| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
While we're at that, define IMAN bitfield to aid readability.
The interrupt enable bit should be set once on driver init, and we
shouldn't need to continually re-enable it. Commit c21599a3 introduced
a read of the irq_pending register, and that allows us to preserve the
state of the IE bit. Before that commit, we were blindly writing 0x3 to
the register.
This patch should be backported to kernels as old as 2.6.36, or ones
that contain the commit c21599a36165dbc78b380846b254017a548b9de5 "USB:
xhci: Reduce reads and writes of interrupter registers".
Signed-off-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@vger.kernel.org
|
|
|
|
|
|
|
|
|
| |
This adds a fairly simple xhci-platform driver support. Currently it is
used by the dwc3 driver for supporting host mode.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
If room_on_ring() check fails, try to expand the ring and check again.
When expand a ring, use a cached ring or allocate new segments, link
the original ring and the new ring or segments, update the original ring's
segment numbers and the last segment pointer.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Paul Zimmerman <Paul.Zimmerman@synopsys.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In the past, the room_on_ring() check was implemented by walking all over
the ring, which is wasteful and complicated.
Count the number of free TRBs instead. The free TRBs number should be
updated when enqueue/dequeue pointer is updated, or upon the completion
of a set dequeue pointer command.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Paul Zimmerman <Paul.Zimmerman@synopsys.com>
|
|
|
|
|
|
|
|
|
| |
Store the ring's last segment pointer and number of segments for ring
expansion usage.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Paul Zimmerman <Paul.Zimmerman@synopsys.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
When allocate a ring, store its type - four transfer types for endpoint,
TYPE_STREAM for stream transfer, and TYPE_COMMAND/TYPE_EVENT for xHCI host.
This helps to get rid of three bool function parameters: link_trbs, isoc
and consumer.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Paul Zimmerman <Paul.Zimmerman@synopsys.com>
|
|
|
|
|
|
|
|
|
|
| |
__ffs() can tell us which is the SEGMENT_SHIFT value
to be used. This will prevent problems when users are
too fast and don't pay attention to the need of fixing
the Shift after changing TRBS_PER_SEGMENT.
Signed-off-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
USB 3.0 hubs don't have a port suspend change bit (that bit is now
reserved). Instead, when a host-initiated resume finishes, the hub sets
the port link state change bit.
When a USB 3.0 device initiates remote wakeup, the parent hubs with
their upstream links in U3 will pass the LFPS up the chain. The first
hub that has an upstream link in U0 (which may be the roothub) will
reflect that LFPS back down the path to the device.
However, the parent hubs in the resumed path will not set their link
state change bit. Instead, the device that initiated the resume has to
send an asynchronous "Function Wake" Device Notification up to the host
controller. Therefore, we need a way to notify the USB core of a device
resume without going through the normal hub URB completion method.
First, make the xHCI roothub act like an external USB 3.0 hub and not
pass up the port link state change bit when a device-initiated resume
finishes. Introduce a new xHCI bit field, port_remote_wakeup, so that
we can tell the difference between a port coming out of the U3Exit state
(host-initiated resume) and the RExit state (ending state of
device-initiated resume).
Since the USB core can't tell whether a port on a hub has resumed by
looking at the Hub Status buffer, we need to introduce a bitfield,
wakeup_bits, that indicates which ports have resumed. When the xHCI
driver notices a port finishing a device-initiated resume, we call into
a new USB core function, usb_wakeup_notification(), that will set
the right bit in wakeup_bits, and kick khubd for that hub.
We also call usb_wakeup_notification() when the Function Wake Device
Notification is received by the xHCI driver. This covers the case where
the link between the roothub and the first-tier hub is in U0, and the
hub reflects the resume signaling back to the device without giving any
indication it has done so until the device sends the Function Wake
notification.
Change the code in khubd that handles the remote wakeup to look at the
state the USB core thinks the device is in, and handle the remote wakeup
if the port's wakeup bit is set.
This patch only takes care of the case where the device is attached
directly to the roothub, or the USB 3.0 hub that is attached to the root
hub is the device sending the Function Wake Device Notification (e.g.
because a new USB device was attached). The other cases will be covered
in a second patch.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I encountered a result of COMP_2ND_BW_ERR while improving how the pwc
webcam driver handles not having the full usb1 bandwidth available to
itself.
