_iovec | | tcp_recvmsg | | inet_recvmsg | | sock_recvmsg | | sys_recvfrom | | system_call | | __recv | | | | | --100.00%-- (nil) | | | --12.61%-- memcpy --2.70%-- [...] There was other data but primarily it is all showing that compaction is contended heavily on the zone->lock and zone->lru_lock. commit [b2eef8c0: mm: compaction: minimise the time IRQs are disabled while isolating pages for migration] noted that it was possible for migration to hold the lru_lock for an excessive amount of time. Very broadly speaking this patch expands the concept. This patch introduces compact_checklock_irqsave() to check if a lock is contended or the process needs to be scheduled. If either condition is true then async compaction is aborted and the caller is informed. The page allocator will fail a THP allocation if compaction failed due to contention. This patch also introduces compact_trylock_irqsave() which will acquire the lock only if it is not contended and the process does not need to schedule. Reported-by: Jim Schutt <jaschut@sandia.gov> Tested-by: Jim Schutt <jaschut@sandia.gov> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/compaction: cleanup on compaction_deferredGavin Shan2012-07-311-2/+2
| | | | | | | | | | | | | | | When CONFIG_COMPACTION is enabled, compaction_deferred() tries to recalculate the deferred limit again, which isn't necessary. When CONFIG_COMPACTION is disabled, compaction_deferred() should return "true" or "false" since it has "bool" for its return value. Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Revert "mm: compaction: handle incorrect MIGRATE_UNMOVABLE type pageblocks"Linus Torvalds2012-06-031-19/+0
| | | | | | | | | | | | | | | | | | | | | | This reverts commit 5ceb9ce6fe9462a298bb2cd5c9f1ca6cb80a0199. That commit seems to be the cause of the mm compation list corruption issues that Dave Jones reported. The locking (or rather, absense there-of) is dubious, as is the use of the 'page' variable once it has been found to be outside the pageblock range. So revert it for now, we can re-visit this for 3.6. If we even need to: as Minchan Kim says, "The patch wasn't a bug fix and even test workload was very theoretical". Reported-and-tested-by: Dave Jones <davej@redhat.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Kyungmin Park <kyungmin.park@samsung.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: handle incorrect MIGRATE_UNMOVABLE type pageblocksBartlomiej Zolnierkiewicz2012-05-291-0/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When MIGRATE_UNMOVABLE pages are freed from MIGRATE_UNMOVABLE type pageblock (and some MIGRATE_MOVABLE pages are left in it) waiting until an allocation takes ownership of the block may take too long. The type of the pageblock remains unchanged so the pageblock cannot be used as a migration target during compaction. Fix it by: * Adding enum compact_mode (COMPACT_ASYNC_[MOVABLE,UNMOVABLE], and COMPACT_SYNC) and then converting sync field in struct compact_control to use it. * Adding nr_pageblocks_skipped field to struct compact_control and tracking how many destination pageblocks were of MIGRATE_UNMOVABLE type. If COMPACT_ASYNC_MOVABLE mode compaction ran fully in try_to_compact_pages() (COMPACT_COMPLETE) it implies that there is not a suitable page for allocation. In this case then check how if there were enough MIGRATE_UNMOVABLE pageblocks to try a second pass in COMPACT_ASYNC_UNMOVABLE mode. * Scanning the MIGRATE_UNMOVABLE pageblocks (during COMPACT_SYNC and COMPACT_ASYNC_UNMOVABLE compaction modes) and building a count based on finding PageBuddy pages, page_count(page) == 0 or PageLRU pages. If all pages within the MIGRATE_UNMOVABLE pageblock are in one of those three sets change the whole pageblock type to MIGRATE_MOVABLE. My particular test case (on a ARM EXYNOS4 device with 512 MiB, which means 131072 standard 4KiB pages in 'Normal' zone) is to: - allocate 120000 pages for kernel's usage - free every second page (60000 pages) of memory just allocated - allocate and use 60000 pages from user space - free remaining 60000 pages of kernel memory (now we have fragmented memory occupied mostly by user space pages) - try to allocate 100 order-9 (2048 KiB) pages for kernel's usage The results: - with compaction disabled I get 11 successful allocations - with compaction enabled - 14 successful allocations - with this patch I'm able to get all 100 successful allocations NOTE: If we can make kswapd aware of order-0 request during compaction, we can enhance kswapd with changing mode to COMPACT_ASYNC_FULL (COMPACT_ASYNC_MOVABLE + COMPACT_ASYNC_UNMOVABLE). Please see the following thread: http://marc.info/?l=linux-mm&m=133552069417068&w=2 [minchan@kernel.org: minor cleanups] Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@redhat.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* vmscan: only defer compaction for failed order and higherRik van Riel2012-03-211-4/+10
