| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If there are not enough stripes to handle, we'd better not always
queue all available work_structs. If one worker can only handle small
or even none stripes, it will impact request merge and create lock
contention.
With this patch, the number of work_struct running will depend on
pending stripes number. Note: some statistics info used in the patch
are accessed without locking protection. This should doesn't matter,
we just try best to avoid queue unnecessary work_struct.
Signed-off-by: Shaohua Li <shli@fusionio.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
make_request() access various shape parameters (raid_disks, chunk_size
etc) which might be changed by raid5_start_reshape().
If the later is called at and awkward time during the form, the wrong
stripe_head might be used.
So introduce a 'seqcount' and after finding a stripe_head make sure
there is no reason to expect that we got the wrong one.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is another attempt to create multiple threads to handle raid5 stripes.
This time I use workqueue.
raid5 handles request (especially write) in stripe unit. A stripe is page size
aligned/long and acrosses all disks. Writing to any disk sector, raid5 runs a
state machine for the corresponding stripe, which includes reading some disks
of the stripe, calculating parity, and writing some disks of the stripe. The
state machine is running in raid5d thread currently. Since there is only one
thread, it doesn't scale well for high speed storage. An obvious solution is
multi-threading.
To get better performance, we have some requirements:
a. locality. stripe corresponding to request submitted from one cpu is better
handled in thread in local cpu or local node. local cpu is preferred but some
times could be a bottleneck, for example, parity calculation is too heavy.
local node running has wide adaptability.
b. configurablity. Different setup of raid5 array might need diffent
configuration. Especially the thread number. More threads don't always mean
better performance because of lock contentions.
My original implementation is creating some kernel threads. There are
interfaces to control which cpu's stripe each thread should handle. And
userspace can set affinity of the threads. This provides biggest flexibility
and configurability. But it's hard to use and apparently a new thread pool
implementation is disfavor.
Recent workqueue improvement is quite promising. unbound workqueue will be
bound to numa node. If WQ_SYSFS is set in workqueue, there are sysfs option to
do affinity setting. For example, we can only include one HT sibling in
affinity. Since work is non-reentrant by default, and we can control running
thread number by limiting dispatched work_struct number.
In this patch, I created several stripe worker group. A group is a numa node.
stripes from cpus of one node will be added to a group list. Workqueue thread
of one node will only handle stripes of worker group of the node. In this way,
stripe handling has numa node locality. And as I said, we can control thread
number by limiting dispatched work_struct number.
The work_struct callback function handles several stripes in one run. A typical
work queue usage is to run one unit in each work_struct. In raid5 case, the
unit is a stripe. But we can't do that:
a. Though handling a stripe doesn't need lock because of reference accounting
and stripe isn't in any list, queuing a work_struct for each stripe will make
workqueue lock contended very heavily.
b. blk_start_plug()/blk_finish_plug() should surround stripe handle, as we
might dispatch request. If each work_struct only handles one stripe, such block
plug is meaningless.
This implementation can't do very fine grained configuration. But the numa
binding is most popular usage model, should be enough for most workloads.
Note: since we have only one stripe queue, switching to multi-thread might
decrease request size dispatching down to low level layer. The impact depends
on thread number, raid configuration and workload. So multi-thread raid5 might
not be proper for all setups.
Changes V1 -> V2:
1. remove WQ_NON_REENTRANT
2. disabling multi-threading by default
3. Add more descriptions in changelog
Signed-off-by: Shaohua Li <shli@fusionio.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
release_stripe still has big lock contention. We just add the stripe to a llist
without taking device_lock. We let the raid5d thread to do the real stripe
release, which must hold device_lock anyway. In this way, release_stripe
doesn't hold any locks.
The side effect is the released stripes order is changed. But sounds not a big
deal, stripes are never handled in order. And I thought block layer can already
do nice request merge, which means order isn't that important.
I kept the unplug release batch, which is unnecessary with this patch from lock
contention avoid point of view, and actually if we delete it, the stripe_head
release_list and lru can share storage. But the unplug release batch is also
helpful for request merge. We probably can delay wakeup raid5d till unplug, but
I'm still afraid of the case which raid5d is running.