I created the following test setup, a NEC xhci controller with a
single TT USB 2 hub plugged into it, with a usb keyboard and a pwc webcam
plugged into the usb2 hub. This caused the following to show up in dmesg
when trying to stream from the pwc camera at its highest alt setting:
xhci_hcd 0000:01:00.0: ERROR: unexpected command completion code 0x23.
usb 6-2.1: Not enough bandwidth for altsetting 9
And usb_set_interface returned -EINVAL, which caused my pwc code to not
do the right thing as it expected -ENOSPC.
This patch makes the xhci driver properly handle COMP_2ND_BW_ERR and makes
usb_set_interface return -ENOSPC as expected.
This should be backported to stable kernels as old as 2.6.32.
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@vger.kernel.org
|
|
|
|
|
|
|
| |
The xHCI driver will create an xhci_hcd structure, not an ehci_hci
structure.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This removes the need of ifdefs within the init function and with it the
headache about the correct clean without bus X but with bus/platform Y &
Z.
xhci-pci is only compiled if CONFIG_PCI is selected which can be
de-selected now without trouble. For now the result is kinda useless
because we have no other glue code. However, since nobody is using
USB_ARCH_HAS_XHCI then it should not be an issue :)
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
| |
xhci_gen_setup() is generic so it can be used to perform the bare xhci
setup even on non-pci based platform. The typedef for the function
pointer is moved into the headerfile
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Setting the chain (CH) bit in the link TRB of isochronous transfer rings
is required by AMD 0.96 xHCI host controller to successfully transverse
multi-TRB TD that span through different memory segments.
When a Missed Service Error event occurs, if the chain bit is not set in
the link TRB and the host skips TDs which just across a link TRB, the
host may falsely recognize the link TRB as a normal TRB. You can see
this may cause big trouble - the host does not jump to the right address
which is pointed by the link TRB, but continue fetching the memory which
is after the link TRB address, which may not even belong to the host,
and the result cannot be predicted.
This causes some big problems. Without the former patch I sent: "xHCI:
prevent infinite loop when processing MSE event", the system may hang.
With that patch applied, system does not hang, but the host still access
wrong memory address and isoc transfer will fail. With this patch,
isochronous transfer works as expected.
This patch should be applied to kernels as old as 2.6.36, which was when
the first isochronous support was added for the xHCI host controller.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If the device pass the USB2 software LPM and the host supports hardware
LPM, enable hardware LPM for the device to let the host decide when to
put the link into lower power state.
If hardware LPM is enabled for a port and driver wants to put it into
suspend, it must first disable hardware LPM, resume the port into U0,
and then suspend the port.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch tests USB2 software LPM for a USB2 LPM-capable device.
When a lpm-capable device is addressed, if the host also supports software
LPM, apply a test by putting the device into L1 state and resume it to see
if the device can do L1 suspend/resume successfully.
If the device fails to enter L1 or resume from L1 state, it may not
function normally and usbcore may disconnect and re-enumerate it. In this
case, store the device's Vid and Pid information, make sure the host will
not test LPM for it twice.
The test result is per device/host. Some devices claim to be lpm-capable,
but fail to enter L1 or resume. So the test is necessary.
The xHCI 1.0 errata has modified the USB2.0 LPM implementation. It redefines
the HIRD field to BESL, and adds another register Port Hardware LPM Control
(PORTHLPMC). However, this should not affect the LPM behavior on xHC which
does not implement 1.0 errata.
USB2.0 LPM errata defines a new bit BESL in the device's USB 2.0 extension
descriptor. If the device reports it uses BESL, driver should use BESL
instead of HIRD for it.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
|
| |
Check the host's USB2 LPM capability.
USB2 software LPM support is optional for xHCI 0.96 hosts. xHCI 1.0 hosts
should support software LPM, and may support hardware LPM.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
| |
Introduce xhci_test_and_clear_bit() to clear RWC bit in PORTSC register.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
| |
Introduce xhci_set_link_state() to remove redundant codes.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Intel Panther Point xHCI host tracks SuperSpeed endpoints in a
different way than USB 2.0/1.1 endpoints. The bandwidth interval tables
are not used, and instead the bandwidth is calculated in a very simple
way. Bandwidth for SuperSpeed endpoints is tracked individually in each
direction, since each direction has the full USB 3.0 bandwidth available.