| | | | | | | | | | | | | | | | | | | | | Currently a failed order-9 (transparent hugepage) compaction can lead to memory compaction being temporarily disabled for a memory zone. Even if we only need compaction for an order 2 allocation, eg. for jumbo frames networking. The fix is relatively straightforward: keep track of the highest order at which compaction is succeeding, and only defer compaction for orders at which compaction is failing. Signed-off-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* vmscan: kswapd carefully call compactionRik van Riel2012-03-211-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | With CONFIG_COMPACTION enabled, kswapd does not try to free contiguous free pages, even when it is woken for a higher order request. This could be bad for eg. jumbo frame network allocations, which are done from interrupt context and cannot compact memory themselves. Higher than before allocation failure rates in the network receive path have been observed in kernels with compaction enabled. Teach kswapd to defragment the memory zones in a node, but only if required and compaction is not deferred in a zone. [akpm@linux-foundation.org: reduce scope of zones_need_compaction] Signed-off-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: make compact_zone_order() staticKyungmin Park2011-10-311-8/+0
| | | | | | | | | | There's no compact_zone_order() user outside file scope, so make it static. Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: prevent kswapd compacting memory to reduce CPU usageAndrea Arcangeli2011-03-221-7/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch reverts 5a03b051 ("thp: use compaction in kswapd for GFP_ATOMIC order > 0") due to reports stating that kswapd CPU usage was higher and IRQs were being disabled more frequently. This was reported at http://www.spinics.net/linux/fedora/alsa-user/msg09885.html. Without this patch applied, CPU usage by kswapd hovers around the 20% mark according to the tester (Arthur Marsh: http://www.spinics.net/linux/fedora/alsa-user/msg09899.html). With this patch applied, it's around 2%. The problem is not related to THP which specifies __GFP_NO_KSWAPD but is triggered by high-order allocations hitting the low watermark for their order and waking kswapd on kernels with CONFIG_COMPACTION set. The most common trigger for this is network cards configured for jumbo frames but it's also possible it'll be triggered by fork-heavy workloads (order-1) and some wireless cards which depend on order-1 allocations. The symptoms for the user will be high CPU usage by kswapd in low-memory situations which could be confused with another writeback problem. While a patch like 5a03b051 may be reintroduced in the future, this patch plays it safe for now and reverts it. [mel@csn.ul.ie: Beefed up the changelog] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Mel Gorman <mel@csn.ul.ie> Reported-by: Arthur Marsh <arthur.marsh@internode.on.net> Tested-by: Arthur Marsh <arthur.marsh@internode.on.net> Cc: <stable@kernel.org> [2.6.38.1] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: use compaction in kswapd for GFP_ATOMIC order > 0Andrea Arcangeli2011-01-131-3/+8
| | | | | | | | | | This takes advantage of memory compaction to properly generate pages of order > 0 if regular page reclaim fails and priority level becomes more severe and we don't reach the proper watermarks. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: migration: allow migration to operate asynchronously and avoid ↵Mel Gorman2011-01-131-4/+6
| | | | | | | | | | | | | | | | | | | | | | | | | synchronous compaction in the faster path Migration synchronously waits for writeback if the initial passes fails. Callers of memory compaction do not necessarily want this behaviour if the caller is latency sensitive or expects that synchronous migration is not going to have a significantly better success rate. This patch adds a sync parameter to migrate_pages() allowing the caller to indicate if wait_on_page_writeback() is allowed within migration or not. For reclaim/compaction, try_to_compact_pages() is first called asynchronously, direct reclaim runs and then try_to_compact_pages() is called synchronously as there is a greater expectation that it'll succeed. [akpm@linux-foundation.org: build/merge fix] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: vmscan: reclaim order-0 and use compaction instead of lumpy reclaimMel Gorman2011-01-131-0/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | Lumpy reclaim is disruptive. It reclaims a large number of pages and ignores the age of the pages it reclaims. This can incur significant stalls and potentially increase the number of major faults. Compaction has reached the point where it is considered reasonably stable (meaning it has passed a lot of testing) and is a potential candidate for displacing lumpy reclaim. This patch introduces an alternative to lumpy reclaim whe compaction is available called reclaim/compaction. The basic operation is very simple - instead of selecting a contiguous range of pages to reclaim, a number of order-0 pages are reclaimed and then compaction is later by either kswapd (compact_zone_order()) or direct compaction (__alloc_pages_direct_compact()). [akpm@linux-foundation.org: fix build] [akpm@linux-foundation.org: use conventional task_struct naming] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Andy Whitcroft <apw@shadowen.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: defer compaction using an exponential backoff when ↵Mel Gorman2010-05-251-0/+39