Signed-off-by: Shaohua Li <shli@fusionio.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If a device in a RAID4/5/6 is being replaced while another is being
recovered, then the writes to the replacement device currently don't
happen, resulting in corruption when the replacement completes and the
new drive takes over.
This is because the replacement writes are only triggered when
's.replacing' is set and not when the similar 's.sync' is set (which
is the case during resync and recovery - it means all devices need to
be read).
So schedule those writes when s.replacing is set as well.
In this case we cannot use "STRIPE_INSYNC" to record that the
replacement has happened as that is needed for recording that any
parity calculation is complete. So introduce STRIPE_REPLACED to
record if the replacement has happened.
For safety we should also check that STRIPE_COMPUTE_RUN is not set.
This has a similar effect to the "s.locked == 0" test. The latter
ensure that now IO has been flagged but not started. The former
checks if any parity calculation has been flagged by not started.
We must wait for both of these to complete before triggering the
'replace'.
Add a similar test to the subsequent check for "are we finished yet".
This possibly isn't needed (is subsumed in the STRIPE_INSYNC test),
but it makes it more obvious that the REPLACE will happen before we
think we are finished.
Finally if a NeedReplace device is not UPTODATE then that is an
error. We really must trigger a warning.
This bug was introduced in commit 9a3e1101b827a59ac9036a672f5fa8d5279d0fe2
(md/raid5: detect and handle replacements during recovery.)
which introduced replacement for raid5.
That was in 3.3-rc3, so any stable kernel since then would benefit
from this fix.
Cc: stable@vger.kernel.org (3.3+)
Reported-by: qindehua <13691222965@163.com>
Tested-by: qindehua <qindehua@163.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
| |
Once instance of this Kconfig macro remained after commit
51acbcec6c42b24482bac18e42befc822524535d ("md: remove
CONFIG_MULTICORE_RAID456"). Remove that one too. And, while we're at it,
also remove it from the defconfig files that carry it.
Signed-off-by: Paul Bolle <pebolle@tiscali.nl>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A number of problems can occur due to races between
resync/recovery and discard.
- if sync_request calls handle_stripe() while a discard is
happening on the stripe, it might call handle_stripe_clean_event
before all of the individual discard requests have completed
(so some devices are still locked, but not all).
Since commit ca64cae96037de16e4af92678814f5d4bf0c1c65
md/raid5: Make sure we clear R5_Discard when discard is finished.
this will cause R5_Discard to be cleared for the parity device,
so handle_stripe_clean_event() will not be called when the other
devices do become unlocked, so their ->written will not be cleared.
This ultimately leads to a WARN_ON in init_stripe and a lock-up.
- If handle_stripe_clean_event() does clear R5_UPTODATE at an awkward
time for resync, it can lead to s->uptodate being less than disks
in handle_parity_checks5(), which triggers a BUG (because it is
one).
So:
- keep R5_Discard on the parity device until all other devices have
completed their discard request
- make sure we don't try to have a 'discard' and a 'sync' action at
the same time.
This involves a new stripe flag to we know when a 'discard' is
happening, and the use of R5_Overlap on the parity disk so when a
discard is wanted while a sync is active, so we know to wake up
the discard at the appropriate time.
Discard support for RAID5 was added in 3.7, so this is suitable for
any -stable kernel since 3.7.
Cc: stable@vger.kernel.org (v3.7+)
Reported-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Tested-by: Jes Sorensen <Jes.Sorensen@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Discard for raid4/5/6 has limitation. If discard request size is
small, we do discard for one disk, but we need calculate parity and
write parity disk. To correctly calculate parity, zero_after_discard
must be guaranteed. Even it's true, we need do discard for one disk
but write another disks, which makes the parity disks wear out
fast. This doesn't make sense. So an efficient discard for raid4/5/6
should discard all data disks and parity disks, which requires the
write pattern to be (A, A+chunk_size, A+chunk_size*2...). If A's size
is smaller than chunk_size, such pattern is almost impossible in
practice. So in this patch, I only handle the case that A's size
equals to chunk_size. That is discard request should be aligned to
stripe size and its size is multiple of stripe size.