10% of the bus bandwidth is reserved for non-periodic transfers.
This checking would be more complex if we had USB 3.0 LPM enabled, because
an additional latency for isochronous ping times need to be taken into
account. However, we don't have USB 3.0 LPM support in Linux yet.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The "Mult" bits in the SuperSpeed Endpoint Companion Descriptor are
zero-based, and the xHCI host controller wants them to be zero-based in
the input context. However, for the bandwidth math, we want them to be
one-based. Fix this.
Fix the documentation about the endpoint bandwidth mult variable in the
xhci.h file, which says it is zero-based. Also fix the documentation
about num_packets, which is also one-based, not zero-based.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
|
| |
instead of reading the xhci interface version each time _even_ if the
quirk is not required, simply check if the quirk flag is set. This flag
is only set of the module parameter is set and here is where I moved the
version check to.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that we have a bandwidth interval table per root port or TT that
describes the endpoint bandwidth information, we can finally use it to
check whether the bus bandwidth is oversubscribed for a new device
configuration/alternate interface setting.
The complication for this algorithm is that the bit of hardware logic that
creates the bus schedule is only 12-bit logic. In order to make sure it
can represent the maximum bus bandwidth in 12 bits, it has to convert the
endpoint max packet size and max esit payload into "blocks" (basically a
less-precise representation). The block size for each speed of device is
different, aside from low speed and full speed. In order to make sure we
don't allow a setup where the scheduler might fail, we also have to do the
bandwidth checking in blocks.
After checking that the endpoints fit in the schedule, we store the
bandwidth used for this root port or TT. If this is a FS/LS device under
an external HS hub, we also update the TT bandwidth and the root port
bandwidth (if this is a newly activated or deactivated TT).
I won't go into the details of the algorithm, as it's pretty well
documented in the comments.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In order to update the root port or TT's bandwidth interval table, we will
need to keep track of a list of endpoints, per interval. That way we can
easily know the new largest max packet size when we have to remove an
endpoint.
Add an endpoint list for each root port or TT structure, sorted by
endpoint max packet size. Insert new endpoints into the list such that
the head of the list always has the endpoint with the greatest max packet
size. Only insert endpoints and update the interval table with new
information when those endpoints are periodic.
Make sure to update the number of active TTs when we add or drop periodic
endpoints. A TT is only considered active if it has one or more periodic
endpoints attached (control and bulk are best effort, and counted in the
20% reserved on the high speed bus). If the number of active endpoints
for a TT was zero, and it's now non-zero, increment the number of active
TTs for the rootport. If the number of active endpoints was non-zero, and
it's now zero, decrement the number of active TTs.
We have to be careful when we're checking the bandwidth for a new
configuration/alt setting. If we don't have enough bandwidth, we need to
be able to "roll back" the bandwidth information stored in the endpoint
and the root port/TT interval bandwidth table. We can't just create a
copy of the interval bandwidth table, modify it, and check the bandwidth
with the copy because we have lists of endpoints and entries can't be on
more than one list. Instead, we copy the old endpoint bandwidth
information, and use it to revert the interval table when the bandwidth
check fails.
We don't check the bandwidth after endpoints are dropped from the interval
table when a device is reset or freed after a disconnect, because having
endpoints use less bandwidth should not push the bandwidth usage over the
limits. Besides which, we can't fail a device disconnect.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In the upcoming patches, we'll use some stored endpoint information to
make software keep track of the worst-case bandwidth schedule. We need to
store several variables associated with each periodic endpoint:
- the type of endpoint
- Max Packet Size
- Mult
- Max ESIT payload
- Max Burst Size (aka number of packets, stored in one-based form)
- the endpoint interval (normalized to powers of 2 microframes)
All this information is available to the hardware, and stored in its
device output context. However, we need to ensure that the new
information is stored before the xHCI driver drops the xhci->lock to wait
on the Configure Endpoint command, so that another driver requesting a
configuration or alt setting change will see the update. The Configure
Endpoint command will never fail on the hardware that needs this software
bandwidth checking (assuming the slot is enabled and the flags are set
properly), so updating the endpoint info before the command completes
should be fine.