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | compaction fails The fragmentation index may indicate that a failure is due to external fragmentation but after a compaction run completes, it is still possible for an allocation to fail. There are two obvious reasons as to why o Page migration cannot move all pages so fragmentation remains o A suitable page may exist but watermarks are not met In the event of compaction followed by an allocation failure, this patch defers further compaction in the zone (1 << compact_defer_shift) times. If the next compaction attempt also fails, compact_defer_shift is increased up to a maximum of 6. If compaction succeeds, the defer counters are reset again. The zone that is deferred is the first zone in the zonelist - i.e. the preferred zone. To defer compaction in the other zones, the information would need to be stored in the zonelist or implemented similar to the zonelist_cache. This would impact the fast-paths and is not justified at this time. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: add a tunable that decides when memory should be compacted ↵Mel Gorman2010-05-251-0/+3
| | | | | | | | | | | | | | | | | | | | | | | and when it should be reclaimed The kernel applies some heuristics when deciding if memory should be compacted or reclaimed to satisfy a high-order allocation. One of these is based on the fragmentation. If the index is below 500, memory will not be compacted. This choice is arbitrary and not based on data. To help optimise the system and set a sensible default for this value, this patch adds a sysctl extfrag_threshold. The kernel will only compact memory if the fragmentation index is above the extfrag_threshold. [randy.dunlap@oracle.com: Fix build errors when proc fs is not configured] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: direct compact when a high-order allocation failsMel Gorman2010-05-251-4/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | Ordinarily when a high-order allocation fails, direct reclaim is entered to free pages to satisfy the allocation. With this patch, it is determined if an allocation failed due to external fragmentation instead of low memory and if so, the calling process will compact until a suitable page is freed. Compaction by moving pages in memory is considerably cheaper than paging out to disk and works where there are locked pages or no swap. If compaction fails to free a page of a suitable size, then reclaim will still occur. Direct compaction returns as soon as possible. As each block is compacted, it is checked if a suitable page has been freed and if so, it returns. [akpm@linux-foundation.org: Fix build errors] [aarcange@redhat.com: fix count_vm_event preempt in memory compaction direct reclaim] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: add /sys trigger for per-node memory compactionMel Gorman2010-05-251-0/+16
| | | | | | | | | | | | | | | | | Add a per-node sysfs file called compact. When the file is written to, each zone in that node is compacted. The intention that this would be used by something like a job scheduler in a batch system before a job starts so that the job can allocate the maximum number of hugepages without significant start-up cost. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: add /proc trigger for memory compactionMel Gorman2010-05-251-0/+6
| | | | | | | | | | | | | | | | Add a proc file /proc/sys/vm/compact_memory. When an arbitrary value is written to the file, all zones are compacted. The expected user of such a trigger is a job scheduler that prepares the system before the target application runs. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Christoph Lameter <cl@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: memory compaction coreMel Gorman2010-05-251-0/+9
This patch is the core of a mechanism which compacts memory in a zone by relocating movable pages towards the end of the zone. A single compaction run involves a migration scanner and a free scanner. Both scanners operate on pageblock-sized areas in the zone. The migration scanner starts at the bottom of the zone and searches for all movable pages within each area, isolating them onto a private list called migratelist. The free scanner starts at the top of the zone and searches for suitable areas and consumes the free pages within making them available for the migration scanner. The pages isolated for migration are then migrated to the newly isolated free pages. [aarcange@redhat.com: Fix unsafe optimisation] [mel@csn.ul.ie: do not schedule work on other CPUs for compaction] Signed-off-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
OpenPOWER on IntegriCloud