Since we can only handle request with specific alignment and size (or
part of the request fitting stripes), we can't guarantee
zero_after_discard even zero_after_discard is true in low level
drives.
The block layer doesn't send down correctly aligned requests even
correct discard alignment is set, so I must filter out.
For raid4/5/6 parity calculation, if data is 0, parity is 0. So if
zero_after_discard is true for all disks, data is consistent after
discard. Otherwise, data might be lost. Let's consider a scenario:
discard a stripe, write data to one disk and write parity disk. The
stripe could be still inconsistent till then depending on using data
from other data disks or parity disks to calculate new parity. If the
disk is broken, we can't restore it. So in this patch, we only enable
discard support if all disks have zero_after_discard.
If discard fails in one disk, we face the similar inconsistent issue
above. The patch will make discard follow the same path as normal
write request. If discard fails, a resync will be scheduled to make
the data consistent. This isn't good to have extra writes, but data
consistency is important.
If a subsequent read/write request hits raid5 cache of a discarded
stripe, the discarded dev page should have zero filled, so the data is
consistent. This patch will always zero dev page for discarded request
stripe. This isn't optimal because discard request doesn't need such
payload. Next patch will avoid it.
Signed-off-by: Shaohua Li <shli@fusionio.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull additional md update from NeilBrown:
"This contains a few patches that depend on plugging changes in the
block layer so needed to wait for those.
It also contains a Kconfig fix for the new RAID10 support in dm-raid."
* tag 'md-3.6' of git://neil.brown.name/md:
md/dm-raid: DM_RAID should select MD_RAID10
md/raid1: submit IO from originating thread instead of md thread.
raid5: raid5d handle stripe in batch way
raid5: make_request use batch stripe release
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
make_request() does stripe release for every stripe and the stripe usually has
count 1, which makes previous release_stripe() optimization not work. In my
test, this release_stripe() becomes the heaviest pleace to take
conf->device_lock after previous patches applied.
Below patch makes stripe release batch. All the stripes will be released in
unplug. The STRIPE_ON_UNPLUG_LIST bit is to protect concurrent access stripe
lru.
Signed-off-by: Shaohua Li <shli@fusionio.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Because bios will merge at block-layer,so bios-error may caused by other
bio which be merged into to the same request.
Using this flag,it will find exactly error-sector and not do redundant
operation like re-write and re-read.
V0->V1:Using REQ_FLUSH instead REQ_NOMERGE avoid bio merging at block
layer.
Signed-off-by: Jianpeng Ma <majianpeng@gmail.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add a per-stripe lock to protect stripe specific data. The purpose is to reduce
lock contention of conf->device_lock.
stripe ->toread, ->towrite are protected by per-stripe lock. Accessing bio
list of the stripe is always serialized by this lock, so adding bio to the
lists (add_stripe_bio()) and removing bio from the lists (like
ops_run_biofill()) not race.
If bio in ->read, ->written ... list are not shared by multiple stripes, we
don't need any lock to protect ->read, ->written, because STRIPE_ACTIVE will
protect them. If the bio are shared, there are two protections:
1. bi_phys_segments acts as a reference count
2. traverse the list uses r5_next_bio, which makes traverse never access bio
not belonging to the stripe
Let's have an example:
| stripe1 | stripe2 | stripe3 |
...bio1......|bio2|bio3|....bio4.....
stripe2 has 4 bios, when it's finished, it will decrement bi_phys_segments for
all bios, but only end_bio for bio2 and bio3. bio1->bi_next still points to
bio2, but this doesn't matter. When stripe1 is finished, it will not touch bio2
because of r5_next_bio check. Next time stripe1 will end_bio for bio1 and
stripe3 will end_bio bio4.
before add_stripe_bio() addes a bio to a stripe, we already increament the bio
bi_phys_segments, so don't worry other stripes release the bio.
Signed-off-by: Shaohua Li <shli@fusionio.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
| |
REQ_SYNC is ignored in current raid5 code. Block layer does use it to do
policy,
for example ioscheduler. This patch adds it.