Until we add in the bandwidth checking code, just update the endpoint
information after the Configure Endpoint command completes, and after a
Reset Device command completes. Don't bother to clear the endpoint
bandwidth info when a device is being freed, since the xhci_virt_ep is
just going to be freed anyway.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For upcoming patches, we need to keep information about the bandwidth
domains under the xHCI host. Each root port is a separate primary
bandwidth domain, and each high speed hub's TT (and potentially each port
on a multi-TT hub) is a secondary bandwidth domain.
If the table were in text form, it would look a bit like this:
EP Interval Sum of Number Largest Max Max Packet
of Packets Packet Size Overhead
0 N mps overhead
...
15 N mps overhead
Overhead is the maximum packet overhead (for bit stuffing, CRC, protocol
overhead, etc) for all the endpoints in this interval. Devices with
different speeds have different max packet overhead. For example, if
there is a low speed and a full speed endpoint that both have an interval
of 3, we would use the higher overhead (the low speed overhead). Interval
0 is a bit special, since we really just want to know the sum of the max
ESIT payloads instead of the largest max packet size. That's stored in
the interval0_esit_payload variable. For root ports, we also need to keep
track of the number of active TTs.
For each root port, and each TT under a root port, store some information
about the bandwidth consumption. Dynamically allocate an array of root
port bandwidth information for the number of root ports on the xHCI host.
Each root port stores a list of TTs under the root port. A single TT hub
only has one entry in the list, but a multi-TT hub will have an entry per
port.
When the USB core says that a USB device is a hub, create one or more
entries in the root port TT list for the hub. When a device is deleted,
and it is a hub, search through the root port TT list and delete all
TT entries for the hub. Keep track of which TT entry is associated with a
device under a TT.
LS/FS devices attached directly to the root port will have usb_device->tt
set to the roothub. Ignore that, and treat it like a primary bandwidth
domain, since there isn't really a high speed bus between the roothub and
the host.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
| |
Since the xHCI driver now has split USB2/USB3 roothubs, devices under each
roothub can have duplicate "fake" port numbers. For the next set of
patches, we need to keep track of the "real" port number that the xHCI
host uses to index into the port status arrays.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
| |
The "port" field in xhci_virt_dev stores the port number associated with
one of the two xHCI split roothubs, not the unique port number the xHCI
hardware uses. Since we'll need to store the real hardware port number in
future patches, rename this field to "fake_port".
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb-2.6
* 'usb-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb-2.6: (115 commits)
EHCI: fix direction handling for interrupt data toggles
USB: serial: add IDs for WinChipHead USB->RS232 adapter
USB: OHCI: fix another regression for NVIDIA controllers
usb: gadget: m66592-udc: add pullup function
usb: gadget: m66592-udc: add function for external controller
usb: gadget: r8a66597-udc: add pullup function
usb: renesas_usbhs: support multi driver
usb: renesas_usbhs: inaccessible pipe is not an error
usb: renesas_usbhs: care buff alignment when dma handler
USB: PL2303: correctly handle baudrates above 115200
usb: r8a66597-hcd: fixup USB_PORT_STAT_C_SUSPEND shift
usb: renesas_usbhs: compile/config are rescued
usb: renesas_usbhs: fixup comment-out
usb: update email address in ohci-sh and r8a66597-hcd
usb: r8a66597-hcd: add function for external controller
EHCI: only power off port if over-current is active
USB: mon: Allow to use usbmon without debugfs
USB: EHCI: go back to using the system clock for QH unlinks
ehci: add pci quirk for Ordissimo and RM Slate 100 too
ehci: refactor pci quirk to use standard dmi_check_system method
...
Fix up trivial conflicts in Documentation/feature-removal-schedule.txt
|
| |\
| | |
| | |
| | | |
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Some of the recently-added cpu_to_leXX and leXX_to_cpu made things somewhat
messy; this patch neatens some of these areas, removing unnecessary casts
in those parts also. In some places (where Y & Z are constants) a
comparison of (leXX_to_cpu(X) & Y) == Z has been replaced with
(X & cpu_to_leXX(Y)) == cpu_to_leXX(Z). The endian reversal of the
constants should wash out at compile time.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The asrock p67 xhci controller completely dies on resume, add a
quirk for this, to bring the host back online after a suspend.
This should be backported to stable kernels as old as 2.6.37.
Signed-off-by: Maarten Lankhorst <m.b.lankhorst@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@kernel.org
|
| |/
|/|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
It is one new TRB Completion Code for the xHCI spec v1.0.
Asserted if the xHC detects a problem with a device that does not allow it to
be successfully accessed, e.g. due to a device compliance or compatibility
problem. This error may be returned by any command or transfer, and is fatal
as far as the Slot is concerned. Return -EPROTO by urb->status or frame->status
of ISOC for transfer case. And return -ENODEV for configure endpoint command,
evaluate context command and address device command if there is an incompatible
Device Error. The error codes will be sent back to the USB core to decide how
to do. It's unnecessary for other commands because after the three commands run
successfully means that the device has been accepted.
Signed-off-by: Alex He <alex.he@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Some Fresco Logic hosts, including those found in the AUAU N533V laptop,
advertise MSI, but fail to actually generate MSI interrupts. Add a new
xHCI quirk to skip MSI enabling for the Fresco Logic host controllers.
Fresco Logic confirms that all chips with PCI vendor ID 0x1b73 and device
ID 0x1000, regardless of PCI revision ID, do not support MSI.
This should be backported to stable kernels as far back as 2.6.36, which
was the first kernel to support MSI on xHCI hosts.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Reported-by: Sergey Galanov <sergey.e.galanov@gmail.com>
Cc: stable@kernel.org
|
|/
|
|
|
|
|
|
|
| |
This needs to be added to the stable trees back to 2.6.34 to support an
upcoming bug fix.
Signed-off-by: Maarten Lankhorst <m.b.lankhorst@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@kernel.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Panther Point chipset has an xHCI host controller that has a limit to
the number of active endpoints it can handle. Ideally, it would signal
that it can't handle anymore endpoints by returning a Resource Error for
the Configure Endpoint command, but they don't. Instead it needs software
to keep track of the number of active endpoints, across configure endpoint
commands, reset device commands, disable slot commands, and address device
commands.
Add a new endpoint context counter, xhci_hcd->num_active_eps, and use it
to track the number of endpoints the xHC has active. This gets a little
tricky, because commands to change the number of active endpoints can
fail. This patch adds a new xHCI quirk for these Intel hosts, and the new
code should not have any effect on other xHCI host controllers.
Fail a new device allocation if we don't have room for the new default
control endpoint. Use the endpoint ring pointers to determine what
endpoints were active before a Reset Device command or a Disable Slot
command, and drop those once the command completes.
Fail a configure endpoint command if it would add too many new endpoints.
We have to be a bit over zealous here, and only count the number of new
endpoints to be added, without subtracting the number of dropped
endpoints. That's because a second configure endpoint command for a
different device could sneak in before we know if the first command is
completed. If the first command dropped resources, the host controller
fails the command for some reason, and we're nearing the limit of
endpoints, we could end up oversubscribing the host.
To fix this race condition, when evaluating whether a configure endpoint
command will fix in our bandwidth budget, only add the new endpoints to
xhci->num_active_eps, and don't subtract the dropped endpoints. Ignore
changed endpoints (ones that are dropped and then re-added), as that
shouldn't effect the host's endpoint resources. When the configure
endpoint command completes, subtract off the dropped endpoints.
This may mean some configuration changes may temporarily fail, but it's
always better to under-subscribe than over-subscribe resources.
(Originally my plan had been to push the resource allocation down into the
ring allocation functions. However, that would cause us to allocate
unnecessary resources when endpoints were changed, because the xHCI driver
allocates a new ring for the changed endpoint, and only deletes the old
ring once the Configure Endpoint command succeeds. A further complication
would have been dealing with the per-device endpoint ring cache.)