Signed-off-by: Shaohua Li <shli@fusionio.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
| |
The important issue here is incorporating the different in data_offset
into calculations concerning when we might need to over-write data
that is still thought to be valid.
To this end we find the minimum offset difference across all devices
and add that where appropriate.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During recovery we want to write to the replacement but not
the original. So we have two new flags
- R5_NeedReplace if this stripe has a replacement that needs to
be written at some stage
- R5_WantReplace if NeedReplace, and the data is available, and
a 'sync' has been requested on this stripe.
We also distinguish between 'sync and replace' which need to read
all other devices, and 'replace' which only needs to read the
devices being replaced.
Note that during resync we always write to any replacement device.
It might not need to be written to, but as we don't read to compare,
we have to write to be sure.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When writing, we need to submit two writes, one to the original, and
one to the replacement - if there is a replacement.
If the write to the replacement results in a write error, we just fail
the device. We only try to record write errors to the original.
When writing for recovery, we shouldn't write to the original. This
will be addressed in a subsequent patch that generally addresses
recovery.
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
| |
Remove some #defines that are no longer used, and replace some
others with an enum.
And remove an unused field.
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Just enhance data structures to record a second device per slot to be
used as a 'replacement' device, replacing the original.
We also have a second bio in each slot in each stripe_head. This will
only be used when writing to the array - we need to write to both the
original and the replacement at the same time, so will need two bios.
For now, only try using the replacement drive for aligned-reads.
In this case, we prefer the replacement if it has been recovered far
enough, otherwise use the original.
This includes a small enhancement. Previously we would only do
aligned reads if the target device was fully recovered. Now we also
do them if it has recovered far enough.
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
| |
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
| |
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
| |
Having mddev_t and 'struct mddev_s' is ugly and not preferred
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
| |
The typedefs are just annoying. 'mdk' probably refers to 'md_k.h'
which used to be an include file that defined this thing.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
| |
On a successful write to a known bad block, flag the sh
so that raid5d can remove the known bad block from the list.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
| |
When a write error is detected, don't mark the device as failed
immediately but rather record the fact for handle_stripe to deal with.
Handle_stripe then attempts to record a bad block. Only if that fails
does the device get marked as faulty.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If we get an uncorrectable read error - record a bad block rather than
failing the device.
And if these errors (which may be due to known bad blocks) cause
recovery to be impossible, record a bad block on the recovering
devices, or abort the recovery.
As we might abort a recovery without failing a device we need to teach
RAID5 about recovery_disabled handling.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
| |
Adding these three fields will allow more common code to be moved
to handle_stripe()
struct field rearrangement by Namhyung Kim.
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
'struct stripe_head_state' stores state about the 'current' stripe
that is passed around while handling the stripe.
For RAID6 there is an extension structure: r6_state, which is also
passed around.
There is no value in keeping these separate, so move the fields from
the latter into the former.
This means that all code now needs to treat s->failed_num as an small
array, but this is a small cost.
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
sh->lock is now mainly used to ensure that two threads aren't running
in the locked part of handle_stripe[56] at the same time.
That can more neatly be achieved with an 'active' flag which we set
while running handle_stripe. If we find the flag is set, we simply
requeue the stripe for later by setting STRIPE_HANDLE.
For safety we take ->device_lock while examining the state of the
stripe and creating a summary in 'stripe_head_state / r6_state'.
This possibly isn't needed but as shared fields like ->toread,
->towrite are checked it is safer for now at least.
We leave the label after the old 'unlock' called "unlock" because it
will disappear in a few patches, so renaming seems pointless.
This leaves the stripe 'locked' for longer as we clear STRIPE_ACTIVE
later, but that is not a problem.
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the start of a series of patches to remove sh->lock.
sync_request takes sh->lock before setting STRIPE_SYNCING to ensure
there is no race with testing it in handle_stripe[56].
Instead, use a new flag STRIPE_SYNC_REQUESTED and test it early
in handle_stripe[56] (after getting the same lock) and perform the
same set/clear operations if it was set.
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: Namhyung Kim <namhyung@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
md has some plugging infrastructure for RAID5 to use because the
normal plugging infrastructure required a 'request_queue', and when
called from dm, RAID5 doesn't have one of those available.