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The xHCI host controller in the Panther Point chipset sometimes produces
spurious events on the event ring. If it receives a short packet, it
first puts a Transfer Event with a short transfer completion code on the
event ring. Then it puts a Transfer Event with a successful completion
code on the ring for the same TD. The xHCI driver correctly processes the
short transfer completion code, gives the URB back to the driver, and then
prints a warning in dmesg about the spurious event. These warning
messages really fill up dmesg when an HD webcam is plugged into xHCI.
This spurious successful event behavior isn't technically disallowed by
the xHCI specification, so make the xHCI driver just ignore the spurious
completion event.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Unsurprisingly, URBs get submitted and completed a lot in the xHCI
driver. If we have to print 10 lines of debug for every URB submitted
or completed, then that can cause the whole system to stay in the
interrupt handler too long, and can cause Missed Service completion
codes for isochronous transfers.
Cut down the debugging in the URB submission and completion paths:
- Don't squawk about successful transfers, only unsuccessful ones.
- Only print the number of bytes transferred if this was a short
transfer.
- Don't print the endpoint index for successful transfers (will add
more debug to failed transfers to show endpoint index there later).
- Stop printing MMIO writes. This debugging shows up when the endpoint
doorbell is rung a to start a transfer (basically for every URB).
- Don't print out the ring enqueue and dequeue pointers
- Stop printing when we're pointing to a link TRB.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
| |
This is a new TRB Completion Code of the xHCI spec 1.0.
Asserted by the Evalute Context Command if the proposed Max Exit Latency would
not allow the periodic endpoints of the Device Slot to be scheduled.
Signed-off-by: Alex He <alex.he@amd.com>
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently an isoc URB is divided into multiple TDs, and every TD will
trigger an interrupt when it's processed. However, software can schedule
multiple TDs at a time, and it only needs an interrupt every URB.
xHCI 1.0 introduces the Block Event Interrupt(BEI) flag which allows Normal
and Isoch Transfer TRBs to place an Event TRB on an Event Ring but not
assert an intrrupt to the host, and the interrupt rate is significantly
reduced and the system performance is improved.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
|
|
|
|
|
|
|
|
|
| |
Setup Stage Transfer Type field is added to indicate the presence and the
direction of the Data Stage TD, and determines the direction of the Status
Stage TD so the wLength length field should be ignored by the xHC.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The xHCI 1.0 specification defines a new isochronous TRB field, called
transfer burst last packet count (TBLPC). This field defines the number
of packets in the last "burst" of packets in a TD. Only SuperSpeed
endpoints can handle more than one burst, so this is set to the number for
packets in a TD for all non-SuperSpeed devices (minus one, since the field
is zero based).
This patch should have no effect on host controllers that don't advertise
the xHCI 1.0 (0x100) version number in their hci_version field.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The xHCI 1.0 specification adds a new field to the fourth dword in an
isochronous TRB: the transfer burst count (TBC). This field is only
non-zero for SuperSpeed devices. Each SS endpoint sets the bMaxBurst
field in the SuperSpeed endpoint companion descriptor, which indicates how
many max-packet-sized "bursts" it can handle in one service interval. The
device driver may choose to burst less max packet sized chunks each
service interval (which is defined by one TD). The xHCI driver indicates
to the host controller how many bursts it needs to schedule through the
transfer burst count field.
This patch will only effect xHCI hosts that advertise 1.0 support (0x100)
in the HCI version field of their capabilities register.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch changes the struct members defining access to xHCI device-visible
memory to use __le32/__le64 where appropriate, and then adds swaps where
required. Checked with sparse that all accesses are correct.
MMIO accesses use readl/writel so already are performed LE, but prototypes
now reflect this with __le*.
There were a couple of (debug) instances of DMA pointers being truncated to
32bits which have been fixed too.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch disable the optional PM feature inside the Hudson3 platform under
the following conditions:
1. If an isochronous device is connected to xHCI port and is active;
2. Optional PM feature that powers down the internal Bus PLL when the link is
in low power state is enabled.