This relied on the ->unplug_fn callback which doesn't exist any more.
So remove all of that code, both in md and raid5. Subsequent patches
with restore the plugging functionality.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
| |
Code has been converted over to the new explicit on-stack plugging,
and delay users have been converted to use the new API for that.
So lets kill off the old plugging along with aops->sync_page().
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch converts md to support REQ_FLUSH/FUA instead of now
deprecated REQ_HARDBARRIER. In the core part (md.c), the following
changes are notable.
* Unlike REQ_HARDBARRIER, REQ_FLUSH/FUA don't interfere with
processing of other requests and thus there is no reason to mark the
queue congested while FLUSH/FUA is in progress.
* REQ_FLUSH/FUA failures are final and its users don't need retry
logic. Retry logic is removed.
* Preflush needs to be issued to all member devices but FUA writes can
be handled the same way as other writes - their processing can be
deferred to request_queue of member devices. md_barrier_request()
is renamed to md_flush_request() and simplified accordingly.
For linear, raid0 and multipath, the core changes are enough. raid1,
5 and 10 need the following conversions.
* raid1: Handling of FLUSH/FUA bio's can simply be deferred to
request_queues of member devices. Barrier related logic removed.
* raid5: Queue draining logic dropped. FUA bit is propagated through
biodrain and stripe resconstruction such that all the updated parts
of the stripe are written out with FUA writes if any of the dirtying
writes was FUA. preread_active_stripes handling in make_request()
is updated as suggested by Neil Brown.
* raid10: FUA bit needs to be propagated to write clones.
linear, raid0, 1, 5 and 10 tested.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Neil Brown <neilb@suse.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
|
|
|
|
|
|
|
| |
Also remove remaining accesses to ->queue and ->gendisk when ->queue
is NULL (As it is in a DM target).
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
| |
md/raid5 uses the plugging infrastructure provided by the block layer
and 'struct request_queue'. However when we plug raid5 under dm there
is no request queue so we cannot use that.
So create a similar infrastructure that is much lighter weight and use
it for raid5.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
| |
the dm module will need this for dm-raid45.
Also only access ->queue->backing_dev_info->congested_fn
if ->queue actually exists. It won't in a dm target.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
gendisk
We will shortly allow md devices with no gendisk (they are attached to
a dm-target instead). That will cause mdname() to return 'mdX'.
There is one place where mdname really needs to be unique: when
creating the name for a slab cache.
So in that case, if there is no gendisk, you the address of the mddev
formatted in HEX to provide a unique name.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
| |
Separate the actual 'change' code from the sysfs interface
so that it can eventually be called internally.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add __percpu sparse annotations to places which didn't make it in one
of the previous patches. All converions are trivial.
These annotations are to make sparse consider percpu variables to be
in a different address space and warn if accessed without going
through percpu accessors. This patch doesn't affect normal builds.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Neil Brown <neilb@suse.de>
|
|
|
|
| |
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The percpu conversion allowed a straightforward handoff of stripe
processing to the async subsytem that initially showed some modest gains
(+4%). However, this model is too simplistic and leads to stripes
bouncing between raid5d and the async thread pool for every invocation
of handle_stripe(). As reported by Holger this can fall into a
pathological situation severely impacting throughput (6x performance
loss).
By downleveling the parallelism to raid_run_ops the pathological
stripe_head bouncing is eliminated. This version still exhibits an
average 11% throughput loss for:
mdadm --create /dev/md0 /dev/sd[b-q] -n 16 -l 6
echo 1024 > /sys/block/md0/md/stripe_cache_size
dd if=/dev/zero of=/dev/md0 bs=1024k count=2048
...but the results are at least stable and can be used as a base for
further multicore experimentation.
Reported-by: Holger Kiehl <Holger.Kiehl@dwd.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: NeilBrown <neilb@suse.de>
|
|\
| |
| |
| |
| |
| |
| |
| | |
Conflicts:
crypto/async_tx/async_xor.c
drivers/dma/ioat/dma_v2.h
drivers/dma/ioat/pci.c
drivers/md/raid5.c
|
| |
| |
| |
| |
| |
| |
| | |
This kills some more shifts.
Signed-off-by: Andre Noll <maan@systemlinux.org>
Signed-off-by: NeilBrown <neilb@suse.de>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Having a macro just to cast a void* isn't really helpful.
I would must rather see that we are simply de-referencing ->private,
than have to know what the macro does.
So open code the macro everywhere and remove the pointless cast.
Signed-off-by: NeilBrown <neilb@suse.de>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
[ Based on an original patch by Yuri Tikhonov ]
The raid_run_ops routine uses the asynchronous offload api and
the stripe_operations member of a stripe_head to carry out xor+pq+copy
operations asynchronously, outside the lock.
The operations performed by RAID-6 are the same as in the RAID-5 case
except for no support of STRIPE_OP_PREXOR operations. All the others
are supported:
STRIPE_OP_BIOFILL
- copy data into request buffers to satisfy a read request
STRIPE_OP_COMPUTE_BLK
- generate missing blocks (1 or 2) in the cache from the other blocks
STRIPE_OP_BIODRAIN
- copy data out of request buffers to satisfy a write request
STRIPE_OP_RECONSTRUCT
- recalculate parity for new data that has entered the cache
STRIPE_OP_CHECK
- verify that the parity is correct
The flow is the same as in the RAID-5 case, and reuses some routines, namely:
1/ ops_complete_postxor (renamed to ops_complete_reconstruct)
2/ ops_complete_compute (updated to set up to 2 targets uptodate)
3/ ops_run_check (renamed to ops_run_check_p for xor parity checks)
[neilb@suse.de: fixes to get it to pass mdadm regression suite]
Reviewed-by: Andre Noll <maan@systemlinux.org>
Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Ilya Yanok <yanok@emcraft.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Replace the flat zero_sum_result with a collection of flags to contain
the P (xor) zero-sum result, and the soon to be utilized Q (raid6 reed
solomon syndrome) zero-sum result. Use the SUM_CHECK_ namespace instead
of DMA_ since these flags will be used on non-dma-zero-sum enabled
platforms.
Reviewed-by: Andre Noll <maan@systemlinux.org>
Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Use percpu memory rather than stack for storing the buffer lists used in
parity calculations. Include space for dma address conversions and pass
that to async_tx via the async_submit_ctl.scribble pointer.
[ Impact: move memory pressure from stack to heap ]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
| |
In preparation for asynchronous handling of raid6 operations move the
spare page to a percpu allocation to allow multiple simultaneous
synchronous raid6 recovery operations.
Make this allocation cpu hotplug aware to maximize allocation
efficiency.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We currently update the metadata :
1/ every 3Megabytes
2/ When the place we will write new-layout data to is recorded in
the metadata as still containing old-layout data.
Rule one exists to avoid having to re-do too much reshaping in the
face of a crash/restart. So it should really be time based rather
than size based. So change it to "every 10 seconds".
Rule two turns out to be too harsh when restriping an array
'in-place', as in that case the metadata much be updates for every
stripe.
For the in-place update, it can only possibly be safe from a crash if
some user-space program data a backup of every e.g. few hundred
stripes before allowing them to be reshaped. In that case, the
constant metadata update is pointless.
So only update the metadata if the new metadata will report that the
end of the 'old-layout' data is beyond where we are currently
writing 'new-layout' data.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
| |
Add prev_algo to raid5_conf_t along the same lines as prev_chunk
and previous_raid_disks.
Signed-off-by: NeilBrown <neilb@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add "prev_chunk" to raid5_conf_t, similar to "previous_raid_disks", to
remember what the chunk size was before the reshape that is currently
underway.
This seems like duplication with "chunk_size" and "new_chunk" in
mddev_t, and to some extent it is, but there are differences.
The values in mddev_t are always defined and often the same.
The prev* values are only defined if a reshape is underway.
Also (and more significantly) the raid5_conf_t values will be changed
at the same time (inside an appropriate lock) that the reshape is
started by setting reshape_position. In contrast, the new_chunk value
is set when the sysfs file is written which could be well before the
reshape starts.
Signed-off-by: NeilBrown <neilb@suse.de>
|