The PM feature needs to be disabled to eliminate PLL startup delays when the
link comes out of low power state. The performance of DMA data transfer could
be impacted if system delay were encountered and in addition to the PLL start
up delays. Disabling the PM would leave room for unpredictable system delays
in order to guarantee uninterrupted data transfer to isochronous audio or
video stream devices that require time sensitive information. If data in an
audio/video stream was interrupted then erratic audio or video performance
may be encountered.
AMD PLL quirk is already implemented in OHCI/EHCI driver. After moving the
quirk code to pci-quirks.c and export them, xHCI driver can call it directly
without having the quirk implementation in itself.
Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
There were some places that compared port_speed == -1 where port_speed
is a u8. This doesn't work unless we cast the -1 to u8. Some places
did it correctly.
Instead of using -1 directly, I've created a DUPLICATE_ENTRY define
which does the cast and is more descriptive as well.
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Macro arguments used in expressions need to be enclosed in parenthesis
to avoid unpleasant surprises.
This should be queued for kernels back to 2.6.31
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Cc: stable@kernel.org
|
|
|
|
|
|
| |
Fixes generated by 'codespell' and manually reviewed.
Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb-2.6
* 'usb-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb-2.6: (172 commits)
USB: Add support for SuperSpeed isoc endpoints
xhci: Clean up cycle bit math used during stalls.
xhci: Fix cycle bit calculation during stall handling.
xhci: Update internal dequeue pointers after stalls.
USB: Disable auto-suspend for USB 3.0 hubs.
USB: Remove bogus USB_PORT_STAT_SUPER_SPEED symbol.
xhci: Return canceled URBs immediately when host is halted.
xhci: Fixes for suspend/resume of shared HCDs.
xhci: Fix re-init on power loss after resume.
xhci: Make roothub functions deal with device removal.
xhci: Limit roothub ports to 15 USB3 & 31 USB2 ports.
xhci: Return a USB 3.0 hub descriptor for USB3 roothub.
xhci: Register second xHCI roothub.
xhci: Change xhci_find_slot_id_by_port() API.
xhci: Refactor bus suspend state into a struct.
xhci: Index with a port array instead of PORTSC addresses.
USB: Set usb_hcd->state and flags for shared roothubs.
usb: Make core allocate resources per PCI-device.
usb: Store bus type in usb_hcd, not in driver flags.
usb: Change usb_hcd->bandwidth_mutex to a pointer.
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When an endpoint stalls, the xHCI driver must move the endpoint ring's
dequeue pointer past the stalled transfer. To do that, the driver issues
a Set TR Dequeue Pointer command, which will complete some time later.
Takashi was having issues with USB 1.1 audio devices that stalled, and his
analysis of the code was that the old code would not update the xHCI
driver's ring dequeue pointer after the command completes. However, the
dequeue pointer is set in xhci_find_new_dequeue_state(), just before the
set command is issued to the hardware.
Setting the dequeue pointer before the Set TR Dequeue Pointer command
completes is a dangerous thing to do, since the xHCI hardware can fail the
command. Instead, store the new dequeue pointer in the xhci_virt_ep
structure, and update the ring's dequeue pointer when the Set TR dequeue
pointer command completes.
While we're at it, make sure we can't queue another Set TR Dequeue Command
while the first one is still being processed. This just won't work with
the internal xHCI state code. I'm still not sure if this is the right
thing to do, since we might have a case where a driver queues multiple
URBs to a control ring, one of the URBs Stalls, and then the driver tries
to cancel the second URB. There may be a race condition there where the
xHCI driver might try to issue multiple Set TR Dequeue Pointer commands,
but I would have to think very hard about how the Stop Endpoint and
cancellation code works. Keep the fix simple until when/if we run into
that case.
This patch should be queued to kernels all the way back to 2.6.31.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Tested-by: Takashi Iwai <tiwai@suse.de>
Cc: stable@kernel.org
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When the xHCI host controller is halted, it won't respond to commands
placed on the command ring. So if an URB is cancelled after the first
roothub is deallocated, it will try to place a stop endpoint command on
the command ring, which will fail. The command watchdog timer will fire
after five seconds, and the host controller will be marked as dying, and
all URBs will be completed.
Add a flag to the xHCI's internal state variable for when the host
controller is halted. Immediately return the canceled URB if the host
controller is halted.
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
|